1,255 research outputs found

    Blind extraction of an exoplanetary spectrum through Independent Component Analysis

    Full text link
    Blind-source separation techniques are used to extract the transmission spectrum of the hot-Jupiter HD189733b recorded by the Hubble/NICMOS instrument. Such a 'blind' analysis of the data is based on the concept of independent component analysis. The de-trending of Hubble/NICMOS data using the sole assumption that nongaussian systematic noise is statistically independent from the desired light-curve signals is presented. By not assuming any prior, nor auxiliary information but the data themselves, it is shown that spectroscopic errors only about 10 - 30% larger than parametric methods can be obtained for 11 spectral bins with bin sizes of ~0.09 microns. This represents a reasonable trade-off between a higher degree of objectivity for the non-parametric methods and smaller standard errors for the parametric de-trending. Results are discussed in the light of previous analyses published in the literature. The fact that three very different analysis techniques yield comparable spectra is a strong indication of the stability of these results.Comment: ApJ accepte

    Magnetic relaxation studies on a single-molecule magnet by time-resolved inelastic neutron scattering

    Full text link
    Time-resolved inelastic neutron scattering measurements on an array of single-crystals of the single-molecule magnet Mn12ac are presented. The data facilitate a spectroscopic investigation of the slow relaxation of the magnetization in this compound in the time domain.Comment: 3 pages, 4 figures, REVTEX4, to appear in Appl. Phys. Lett., for an animation see also http://www.dcb.unibe.ch/groups/guedel/members/ow2/trins.ht

    Breath detection using short-time Fourier transform analysis in electrical impedance tomography

    Get PDF
    Spectral analysis based on short-time Fourier transform (STFT) using Kaiser window is proposed to examine the frequency components of neonates EIT data. In this way, a simultaneous spatial-time-frequency analysis is achieved

    Field-induced level crossings in spin clusters: Thermodynamics and magneto-elastic instability

    Full text link
    Quantum spin clusters with dominant antiferromagnetic Heisenberg exchange interactions typically exhibit a sequence of field-induced level crossings in the ground state as function of magnetic field. For fields near a level crossing, the cluster can be approximated by a two-level Hamiltonian at low temperatures. Perturbations, such as magnetic anisotropy or spin-phonon coupling, sensitively affect the behavior at the level-crossing points. The general two-level Hamiltonian of the spin system is derived in first-order perturbation theory, and the thermodynamic functions magnetization, magnetic torque, and magnetic specific heat are calculated. Then a magneto-elastic coupling is introduced and the effective two-level Hamilitonian for the spin-lattice system derived in the adiabatic approximation of the phonons. At the level crossings the system becomes unconditionally unstable against lattice distortions due to the effects of magnetic anisotropy. The resultant magneto-elastic instabilities at the level crossings are discussed, as well as the magnetic behavior.Comment: 13 pages, 8 figures, REVTEX

    A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing

    Get PDF
    Classical homogenization theory based on the Hashin-Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples, as well as by using reconstructed Electrical Impedance Tomography (EIT) images based on clinical data from an ongoing study within the EU-funded CRADL project. The theory may be potentially useful for improving the imaging algorithms and clinical evaluations in connection with lung EIT for respiratory management and monitoring in neonatal intensive care units

    QFT on homothetic Killing twist deformed curved spacetimes

    Full text link
    We study the quantum field theory (QFT) of a free, real, massless and curvature coupled scalar field on self-similar symmetric spacetimes, which are deformed by an abelian Drinfel'd twist constructed from a Killing and a homothetic Killing vector field. In contrast to deformations solely by Killing vector fields, such as the Moyal-Weyl Minkowski spacetime, the equation of motion and Green's operators are deformed. We show that there is a *-algebra isomorphism between the QFT on the deformed and the formal power series extension of the QFT on the undeformed spacetime. We study the convergent implementation of our deformations for toy-models. For these models it is found that there is a *-isomorphism between the deformed Weyl algebra and a reduced undeformed Weyl algebra, where certain strongly localized observables are excluded. Thus, our models realize the intuitive physical picture that noncommutative geometry prevents arbitrary localization in spacetime.Comment: 23 pages, no figures; v2: extended discussion of physical consequences, compatible with version to be published in General Relativity and Gravitatio

    Quantum analogue of the spin-flop transition for a spin pair

    Full text link
    Quantum (step-like) magnetization curves are studies for a spin pair with antiferromagnetic coupling in the presence of a magnetic field parallel to the easy axis of the magnetic anisotropy. The consideration is done both analytically and numerically for a wide range of the anisotropy constants and spins up to S100S \gtrsim 100. Depending on the origin of the anisotropy (exchange or single-ion), the magnetization curve can demonstrate the jumps more than unity and the concentration of the unit jumps in a narrow range of the field. We also point the region of the problem parameters, where the behavior is quasiclassical for S=5S = 5, and where system is substantially quantum in the limit SS \to \infty.Comment: 5 pages, 5 figure

    Nonlocal Effects on the Magnetic Penetration Depth in d-wave Superconductors

    Full text link
    We show that, under certain conditions, the low temperature behavior of the magnetic penetration depth λ(T)\lambda(T) of a pure d-wave superconductor is determined by nonlocal electrodynamics and, contrary to the general belief, the deviation Δλ(T)=λ(T)λ(0)\Delta\lambda(T) = \lambda(T)-\lambda(0) is proportional to T^2 and not T. We predict that the Δλ(T)T2\Delta\lambda(T)\propto T^2 dependence, due to nonlocality, should be observable experimentally in nominally clean high-T_c superconductors below a crossover temperature T=(ξo/λo)Δo1KT^* = (\xi_o/\lambda_o)\Delta_o \sim 1 K. Possible complications due to impurities, surface quality and crystal axes orientation are discussed.Comment: REVTeX3.0; 4 pages, 1 EPS figure (included); Submitted to Phys. Rev. Let

    Effects of fluctuating hypoxia on benthic oxygen consumption in the Black Sea (Crimean shelf)

    Get PDF
    The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 μmol O2 L−1) and hypoxic (< 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol m−2 d−1 on average in the oxic zone, to 7 mmol m−2 d−1 on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol m−2 d−1), but declined to 1.3 mmol m−2 d−1 in bottom waters with oxygen concentrations below 20 μmol L−1. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic–hypoxic zone, to 10 % in the hypoxic–anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes

    Quantum computing with antiferromagnetic spin clusters

    Full text link
    We show that a wide range of spin clusters with antiferromagnetic intracluster exchange interaction allows one to define a qubit. For these spin cluster qubits, initialization, quantum gate operation, and readout are possible using the same techniques as for single spins. Quantum gate operation for the spin cluster qubit does not require control over the intracluster exchange interaction. Electric and magnetic fields necessary to effect quantum gates need only be controlled on the length scale of the spin cluster rather than the scale for a single spin. Here, we calculate the energy gap separating the logical qubit states from the next excited state and the matrix elements which determine quantum gate operation times. We discuss spin cluster qubits formed by one- and two-dimensional arrays of s=1/2 spins as well as clusters formed by spins s>1/2. We illustrate the advantages of spin cluster qubits for various suggested implementations of spin qubits and analyze the scaling of decoherence time with spin cluster size.Comment: 15 pages, 7 figures; minor change
    corecore