42 research outputs found

    Policies to decarbonize the Swiss residential building stock: An agent-based building stock modeling assessment

    Get PDF
    In light of the Swiss government\u27s reduction targets for greenhouse gas (GHG) emissions under the Paris Agreement, this article investigates how and with which policy measures these reduction targets can be met for the Swiss residential building sector. The paper applies an agent-based building stock model to simulate the development of the Swiss residential building stock under three different policy scenarios. The scenario results until 2050 are compared against the reduction targets set by the Swiss government and with each other. The results indicate that while the current state of Swiss climate policy is effective in reducing energy demand and GHG emissions, it will not be enough to reach the ambitious emission-reduction targets. These targets can be reached only through an almost complete phase-out of fossil-fuel heating systems by 2050, which can be achieved through the introduction of further financial and/or regulatory measures. The results indicate that while financial measures such as an increase in the CO2 tax as well as subsidies are effective in speeding up the transition in the beginning, a complete phase-out of oil and gas by 2050 is reached only through additional regulatory measures such as a CO2 limit for new and existing buildings

    Towards agent-based building stock modeling: Bottom-up modeling of long-term stock dynamics affecting the energy and climate impact of building stocks

    Get PDF
    Buildings are responsible for a large share of the energy demand and greenhouse gas (GHG) emissions in Europe and Switzerland. Bottom-up building stock models (BSMs) can be used to assess policy measures and strategies based on a quantitative assessment of energy demand and GHG emissions in the building stock over time. Recent developments in BSM-related research have focused on modeling the status quo of the stock and comparatively little focus has been given to improving the modeling methods in terms of stock dynamics. This paper presents a BSM based on an agent-based modeling approach (ABBSM) that models stock development in terms of new construction, retrofit and replacement by modeling individual decisions on the building level. The model was implemented for the residential building stock of Switzerland and results show that it can effectively reproduce the past development of the stock from 2000 to 2017 based on the changes in policy, energy prices, and costs. ABBSM improves on current modeling practice by accounting for heterogeneity in the building stock and its effect on uptake of retrofit and renewable heating systems and by incorporating both regulatory or financial policy measures as well as other driving and restricting factors (costs, energy prices)

    Using a task-based approach in evaluating the usability of BoBIs in an e-book environment

    Get PDF
    This paper reports on a usability evaluation of BoBIs (Back-of-the-book Indexes) as searching and browsing tools in an e-book environment. This study employed a task-based approach and within-subject design. The retrieval performance of a BoBI was compared with a ToC and Full-Text Search tool in terms of their respective effectiveness and efficiency for finding information in e-books. The results demonstrated that a BoBI was significantly more efficient (faster) and useful compared to a ToC or Full-Text Search tool for finding information in an e-book environment

    Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks

    Get PDF
    In Europe, the final energy demand and greenhouse gas (GHG) emissions of residential and commercial building stocks account for approximately 40% of energy and emissions. A building stock model (BSM) is a method of assessing the energy demand and GHG emissions of building stocks and developing pathways for energy and GHG emission reduction. The most common approach to building stock modeling is to construct archetypes that are taken to representing large segments of the stock. This paper introduces a new method of building stock modeling based on the generation of synthetic building stocks. By drawing on relevant research, the developed methodology uses aggregate national data and combines it with various data sources to generate a disaggregated synthetic building stock. The methodology is implemented and validated for the residential building stock of Switzerland. The results demonstrate that the energy demand and GHG emissions can vary greatly across the stock. These and other indicators vary significantly within common building stock segments that consider only few attributes such as building type and construction period. Furthermore, the results indicate a separation of the stock in terms of GHG emissions between old fossil fuel-heated buildings and new and refurbished buildings that are heated by renewable energy. Generating a disaggregated synthetic building stock allows for a discrete representation of various building states. This enables a more realistic representation of past building stock alterations, such as refurbishment, compared with commonly used archetypes, and not relying on more extensive data sources and being able to accommodate a wide variation of data types. The developed methodology can be extended in numerous manners and lays groundwork for future studies

    Challenges and Lessons Learned in Applying Sensitivity Analysis to Building Stock Energy Models

    Get PDF
    Uncertainty Analysis (UA) and Sensitivity Analysis (SA) offer essential tools to determine the limits of inference of a model and explore the factors which have the most effect on the model outputs. However, despite a well-established body of work applying UA and SA to models of individual buildings, a review of the literature relating to energy models for larger groups of buildings undertaken by Fennell et al. (2019) highlighted very limited application at larger scales. This contribution describes the efforts undertaken by a group of research teams in the context of IEA-EBC Annex 70 working with a diverse set of Building Stock Models (BSMs) to apply global sensitivity analysis methods and compare their results. Since BSMs are a class of model defined by their output and coverage rather than their structure and inputs, they represent a diverse set of modelling approaches. Key challenges for the application of SA are identified and explored, including the influence of model form, input data types and model outputs. This study combines results from 7 different modelling teams, each using different models across a range of urban areas to explore these challenges and begin the process of developing standardised workflows for SA of BSMs

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Use of micro CHP plants to support the local operation of electric heat pumps

    Get PDF
    Fig. 1. Global distribution of chytridiomycosis-associated amphibian species declines. Bar plots indicate the number (N) of declined species, grouped by continental area and classified by decline severity. Brazilian species are plotted separately from all other South American species (South America W); Mesoamerica includes Central America, Mexico, and the Caribbean Islands; and Oceania includes Australia and New Zealand. No declines have been reported in Asia. n, total number of declines by region. [Photo credits (clockwise from top left): Anaxyrus boreas, C. Brown, U.S. Geological Survey; Atelopus varius, B.G.; Salamandra salamandra, D. Descouens, Wikimedia Commons; Telmatobius sanborni, I.D.l.R; Cycloramphus boraceiensis, L.F.T.; Cardioglossa melanogaster, M.H.; and Pseudophryne corroboree, C. Doughty

    A study into electronic book design and production Hyper-book and the hyper-book builder

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX188616 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore