503 research outputs found

    The use of XFEM to assess the influence of intra-cortical porosity on crack propagation

    Get PDF
    This study aimed at using eXtended finite element method (XFEM) to characterize crack growth through bone's intra-cortical pores. Two techniques were compared using Abaqus: (1) void material properties were assigned to pores; (2) multiple enrichment regions with independent crack-growth possibilities were employed. Both were applied to 2D models of transverse images of mouse bone with differing porous structures. Results revealed that assigning multiple enrichment regions allows for multiple cracks to be initiated progressively, which cannot be captured when the voids are filled. Therefore, filling pores with one enrichment region in the model will not create realistic fracture patterns in Abaqus-XFEM

    Resource Control for Synchronous Cooperative Threads

    Get PDF
    We develop new methods to statically bound the resources needed for the execution of systems of concurrent, interactive threads. Our study is concerned with a \emph{synchronous} model of interaction based on cooperative threads whose execution proceeds in synchronous rounds called instants. Our contribution is a system of compositional static analyses to guarantee that each instant terminates and to bound the size of the values computed by the system as a function of the size of its parameters at the beginning of the instant. Our method generalises an approach designed for first-order functional languages that relies on a combination of standard termination techniques for term rewriting systems and an analysis of the size of the computed values based on the notion of quasi-interpretation. We show that these two methods can be combined to obtain an explicit polynomial bound on the resources needed for the execution of the system during an instant. As a second contribution, we introduce a virtual machine and a related bytecode thus producing a precise description of the resources needed for the execution of a system. In this context, we present a suitable control flow analysis that allows to formulte the static analyses for resource control at byte code level

    Three-dimensional Ca2+ imaging advances understanding of astrocyte biology.

    Get PDF
    Astrocyte communication is typically studied by two-dimensional calcium ion (Ca2+) imaging, but this method has not yielded conclusive data on the role of astrocytes in synaptic and vascular function. We developed a three-dimensional two-photon imaging approach and studied Ca2+ dynamics in entire astrocyte volumes, including during axon-astrocyte interactions. In both awake mice and brain slices, we found that Ca2+ activity in an individual astrocyte is scattered throughout the cell, largely compartmented between regions, preponderantly local within regions, and heterogeneously distributed regionally and locally. Processes and endfeet displayed frequent fast activity, whereas the soma was infrequently active. In awake mice, activity was higher than in brain slices, particularly in endfeet and processes, and displayed occasional multifocal cellwide events. Astrocytes responded locally to minimal axonal firing with time-correlated Ca2+ spots

    Learning from the Success of MPI

    Full text link
    The Message Passing Interface (MPI) has been extremely successful as a portable way to program high-performance parallel computers. This success has occurred in spite of the view of many that message passing is difficult and that other approaches, including automatic parallelization and directive-based parallelism, are easier to use. This paper argues that MPI has succeeded because it addresses all of the important issues in providing a parallel programming model.Comment: 12 pages, 1 figur

    The Case for Message Passing on Many-Core Chips

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryUILU-ENG-10-2203, CRHC-10-0

    Runtime support for virtual BSP computer

    Full text link

    Pro-Inflammatory and Immunological Profile of Dogs with Myxomatous Mitral Valve Disease

    Get PDF
    Myxomatous mitral valve disease (MMVD) is a very frequently acquired cardiac disease in dog breeds and is responsible for congestive heart failure (CHF). The involvement of the immune system and pro-inflammatory cytokines in dogs with CHF due to mitral valve disease has not yet been extensively investigated. Here, we investigate the role of pro-inflammatory cytokines and the dysfunction of the immune system in dogs with different stages of severity through the blood assessment of CD4+FoxP3+regulatory T cells (Treg) cells, leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 pro-inflammatory cytokines, and immunological and echocardiographic parameters. A total of 36 cardiopathic dogs, 14 females and 22 males, with MMVD were included. Mean age and body weight (BW) at the time of enrollment were 10.7 ± 2.77 years and 10.9 ± 6.69 kg, respectively. For the comparison of the pro-inflammatory and immunological parameters, two groups of healthy dogs were also established. Control group 1 consisted of young animals (n. 11; 6 females and 5 males), whose age and mean weight were 4.1 ± 0.82 years and 13.8 ± 4.30 kg, respectively. Control group 2 consisted of elderly dogs (n. 12; 6 females and 6 males), whose age and BW were 9.6 ± 0.98 years and 14.8 ± 6.15 kg, respectively. Of particular interest, an increase in Treg cells was observed in the cohort of MMVD dogs, as compared to the healthy dogs, as Treg cells are involved in the maintenance of peripheral tolerance, and they are involved in etiopathogenetic and pathophysiological mechanisms in the dog. On the other hand, TNF-α, IL-1β, and IL-6 significantly increased according to the severity of the disease in MMVD dogs. Furthermore, the positive correlation between IL-6 and the left ventricle diastolic volume suggests that inflammatory activation may be involved in cardiac remodeling associated with the progressive volumetric overload in MMVD
    corecore