
MAY 2010 UILU-ENG-10-2203
CRHC-10-01

THE CASE FOR MESSAGE PASSING ON
MANY-CORE CHIPS

Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, Rob
Van Der Wijngaart

Coordinated Science Laboratory
1308 West Main Street, Urbana, 1L 61801
University o f Illinois at Urb ana-Champaign

REPORT DOCUMENTATION PAGE Form Approved
O M B NO. 0704-0188

Public reporting burden for this collection o f information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection o f information. Send comment regarding this burden estimate or any other aspect of this
collection o f information, including suggestions fo r reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson
Davis Hiahwav Suite 1204 Artinqton, VA 22202-4302, and to the Office o f Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May, 2010

4. TITLE AND SUBTITLE
The Case for Message Passing on Many-Core Chips

5. FUNDING NUMBERS

6. AUTHOR(S)
Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, Rob Van Der Wijngaart

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Coordinated Science Laboratory
University of Illinois
1308 W. Main St.
Urbana, IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

UILU-ENG-10-2203
(CRHC-10-01)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The debate over shared memory versus message passing programming models has raged for decades, with fairly cogent arguments on
both sides. In this paper, we revisit this debate for multi-core chips and argue that message passing programming models are often
more suitable than shared memory models for satisfying the unique goals presented by the many-core era.

The many-core era is different. The nature of programmers, the nature of applications, and the nature of the computing substrate are
different for multi-core chips than the traditional parallel machines that drove the parallel programming debate in the past.
Specifically, while traditional parallel computers were programmed by highly-educated scientists, multi-core chips will be
programmed by mainstream programmers with little or no background in parallel algorithms, optimizing software for specific parallel
hardware features, or the theoretical foundations of concurrency. Hence, multi-core programming models must place a premium on
productivity and must make parallel programming accessible to the typical programmer. Similarly, while the history of parallel
computing is dominated by highly specialized scientific applications, multi-core processors will need to run the full range of general
purpose applications. This implies a drastically increased diversity in the nature of applications and an expanded range of
optimization goals. This will heavily impact the choice of the programming model for multi-core chips. The programming models for
multi-core architectures should also be capable of adapting to and exploiting asymmetry (by design and accident) in processing cores.
We argue that the above goals are often better served by a message passing programming model than a shared memory-based
programming model.
14. SUBJECT TERMS
message passing, multi-core, parallel program

15. NUMBER OF PAGES
6

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMII A lIUN UF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 standard F°rm 298 (Rev 2-89)
Prescribed by ANSI Std. 239-18
298-102

THE CASE FOR MESSAGE PASSING ON MANY-CORE CHIPS

Rakesh Kumar (Illinois) Timothy G. Mattson (Intel) Gilles Pokam (Intel) Rob Van Der Wijngaart (Intel)

The debate over shared memory versus message
passing programming models has raged for
decades, with fairly cogent arguments on both
sides. In this paper, we revisit this debate for
multi-core chips and argue that message passing
programming models are often more suitable
than shared memory models for satisfying the
unique goals presented by the many-core era.

The many-core era is different. The nature of
programmers, the nature of applications, and the
nature of the computing substrate are different
for multi-core chips than the traditional parallel
machines that drove the parallel programming
debate in the past. Specifically, while traditional
parallel computers were programmed by highly-
educated scientists, multi-core chips will be
programmed by mainstream programmers with
little or no background in parallel algorithms,
optimizing software for specific parallel
hardware features, or the theoretical foundations
of concurrency. Hence, multi-core programming
models must place a premium on productivity
and must make parallel programming accessible
to the typical programmer. Similarly, while the
history of parallel computing is dominated by
highly specialized scientific applications, multi
core processors will need to run the full range of
general purpose applications. This implies a
drastically increased diversity in the nature of
applications and an expanded range of
optimization goals. This will heavily impact the
choice of the programming model for multi-core
chips. The programming models for multi-core
architectures should also be capable of adapting
to and exploiting asymmetry (by design and
accident) in processing cores. We argue that the
above goals are often better served by a message
passing programming model than a shared
memory-based programming model.

1. Metrics for Comparing Parallel
Programming Models

distinguish the relative impact of the
programming models from the relative quality of
the implementations of the underlying runtime
systems in such a comparison. A true
comparison should deal with qualitative “human
factors” and how they impact the programming
process. We believe that a fair comparison of
programming models must consider the end-to-
end cost of the full life cycle of a parallel
program. The full life cycle can be summarized
as:

• Write the parallel program.
• Debug the program and validate that it is

correct
• Optimize the program
• Maintain the program by fixing bugs,

porting to new platforms, adding features,
etc.

A head-to-head comparison of the programming
models for different stages of the program life
cycle will allow us to make qualitative
conclusions about the relative efficacy of the
programming models. We modified the cognitive
dimensions from [Green96] to define a set of
concrete metrics for our comparisons:

Generality: The ability to express in the
programming model any parallel algorithm, such
that a comparable level of concurrency as
embodied by the algorithm materializes on the
execution platform.

Expressiveness: Does the programming model
help programmers express the concurrency in
their problem succinctly, safely, and clearly for
the classes of parallel algorithms for which the
model was designed? An expressive
programming model provides concise
abstractions that help a programmer identify
concurrent tasks and specify how data is shared
(or decomposed) between tasks. Expressiveness
does not imply generality.

To compare shared memory models and message
passing models, we could take the familiar
approach of defining a series of benchmarks,
thereby turning this into a quantitative
performance effort. However, it is difficult to

Viscosity: Does the programming model let a
programmer make incremental changes to a
working program? If not, the risk of adopting
the programming model is high. Viscosity
includes the following aspects:

• Is it possible to gradually introduce
concurrency into an original serial version of
a program? Usually this is not the case if the
model implies a new language.

• How much effort is required to add or
change functionality of an existing parallel
code?

Composition: Does the programming model
provide the isolation and modularization needed
to support programming by composing parallel
modules?

Validation (correctness): Is it easy to introduce
cognitive slips when creating a program thereby
introducing errors into the code? Can the
program’s correctness be reasonably validated?
How difficult is it to find and remove bugs?
Bugs that do not manifest themselves each time a
code it run are difficult to find and remove. Such
bugs can be due to non-determinism, or to the
fact that there may be a big gap between formal
specification and implementation of the
programming model.

Portability: Does the programming model let a
programmer write a single program that can be
recompiled and mapped efficiently onto all
systems that are relevant for the target user
community? This includes the potential for
support of heterogeneous systems.

Of these metrics, we highlight composition and
validation, whose importance, while very high
today, continues to increase. Composition, the
ability to build complex applications by
composing smaller modules, is the cornerstone
of modem software development. It must be
supported in parallel software if we hope to
migrate our software onto multi-core systems.

As for validation, these costs often exceed
system acquisition and software creation costs, a
situation that will only worsen as more and more
software being produced exploits parallelism.
Anecdotal evidence of the difficulty of validating
parallel software abounds, we merely cite a
single source [Lee06]:

“We wrote regression tests that achieved
100 percent code coverage. The nightly
build and regression tests ran on a two
processor SMP machine, ... No problems
were observed until the code deadlocked
on April 26, 2004, four years later. ”

Section 3 discusses how message passing
programming models fare against shared
memory models for the above metrics.

2. Comparison Framework

To evaluate different parallel programming
models, we need to define a framework that
captures a programming model’s impact on the
design and implementation of the most common
parallel algorithms. Our comparison framework
consists of different categories of parallel
algorithms strategies and different algorithm
patterns within each category. Following
[Carriero89] we define the following three
distinct strategies for parallel algorithm design:

• Agenda parallelism: Parallelism is
expressed directly in terms of a set of tasks

• Result parallelism: Parallelism is expressed
in terms of the elements of the data
structures generated in the course of the
computation.

• Specialist parallelism: parallelism is
expressed in terms of a collection of tasks
each of which are specialized to a distinct
function. In other words, data flows
between a set of specialized tasks that
execute concurrently.

This provides the top level structure of our
framework. Each parallel algorithm strategy
consists of the following common algorithm
patterns used in practice [Sottile09],:

Table 1 Brief taxonomy o f parallel algorithms

Parallel
algorithm
Strategies

Algorithm Design Patterns

Agenda
parallelism

Task parallelism divide and
conquer

Result
parallelism

geometric
decomposition

data
parallelism

Specialist
parallelism

Producer/consumer
(pipeline)

Event-based
coordination

These patterns are well known by experienced
parallel programmers (details are available in
[Mattson04] and [Keutzer09]). The framework
is not complete, but we submit that it covers the
broad cross section of the most important
algorithms.

Using these patterns combined with our earlier
metrics, we can turn our intuition about a
programming model into specific (and testable)
hypothesis about why different programming
models dominate.

3 Comparing Message Passing and
Shared Memory

We start with two generalizations concerning
message passing vs. shared memory
programming models. These concern validation
and composition. To compose software
modules, you must assure isolation of the
modules. Interaction can only be allowed to
occur through well defined interfaces. To
validate a program, you must assure that every
legal way the operations in all active threads can
interleave produce a correct answer. Both of
these metrics are compromised by a shared
address space. Message passing by design
provides a mechanism of isolation since the
threads of processes in a computation by
definition execute in their own address spaces.
As for validation, the message passing
programmer only needs to check the allowed
orderings of distinct message passing events. In
a shared address space programming model
where all threads access a single address space,
proving a program to be race free has been
shown to be an NP complete problem [Klein03].
Hence, regardless of the type of parallelism
involved, we assert that message passing has a
strong advantage in terms of the ease with which
a program can be validated and the ability to
support software composition.

In the remainder of this section we will work
through the algorithm design patterns described
in Section 2 using the metrics we defined in
Section 1 to compare shared memory and
message passing models based on software
features and actions required of programmers.
The results are summarized in Table 2.

3.1 Agenda Parallelism

Design patterns associated with the “agenda
parallelism strategy” are expressed directly in
terms of tasks. The two cases differ in how the
tasks are created; either directly as a countable
set (task parallelism) or through a recursive
scheme (Divide and conquer).

For the task parallelism pattern, both the
message passing and shared address space
programming models are highly expressive and
are general enough to cover most algorithms
associated with this pattern. The message
passing programming model is particularly well
suited since data decomposition is typically a
straightforward extension of the decomposition
of the problem into a set of tasks. This means
that the ease of validation common to distributed
memory environments is easy to exploit with
message passing, task parallelism problems.

The divide and conquer design pattern can be
mapped onto message passing and shared
address space models. These algorithms,
however, are difficult to express with a message
passing model. The problem is that as a task is
recursively divided into a number of smaller
tasks, the data associated with the individual
tasks must be analogously decomposed.
Programming models that require explicit data
decomposition are difficult to apply when tasks
are created so dynamically. Shared address
space programming models, however, avoid this
problem altogether since all threads have access
to the shared data space. Furthermore, a key
feature of implementations of divide and conquer
algorithms is the need to dynamically balance the
load among units of execution. For example, if
tasks are managed in queues, it is possible that
one unit of execution will run out of work. If it
only needs to steal work descriptors from a
neighboring queue without the need to move
data, these work-stealing algorithms are natural
to express. This is clearly the case for shared
address space models, but not for message
passing models.

Overall, both models are well suited for the
Agenda parallelism strategy. The task
parallelism design pattern works well for both
types of programming model, but it slightly
prefers the message passing model. For the
divide and conquer pattern, however, the shared
address space model is substantially better
suited.

3.2 Result Parallelism

Design patterns associated with the result
parallelism strategy center on how data is
decomposed among the processing elements of a
system. In most cases the decomposition is well
suited to a static decomposition or if dynamic,

the dynamic structure is well defined
algebraically and well suited to explicit data
management schemes. Hence these algorithms
work well with message passing and shared
address space programming models.

The classic “result parallelism” pattern is
geometric decomposition. Message passing
models have been used extensively with this
pattern. The sharing of data is explicit through
messages, making geometric decomposition
programs that utilize a message passing
programming model both robust and easy to
validate. Shared address space programming
models work well also, but since race conditions
are possible due to the fact that data is “shared
by default”, these programs can be difficult to
validate.

Message passing program with geometric
decomposition patterns are also highly portable.
Since it is natural in these problems to define
how data is shared between processes, the
programming models are highly portable,
allowing easy movement between shared
memory and distributed memory systems.

Data parallel algorithms follow a similar
analysis. They work well with message passing
and shared address space model. Shared address
space models, however, have a slight edge over
message passing, however, because they don’t
require complicated data movement operations
when collective operations are encountered. This
is only a slight advantage, however, since the
most common collectives are included in
message passing libraries,

Overall, both models work well for thee
algorithm strategies. The message passing
model, however, has a slight edge due to the
greater ease of validating a program once
written.

3.3 Specialist Parallelism

These algorithms can be challenging for message
passing and shared address space programming
models. The essential characteristic of the
design patterns associated with the specialist
parallelism strategy is that data needs to flow
between specialized tasks.

For the pipeline algorithms, both models work,
but the message passing provides more
disciplined movement of data between stages.
Message are a natural way to represent the flow
between stages in the pipeline making message
passing programming models both expressive
and robust. Shared address space programming
models work, but they require error prone
synchronization to safely move data between
stages. For an API that lacks point to point
synchronization (such as OpenMP) this can lead
to the need to build complicated synchronization
protocols that depend on the details of how a
flush works. Even expert OpenMP programmers
find flush challenging to deal with in all but the
most trivial cases [Hoeflinger05].

These problems are even worse for the event-
based coordination algorithms. Message passing
models work but robustness is compromised
since the event models require anonymous and
unpredictable flow of messages between
processes. This compromises the robustness and
validation properties and creates one of the few
situations where race conditions can be
introduced in a message passing program. The
key is to use a higher level model to apply
discipline to how messages are used in these
algorithms. For example, an actors model maps
well onto event-based coordination algorithms.
Actors is by its nature a message passing model.
It can be implemented in a shared address space,
but it requires complex synchronization
protocols and can lead to programs that are
difficult to validate. The table below
summarizes how the two models fare against
each other for different metrics.

4. Architectural Implications

Programming models place requirements on the
hardware that supports them. A programming
model that requires a shared address space, in
order to run efficiently, requires hardware
support. In practice, this comes down to the
question of hardware supported cache coherence.

As the number of cores and the complexity of the
on-chip networks grow, overhead in service of
the hardware cache coherency protocol limits
scalability. For example, each directory entry
will be 128 bytes long for a 1024 core processor
supporting fully-mapped directory-based cache
coherence. This may often be larger than the size
of the cacheline that a directory entry is expected

Table 2: Comparing Message Passing (Msg) and Shared Memory (Shar) programming models for design
patterns from Table 1. A “+ ” indicates when a model dominates for a given case. An “= ” indicates that the
two models are roushlv equivalent for that particular case.

to track. As another example, writes in a
sequentially consistent shared memory processor
may not proceed until all the shared lines have
been invalidated, even the ones residing in cores
that maybe 10s of hops away.

Hence, as the number of cores increases, the
overhead associated with the cache coherency
protocol grows. In particular, the additional cost
due to the cache coherency protocol as each core
is added to a many core chip grows. This
increasing cost per core means that as the core
counts grow, a “cache coherency wall”
eventually limits the ability of a program to
extract increased performance from the system.

Compare this to the situation for a many core
chip that does not support cache coherency.
Such a chip would be fine for software based on
a message passing model. In this case, the cost
as each node is added to a chip is fixed based on
the topology of the network. Hence, there is not
coherency wall and these message passing chips
can scale to much larger numbers of cores.

5. Discussion and Conclusion

Table 2 summarizes our comparisons of shared
memory and message passing programming
models. We consider a range of design patterns
for each of our metrics.

As we indicated earlier, message passing
programming models have distinct advantages
due to the relative ease of validation and the fact
they support the isolation required for
composition. . Furthermore, as we pointed out in
the previous section, a message passing
programming model is more portable as well due
to the fact the model places fewer constraints on

programming models have an advantage. In
some cases, these advantages can be quite stark.
This often leads to disqualification of message
passing upfront, since the most salient first
impression that programmers have of a
programming model is its expressiveness. Higher
expressiveness is often associated with higher
programmer productivity. However, validation
and composition constitute a very large portion
of the downstream cost of an application’s
lifecycle. The shared memory programmer
trying to validate a program and understand its
composition with other software modules must
understand the underlying memory model of the
system; a task that even challenges experts in the
field. This makes those costs much greater for
shared memory models than a message passing
model.

When you look at the full software life cycle
and the full range of metrics (not just
expressiveness), we submit that message
passing models are more suitable than shared
memory models for a large class of applications.
Hence, message passing models are an
important, if not the only alternative for
programming multi-core and many-core chips.
The benefits only increase as the number of
cores and the complexity of the network on a
processor chip increase.

6. References

[Carriero89] Nicholas Carriero and David
Gelemter, “How to Write Parallel Programs: A
Guide to the Perplexed”. ACM Computing
Surveys, 21(3) pp 323-357, September 1989.

[Green96] Thomas R.G. Green and M. Petre,
“Usability Analysis of visual Programming

Environments: a “Cognitive Dimensions”
framework”, Journal of Visual Languages and
computing, vol 7, pp. 131-174, 1996.

[Hoeflinger05] Hoeflinger, J.P., de Supinski,
B.R.: The OpenMP memory model. In:
Proceedings of the First International Workshop
on OpenMP - IWOMP 2005. (2005)

[Keutzer09] K. Keutzer and T.G. Mattson, “A
design pattern language for engineering
(Parallel) software“, Intel Technology Journal, in
Press, 2009.

[Klein03] Philip N. Klein, Hsueh-I Lu, and
Robert H. B. Netzer, Detecting Race Conditions
in Parallel Programs that Use Semaphores,
Algorithmica, vol. 35 pp. 321-345, Springer-
Verlag, 2003

[Lee06] E. A. Lee, "The problem with threads,"
IEEE Computer, vol. 29, no. 5, pp. 33-42, May
2006

[Mattson04] T.G. Mattson, B. A. Sanders, B. L.
Massingill, Patterns for Parallel Programming,
Addison Wesley software patterns series, 2004.

[Sottile09] M.J. Sottile, T.G. Mattson, and C. E
Rasmussen, Introduction to Concurrency in
Programming Languages, CRC Press, 2009.

