415 research outputs found

    Does physical exercise improve ADL capacities in people over 65 years with moderate or severe dementia hospitalized in an acute psychiatric setting? A multisite randomized clinical trial.

    Get PDF
    Several studies on the effect of physical exercise on activities of daily living (ADL) for people with dementia exist; yet, data concerning the specific context of acute psychiatric hospitals remain scant. This study measured the effect of a physical exercise program on ADL scores in patients with moderate to severe dementia hospitalized in an acute psychiatric ward. A multicenter clinical trial was conducted in five Swiss and Belgian psychiatric hospitals. Participants were randomly allocated to either an experimental group (EG) or a control group (CG). Members of the EG received 20 physical exercise sessions (strengthening, balance, and walking) over a four-week period while members of the CG participated in social interaction sessions of equivalent duration and frequency, but without physical exercise. The effect of exercise on ADL was measured by comparing scores of the Barthel Index and the Functional Independence Measure in the EG and CG before and after the intervention, and two weeks later. Hundred and sixty patients completed the program. Characteristics of participants of both groups were similar at the inception of the study. The mean ADL score of EG decreased slightly over time, whereas that of the CG significantly decreased compared to initial scores. Overall differences between groups were not significant; however, significant differences were found for mobility-related items. ADL scores in elderly with moderate to severe dementia deteriorate during acute psychiatric hospitalization. An exercise program delays the loss of mobility but does not have a significant impact on overall ADL scores

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    CD83 Modulates B Cell Function In Vitro: Increased IL-10 and Reduced Ig Secretion by CD83Tg B Cells

    Get PDF
    The murine transmembrane glycoprotein CD83 is an important regulator for both thymic T cell maturation and peripheral T cell responses. Recently, we reported that CD83 also has a function on B cells: Ubiquitous transgenic (Tg) expression of CD83 interfered with the immunoglobulin (Ig) response to infectious agents and to T cell dependent as well as T cell independent model antigen immunization. Here we compare the function of CD83Tg B cells that overexpress CD83 and CD83 mutant (CD83mu) B cells that display a drastically reduced CD83 expression. Correlating with CD83 expression, the basic as well as the lipopolysaccharide (LPS) induced expression of the activation markers CD86 and MHC-II are significantly increased in CD83Tg B cells and reciprocally decreased in CD83mu B cells. Wild-type B cells rapidly upregulate CD83 within three hours post BCR or TLR engagement by de novo protein synthesis. The forced premature overexpression of CD83 on the CD83Tg B cells results in reduced calcium signaling, reduced Ig secretion and a reciprocally increased IL-10 production upon in vitro activation. This altered phenotype is mediated by CD83 expressed on the B cells themselves, since it is observed in the absence of accessory cells. In line with this finding, purified CD83mu B cells displayed a reduced IL-10 production and slightly increased Ig secretion upon LPS stimulation in vitro. Taken together, our data strongly suggest that CD83 is expressed by B cells upon activation and contributes to the regulation of B cell function

    Advances in prevention and therapy of neonatal dairy calf diarrhoea : a systematical review with emphasis on colostrum management and fluid therapy

    Get PDF
    Neonatal calf diarrhoea remains the most common cause of morbidity and mortality in preweaned dairy calves worldwide. This complex disease can be triggered by both infectious and non-infectious causes. The four most important enteropathogens leading to neonatal dairy calf diarrhoea are Escherichia coli, rota-and coronavirus, and Cryptosporidium parvum. Besides treating diarrhoeic neonatal dairy calves, the veterinarian is the most obvious person to advise the dairy farmer on prevention and treatment of this disease. This review deals with prevention and treatment of neonatal dairy calf diarrhoea focusing on the importance of a good colostrum management and a correct fluid therapy

    Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a motile polarized cell the actin system is differentiated to allow protrusion at the front and retraction at the tail. This differentiation is linked to the phosphoinositide pattern in the plasma membrane. In the highly motile <it>Dictyostelium </it>cells studied here, the front is dominated by PI3-kinases producing PI(3,4,5)tris-phosphate (PIP3), the tail by the PI3-phosphatase PTEN that hydrolyses PIP3 to PI(4,5)bis-phosphate. To study de-novo cell polarization, we first depolymerized actin and subsequently recorded the spontaneous reorganization of actin patterns in relation to PTEN.</p> <p>Results</p> <p>In a transient stage of recovery from depolymerization, symmetric actin patterns alternate periodically with asymmetric ones. The switches to asymmetry coincide with the unilateral membrane-binding of PTEN. The modes of state transitions in the actin and PTEN systems differ. Transitions in the actin system propagate as waves that are initiated at single sites by the amplification of spontaneous fluctuations. In PTEN-null cells, these waves still propagate with normal speed but loose their regular periodicity. Membrane-binding of PTEN is induced at the border of a coherent PTEN-rich area in the form of expanding and regressing gradients.</p> <p>Conclusions</p> <p>The state transitions in actin organization and the reversible transition from cytoplasmic to membrane-bound PTEN are synchronized but their patterns differ. The transitions in actin organization are independent of PTEN, but when PTEN is present, they are coupled to periodic changes in the membrane-binding of this PIP3-degrading phosphatase. The PTEN oscillations are related to motility patterns of chemotaxing cells.</p

    Dietary and Behavioral Interventions Protect against Age Related Activation of Caspase Cascades in the Canine Brain

    Get PDF
    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON – control environment/control diet, AOX– control environment/antioxidant diet, ENR – enriched environment/control diet, AOX/ENR– enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the first to show that lifestyle interventions can regulate caspase pathways in a higher animal model of aging

    Purinergic mechanism in the immune system: A signal of danger for dendritic cells

    Get PDF
    There is increasing appreciation that injured or stressed cells release molecules endowed with the ability to modulate dendritic cell maturation. The role of these molecules is thought to be that of alerting the body of an impending danger, and initiate and shape the subsequent immune response. Nucleotides are perfectly suited for this task as they are easily released upon damage of the cell membrane, rapidly diffuse in the extracellular environment and ligate specific plasma membrane receptors expressed by dendritic cells and other mononuclear phagocytes. A better knowledge of the modulation of dendritic cell responses by extracellular nucleotides may provide novel routes to enhance the immune response and increase the efficacy of vaccination

    Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds Reveals a Muscle Activity Dependent hspb11 Expression

    Get PDF
    Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sopfixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds
    corecore