21,496 research outputs found

    Maximum Edge-Disjoint Paths in kk-sums of Graphs

    Full text link
    We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The integrality gap is known to be Ω(n)\Omega(\sqrt{n}) even for planar graphs due to a simple topological obstruction and a major focus, following earlier work, has been understanding the gap if some constant congestion is allowed. In this context, it is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold. It is easy to deduce that for given constant bounds on the approximation and congestion, the class of "nice" graphs is nor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph of bounded treewidth and is able to integrally route a constant fraction of the LP solution's value. Note that we do not incur any edge congestion. Previously this was not known even for series parallel graphs which have treewidth 2. The algorithm is based on a more general argument that applies to kk-sums of graphs in some graph family, as long as the graph family has a constant factor, constant congestion bound. We then use this to show that such bounds hold for the class of kk-sums of bounded genus graphs

    Energy Potential of Cattails (Typha spp.) and Productivity in Managed Stands

    Get PDF
    Because of their high productivity in both natural and managed stands, cattails are being considered as a potential energy crop . Yields of 40 tons per hectare, including above and below ground biomass, have been reported (Moss et al., 1977). Yields from plants grown in managed paddies on peat are generally 20-30 percent lower. The maximum shoot weight occurs in August while maximum below ground biomass is reached in October. Total biomass increased with increasing rates of fertilizer application but differences were not significant. Differences between the initial nutrient contents of the two peat types used were more important than fertilizer levels. Significant differences in yield were obtained by increasing the planting rate from 12 to 48 rhizomes per plot. Further studies on natural stands are under way at the Carlos Avery Wildlife Area

    Sound Propagation in Elongated Bose-Einstein Condensed Clouds

    Full text link
    We consider propagation of sound pulses along the long axis of a Bose-Einstein condensed cloud in a very anisotropic trap. In the linear regime, we demonstrate that the square of the velocity of propagation is given by the square of the local sound velocity, c2=nU0/mc^2=nU_0/m, averaged over the cross section of the cloud. We also carry out calculations in the nonlinear regime, and determine how the speed of the pulse depends on its amplitude.Comment: 4 pages, revtex, 3 eps figure

    Changing Bases: Multistage Optimization for Matroids and Matchings

    Full text link
    This paper is motivated by the fact that many systems need to be maintained continually while the underlying costs change over time. The challenge is to continually maintain near-optimal solutions to the underlying optimization problems, without creating too much churn in the solution itself. We model this as a multistage combinatorial optimization problem where the input is a sequence of cost functions (one for each time step); while we can change the solution from step to step, we incur an additional cost for every such change. We study the multistage matroid maintenance problem, where we need to maintain a base of a matroid in each time step under the changing cost functions and acquisition costs for adding new elements. The online version of this problem generalizes online paging. E.g., given a graph, we need to maintain a spanning tree TtT_t at each step: we pay ct(Tt)c_t(T_t) for the cost of the tree at time tt, and also TtTt1| T_t\setminus T_{t-1} | for the number of edges changed at this step. Our main result is an O(logmlogr)O(\log m \log r)-approximation, where mm is the number of elements/edges and rr is the rank of the matroid. We also give an O(logm)O(\log m) approximation for the offline version of the problem. These bounds hold when the acquisition costs are non-uniform, in which caseboth these results are the best possible unless P=NP. We also study the perfect matching version of the problem, where we must maintain a perfect matching at each step under changing cost functions and costs for adding new elements. Surprisingly, the hardness drastically increases: for any constant ϵ>0\epsilon>0, there is no O(n1ϵ)O(n^{1-\epsilon})-approximation to the multistage matching maintenance problem, even in the offline case

    Optical angular momentum: Multipole transitions and photonics

    Get PDF
    The premise that multipolar decay should produce photons uniquely imprinted with a measurably corresponding angular momentum is shown in general to be untrue. To assume a one-to-one correlation between the transition multipoles involved in source decay and detector excitation is to impose a generally unsupportable one-to-one correlation between the multipolar form of emission transition and a multipolar character for the detected field. It is specifically proven impossible to determine without ambiguity, by use of any conventional detector, and for any photon emitted through the nondipolar decay of an atomic excited state, a unique multipolar character for the transition associated with its generation. Consistent with the angular quantum uncertainty principle, removal of a detector from the immediate vicinity of the source produces a decreasing angular uncertainty in photon propagation direction, reflected in an increasing range of integer values for the measured angular momentum. In such a context it follows that when the decay of an electronic excited state occurs by an electric quadrupolar transition, for example, any assumption that the radiation so produced is conveyed in the form of “quadrupole photons” is experimentally unverifiable. The results of the general proof based on irreducible tensor analysis invite experimental verification, and they signify certain limitations on quantum optical data transmission
    corecore