343 research outputs found

    GC3 biology in corn, rice, sorghum and other grasses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The third, or wobble, position in a codon provides a high degree of possible degeneracy and is an elegant fault-tolerance mechanism. Nucleotide biases between organisms at the wobble position have been documented and correlated with the abundances of the complementary tRNAs. We and others have noticed a bias for cytosine and guanine at the third position in a subset of transcripts within a single organism. The bias is present in some plant species and warm-blooded vertebrates but not in all plants, or in invertebrates or cold-blooded vertebrates.</p> <p>Results</p> <p>Here we demonstrate that in certain organisms the amount of GC at the wobble position (GC<sub>3</sub>) can be used to distinguish two classes of genes. We highlight the following features of genes with high GC<sub>3 </sub>content: they (1) provide more targets for methylation, (2) exhibit more variable expression, (3) more frequently possess upstream TATA boxes, (4) are predominant in certain classes of genes (e.g., stress responsive genes) and (5) have a GC<sub>3 </sub>content that increases from 5'to 3'. These observations led us to formulate a hypothesis to explain GC<sub>3 </sub>bimodality in grasses.</p> <p>Conclusions</p> <p>Our findings suggest that high levels of GC<sub>3 </sub>typify a class of genes whose expression is regulated through DNA methylation or are a legacy of accelerated evolution through gene conversion. We discuss the three most probable explanations for GC<sub>3 </sub>bimodality: biased gene conversion, transcriptional and translational advantage and gene methylation.</p

    Molecular architecture of a kinetochore–microtubule attachment site

    Get PDF
    Kinetochore attachment to spindle microtubule plus-ends is necessary for accurate chromosome segregation during cell division in all eukaryotes. The centromeric DNA of each chromosome is linked to microtubule plus-ends by eight structural-protein complexes1–9. Knowing the copy number of each of these complexes at one kinetochore–microtubule attachment site is necessary to understand the molecular architecture of the complex, and to elucidate the mechanisms underlying kinetochore function. We have counted, with molecular accuracy, the number of structural protein complexes in a single kinetochore–microtubule attachment using quantitative fluorescence microscopy of GFP-tagged kinetochore proteins in the budding yeast Saccharomyces cerevisiae. We find that relative to the two Cse4p molecules in the centromeric histone1, the copy number ranges from one or two for inner kinetochore proteins such as Mif2p2, to 16 for the DAM–DASH complex8,9 at the kinetochore–microtubule interface. These counts allow us to visualize the overall arrangement of a kinetochore–microtubule attachment. As most of the budding yeast kinetochore proteins have homologues in higher eukaryotes, including humans, this molecular arrangement is likely to be replicated in more complex kinetochores that have multiple microtubule attachments

    Insights into corn genes derived from large-scale cDNA sequencing

    Get PDF
    We present a large portion of the transcriptome of Zea mays, including ESTs representing 484,032 cDNA clones from 53 libraries and 36,565 fully sequenced cDNA clones, out of which 31,552 clones are non-redundant. These and other previously sequenced transcripts have been aligned with available genome sequences and have provided new insights into the characteristics of gene structures and promoters within this major crop species. We found that although the average number of introns per gene is about the same in corn and Arabidopsis, corn genes have more alternatively spliced isoforms. Examination of the nucleotide composition of coding regions reveals that corn genes, as well as genes of other Poaceae (Grass family), can be divided into two classes according to the GC content at the third position in the amino acid encoding codons. Many of the transcripts that have lower GC content at the third position have dicot homologs but the high GC content transcripts tend to be more specific to the grasses. The high GC content class is also enriched with intronless genes. Together this suggests that an identifiable class of genes in plants is associated with the Poaceae divergence. Furthermore, because many of these genes appear to be derived from ancestral genes that do not contain introns, this evolutionary divergence may be the result of horizontal gene transfer from species not only with different codon usage but possibly that did not have introns, perhaps outside of the plant kingdom. By comparing the cDNAs described herein with the non-redundant set of corn mRNAs in GenBank, we estimate that there are about 50,000 different protein coding genes in Zea. All of the sequence data from this study have been submitted to DDBJ/GenBank/EMBL under accession numbers EU940701–EU977132 (FLI cDNA) and FK944382-FL482108 (EST)

    Drug-Selected Human Lung Cancer Stem Cells: Cytokine Network, Tumorigenic and Metastatic Properties

    Get PDF
    Background: Cancer stem cells (CSCs) are thought to be responsible for tumor regeneration after chemotherapy, although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation. Methodology/Findings: Treatment of lung tumor cells with doxorubicin, cisplatin, or etoposide resulted in the selection of drug surviving cells (DSCs). These cells expressed CD133, CD117, SSEA-3, TRA1-81, Oct-4, and nuclear β-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18). DSCs were able to grow as tumor spheres, maintain self-renewal capacity, and differentiate. Differentiated progenitors lost expression of CD133, gained CK 8/18 and acquired drug sensitivity. In the presence of drugs, differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice, which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF, bFGF, IL-6, IL-8, HGF, PDGF-BB, G-CSF, and SCGF-β). CSCs also showed elevated levels of expression of human VEGFR2, FGFR2, CXCR1, 2 and 4 receptors. Moreover, human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors. Conlusions/Significance: These findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated with efficient cytokine network production that may represent a target for increased efficacy of cancer therapy. © 2008 Levina et al

    Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer

    Get PDF
    Adjuvant treatment of patients with colorectal cancer is hampered by a lack of reliable prognostic factors in addition to the clinicopathological staging system. A poorly defined but considerable fraction of Astler–Coller stage B patients will experience tumour recurrence, and some of the stage C patients will probably survive for a prolonged time after surgery without adjuvant treatment. Assessing parameters related to tumour angiogenesis has provided valuable prognostic information in different tumour types. The formation of new microvessels is part of the malignant phenotype in the majority of tumours. Alterations in tumour-suppressor genes, such as the p53 gene, or oncogenes, such as the ras gene, have been found to be responsible for changing the local balance of pro- and antiangiogenic factors in favour of the former. In this prospective study, intratumoral microvessel density (IMD) was assessed by immunostaining tissue sections for CD31 and counting individual microvessels in selected and highly vascular regions in specimens of 145 colorectal cancer patients. p53 protein overexpression was semiquantitatively determined after immunohistochemistry. In both uni- and multivariate analysis, high IMD was significantly associated with shorter survival in the patients undergoing surgery with curative intent (Astler–Coller stages A–C). p53 added prognostic power to IMD, both in Astler–Coller stage B and stage C patients. An association between IMD and mode of metastasis was also noted. High IMD was strongly associated with the incidence of haematogenous metastasis during follow-up, but not with the presence of lymphogenic metastasis observed at surgery. This study confirms the results of previous retrospective analyses of IMD and survival in colorectal cancer and warrants a clinical validation by randomizing stage B tumour patients with high IMD and p53 overexpression between adjuvant treatment or not. © 1999 Cancer Research Campaig

    "Dreaming in colour’: disabled higher education students’ perspectives on improving design practices that would enable them to benefit from their use of technologies"

    Get PDF
    The focus of this paper is the design of technology products and services for disabled students in higher education. It analyses the perspectives of disabled students studying in the US, the UK, Germany, Israel and Canada, regarding their experiences of using technologies to support their learning. The students shared how the functionality of the technologies supported them to study and enabled them to achieve their academic potential. Despite these positive outcomes, the students also reported difficulties associated with: i) the design of the technologies, ii) a lack of technology know-how and iii) a lack of social capital. When identifying potential solutions to these difficulties the disabled students imagined both preferable and possible futures where faculty, higher education institutions, researchers and technology companies are challenged to push the boundaries of their current design practices

    Hypoxia Negatively Regulates Antimetastatic PEDF in Melanoma Cells by a Hypoxia Inducible Factor-Independent, Autophagy Dependent Mechanism

    Get PDF
    Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells

    Initial sequencing and analysis of the human genome

    Full text link
    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pd

    What Can Be Learnt about Disease Progression in Breast Cancer Dormancy from Relapse Data?

    Get PDF
    Breast cancer patients have an anomalously high rate of relapse many years-up to 25 years-after apparently curative surgery removed the primary tumour. Disease progression during the intervening years between resection and relapse is poorly understood. There is evidence that the disease persists as dangerous, tiny metastases that remain at a growth restricted, clinically undetectable size until a transforming event restarts growth. This is the starting point for our study, where patients who have metastases that are all tiny and growth-restricted are said to have cancer dormancy. Can long-term follow-up relapse data from breast cancer patients be used to extract knowledge about the progression of the undetected disease? Here, we evaluate whether this is the case by introducing and analysing four simple mathematical models of cancer dormancy. These models extend the common assumption that a random transforming event, such as a mutation, can restart growth of a tiny, growth-restricted metastasis; thereafter, cancer dormancy progresses to detectable metastasis. We find that physiopathological details, such as the number of random transforming events that metastases must undergo to escape from growth restriction, cannot be extracted from relapse data. This result is unsurprising. However, the same analysis suggested a natural question that does have a surprising answer: why are interesting trends in long-term relapse data not more commonly observed? Further, our models indicate that (a) therapies which induce growth restriction among metastases but do not prevent increases in metastases' tumourigenicity may introduce a time post-surgery when more patients are prone to relapse; and (b), if a number of facts about disease progression are first established, how relapse data might be used to estimate clinically relevant variables, such as the likely numbers of undetected growth-restricted metastases. This work is a necessary, early step in building a quantitative mechanistic understanding of cancer dormancy
    corecore