439 research outputs found

    Bounds on the diameter of Cayley graphs of the symmetric group

    Get PDF
    In this paper we are concerned with the conjecture that, for any set of generators S of the symmetric group of degree n, the word length in terms of S of every permutation is bounded above by a polynomial of n. We prove this conjecture for sets of generators containing a permutation fixing at least 37% of the points.Comment: 17 pages, 6 table

    An exponential lower bound for Individualization-Refinement algorithms for Graph Isomorphism

    Full text link
    The individualization-refinement paradigm provides a strong toolbox for testing isomorphism of two graphs and indeed, the currently fastest implementations of isomorphism solvers all follow this approach. While these solvers are fast in practice, from a theoretical point of view, no general lower bounds concerning the worst case complexity of these tools are known. In fact, it is an open question whether individualization-refinement algorithms can achieve upper bounds on the running time similar to the more theoretical techniques based on a group theoretic approach. In this work we give a negative answer to this question and construct a family of graphs on which algorithms based on the individualization-refinement paradigm require exponential time. Contrary to a previous construction of Miyazaki, that only applies to a specific implementation within the individualization-refinement framework, our construction is immune to changing the cell selector, or adding various heuristic invariants to the algorithm. Furthermore, our graphs also provide exponential lower bounds in the case when the kk-dimensional Weisfeiler-Leman algorithm is used to replace the standard color refinement operator and the arguments even work when the entire automorphism group of the inputs is initially provided to the algorithm.Comment: 21 page

    Testing Linear-Invariant Non-Linear Properties

    Get PDF
    We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for "triangle freeness": a function f:\cube^{n}\to\cube satisfies this property if f(x),f(y),f(x+y)f(x),f(y),f(x+y) do not all equal 1, for any pair x,y\in\cube^{n}. Here we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by kk points v_{1},...,v_{k}\in\cube^{k} and f:\cube^{n}\to\cube satisfies the property that if for all linear maps L:\cube^{k}\to\cube^{n} it is the case that f(L(v1)),...,f(L(vk))f(L(v_{1})),...,f(L(v_{k})) do not all equal 1. We show that this property is testable if the underlying matroid specified by v1,...,vkv_{1},...,v_{k} is a graphic matroid. This extends Green's result to an infinite class of new properties. Our techniques extend those of Green and in particular we establish a link between the notion of "1-complexity linear systems" of Green and Tao, and graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the proceedings of STACS 200

    On SAT representations of XOR constraints

    Full text link
    We study the representation of systems S of linear equations over the two-element field (aka xor- or parity-constraints) via conjunctive normal forms F (boolean clause-sets). First we consider the problem of finding an "arc-consistent" representation ("AC"), meaning that unit-clause propagation will fix all forced assignments for all possible instantiations of the xor-variables. Our main negative result is that there is no polysize AC-representation in general. On the positive side we show that finding such an AC-representation is fixed-parameter tractable (fpt) in the number of equations. Then we turn to a stronger criterion of representation, namely propagation completeness ("PC") --- while AC only covers the variables of S, now all the variables in F (the variables in S plus auxiliary variables) are considered for PC. We show that the standard translation actually yields a PC representation for one equation, but fails so for two equations (in fact arbitrarily badly). We show that with a more intelligent translation we can also easily compute a translation to PC for two equations. We conjecture that computing a representation in PC is fpt in the number of equations.Comment: 39 pages; 2nd v. improved handling of acyclic systems, free-standing proof of the transformation from AC-representations to monotone circuits, improved wording and literature review; 3rd v. updated literature, strengthened treatment of monotonisation, improved discussions; 4th v. update of literature, discussions and formulations, more details and examples; conference v. to appear LATA 201

    Quantum fingerprinting

    Get PDF
    Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.Comment: 8 pages, LaTeX, one figur

    Making Classical Ground State Spin Computing Fault-Tolerant

    Full text link
    We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error free manner when working at non-zero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur

    Self-avoiding walks and connective constants

    Full text link
    The connective constant ÎŒ(G)\mu(G) of a quasi-transitive graph GG is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on GG from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph GG. ∙\bullet We present upper and lower bounds for ÎŒ\mu in terms of the vertex-degree and girth of a transitive graph. ∙\bullet We discuss the question of whether Ό≄ϕ\mu\ge\phi for transitive cubic graphs (where ϕ\phi denotes the golden mean), and we introduce the Fisher transformation for SAWs (that is, the replacement of vertices by triangles). ∙\bullet We present strict inequalities for the connective constants ÎŒ(G)\mu(G) of transitive graphs GG, as GG varies. ∙\bullet As a consequence of the last, the connective constant of a Cayley graph of a finitely generated group decreases strictly when a new relator is added, and increases strictly when a non-trivial group element is declared to be a further generator. ∙\bullet We describe so-called graph height functions within an account of "bridges" for quasi-transitive graphs, and indicate that the bridge constant equals the connective constant when the graph has a unimodular graph height function. ∙\bullet A partial answer is given to the question of the locality of connective constants, based around the existence of unimodular graph height functions. ∙\bullet Examples are presented of Cayley graphs of finitely presented groups that possess graph height functions (that are, in addition, harmonic and unimodular), and that do not. ∙\bullet The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with arXiv:1304.721

    Generators and commutators in finite groups; abstract quotients of compact groups

    Full text link
    Let N be a normal subgroup of a finite group G. We prove that under certain (unavoidable) conditions the subgroup [N,G] is a product of commutators [N,y] (with prescribed values of y from a given set Y) of length bounded by a function of d(G) and |Y| only. This has several applications: 1. A new proof that G^n is closed (and hence open) in any finitely generated profinite group G. 2. A finitely generated abstract quotient of a compact Hausdorff group must be finite. 3. Let G be a topologically finitely generated compact Hausdorff group. Then G has a countably infinite abstract quotient if and only if G has an infinite virtually abelian continuous quotient.Comment: This paper supersedes the preprint arXiv:0901.0244v2 by the first author and answers the questions raised there. Latest version corrects erroneous Lemma 4.30 and adds new Cor. 1.1

    Robust Simulations and Significant Separations

    Get PDF
    We define and study a new notion of "robust simulations" between complexity classes which is intermediate between the traditional notions of infinitely-often and almost-everywhere, as well as a corresponding notion of "significant separations". A language L has a robust simulation in a complexity class C if there is a language in C which agrees with L on arbitrarily large polynomial stretches of input lengths. There is a significant separation of L from C if there is no robust simulation of L in C. The new notion of simulation is a cleaner and more natural notion of simulation than the infinitely-often notion. We show that various implications in complexity theory such as the collapse of PH if NP = P and the Karp-Lipton theorem have analogues for robust simulations. We then use these results to prove that most known separations in complexity theory, such as hierarchy theorems, fixed polynomial circuit lower bounds, time-space tradeoffs, and the theorems of Allender and Williams, can be strengthened to significant separations, though in each case, an almost everywhere separation is unknown. Proving our results requires several new ideas, including a completely different proof of the hierarchy theorem for non-deterministic polynomial time than the ones previously known
    • 

    corecore