24 research outputs found

    Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16

    Get PDF
    Multipotent progenitor cells confirm their T cell–lineage identity in the CD4^–CD8^– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials

    Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples.

    No full text
    The physiological mechanisms that give rise to the inception and development of a cerebral aneurysm are accepted to involve the interplay between the local mechanical forces acting on the arterial wall and the biological processes occurring at the cellular level. In fact, the wall shear stresses (WSSs) that act on the endothelial cells are thought to play a pivotal role. A computational framework is proposed to explore the link between the evolution of a cerebral aneurysm and the influence of hemodynamic stimuli that act on the endothelial cells. An aneurysm evolution model, which utilizes a realistic microstructural model of the arterial wall, is combined with detailed 3D hemodynamic solutions. The evolution of the blood flow within the developing aneurysm determines the distributions of the WSS and the spatial WSS gradient (WSSG) that act on the endothelial cell layer of the tissue. Two illustrative examples are considered: Degradation of the elastinous constituents is driven by deviations of WSS or the WSSG from normotensive values. This model provides the basis to further explore the etiology of aneurysmal disease
    corecore