58 research outputs found

    Hydrodynamic Approach to Electronic Transport in Graphene: Energy Relaxation

    Get PDF
    In nearly compensated graphene, disorder-assisted electron-phonon scattering or “supercollisions” are responsible for both quasiparticle recombination and energy relaxation. Within the hydrodynamic approach, these processes contribute weak decay terms to the continuity equations at local equilibrium, i.e., at the level of “ideal” hydrodynamics. Here we report the derivation of the decay term due to weak violation of energy conservation. Such terms have to be considered on equal footing with the well-known recombination terms due to nonconservation of the number of particles in each band. At high enough temperatures in the “hydrodynamic regime” supercollisions dominate both types of the decay terms (as compared to the leading-order electron-phonon interaction). We also discuss the contribution of supercollisions to the heat transfer equation (generalizing the continuity equation for the energy density in viscous hydrodynamics)

    Counterflows in viscous electron-hole fluid

    Get PDF
    In ultra-pure conductors, collective motion of charge carriers at relatively high temperatures may become hydrodynamic such that electronic transport may be described similarly to a viscous flow. In confined geometries (e.g., in ultra-high quality nanostructures), the resulting flow is Poiseuille-like. When subjected to a strong external magnetic field, the electric current in semimetals is pushed out of the bulk of the sample towards the edges. Moreover, we show that the interplay between viscosity and fast recombination leads to the appearance of counterflows. The edge currents possess a non-trivial spatial profile and consist of two stripe-like regions: the outer stripe carrying most of the current in the direction of the external electric field and the inner stripe with the counterflow.Comment: 10 pages, 5 figure

    Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Get PDF
    Ultra-pure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high quality nanostructures) the electronic fluid assumes a Poiseuille-like flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This novel non-monotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.Comment: 10 pages, 8 figure

    Magnetoresistance of compensated semimetals in confined geometries

    Get PDF
    Two-component conductors -- e.g., semi-metals and narrow band semiconductors -- often exhibit unusually strong magnetoresistance in a wide temperature range. Suppression of the Hall voltage near charge neutrality in such systems gives rise to a strong quasiparticle drift in the direction perpendicular to the electric current and magnetic field. This drift is responsible for a strong geometrical increase of resistance even in weak magnetic fields. Combining the Boltzmann kinetic equation with sample electrostatics, we develop a microscopic theory of magnetotransport in two and three spatial dimensions. The compensated Hall effect in confined geometry is always accompanied by electron-hole recombination near the sample edges and at large-scale inhomogeneities. As the result, classical edge currents may dominate the resistance in the vicinity of charge compensation. The effect leads to linear magnetoresistance in two dimensions in a broad range of parameters. In three dimensions, the magnetoresistance is normally quadratic in the field, with the linear regime restricted to rectangular samples with magnetic field directed perpendicular to the sample surface. Finally, we discuss the effects of heat flow and temperature inhomogeneities on the magnetoresistance.Comment: 22 pages, 7 figures, published versio

    Magnetoresistance in two-component systems

    Get PDF
    Two-component systems with equal concentrations of electrons and holes exhibit non-saturating, linear magnetoresistance in classically strong magnetic fields. The effect is predicted to occur in finite-size samples at charge neutrality in both disorder- and interaction-dominated regimes. The phenomenon originates in the excess quasiparticle density developing near the edges of the sample due to the compensated Hall effect. The size of the boundary region is of the order of the electron-hole recombination length that is inversely proportional to the magnetic field. In narrow samples and at strong enough magnetic fields, the boundary region dominates over the bulk leading to linear magnetoresistance. Our results are relevant for semimetals and narrow-band semiconductors including most of the topological insulators.Comment: 11 pages, 3 figure

    Linear magnetoresistance in compensated graphene bilayer

    Get PDF
    We report a nonsaturating linear magnetoresistance in charge-compensated bilayer graphene in a temperature range from 1.5 to 150 K. The observed linear magnetoresistance disappears away from charge neutrality ruling out the traditional explanation of the effect in terms of the classical random resistor network model. We show that experimental results qualitatively agree with a phenomenological two-fluid model taking into account electron-hole recombination and finite-size sample geometry

    Ballistic transport in disordered graphene

    Full text link
    An analytic theory of electron transport in disordered graphene in a ballistic geometry is developed. We consider a sample of a large width W and analyze the evolution of the conductance, the shot noise, and the full statistics of the charge transfer with increasing length L, both at the Dirac point and at a finite gate voltage. The transfer matrix approach combined with the disorder perturbation theory and the renormalization group is used. We also discuss the crossover to the diffusive regime and construct a ``phase diagram'' of various transport regimes in graphene.Comment: 23 pages, 10 figure

    Wave function correlations on the ballistic scale: Exploring quantum chaos by quantum disorder

    Full text link
    We study the statistics of wave functions in a ballistic chaotic system. The statistical ensemble is generated by adding weak smooth disorder. The conjecture of Gaussian fluctuations of wave functions put forward by Berry and generalized by Hortikar and Srednicki is proven to hold on sufficiently short distances, while it is found to be strongly violated on larger scales. This also resolves the conflict between the above conjecture and the wave function normalization. The method is further used to study ballistic correlations of wave functions in a random magnetic field.Comment: 4 page
    • …
    corecore