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Two-component conductors — e.g., semi-metals and narrow band semiconductors — often exhibit
unusually strong magnetoresistance in a wide temperature range. Suppression of the Hall voltage
near charge neutrality in such systems gives rise to a strong quasiparticle drift in the direction per-
pendicular to the electric current and magnetic field. This drift is responsible for a strong geometrical
increase of resistance even in weak magnetic fields. Combining the Boltzmann kinetic equation with
sample electrostatics, we develop a microscopic theory of magnetotransport in two and three spatial
dimensions. The compensated Hall effect in confined geometry is always accompanied by electron-
hole recombination near the sample edges and at large-scale inhomogeneities. As the result, classical
edge currents may dominate the resistance in the vicinity of charge compensation. The effect leads
to linear magnetoresistance in two dimensions in a broad range of parameters. In three dimensions,
the magnetoresistance is normally quadratic in the field, with the linear regime restricted to rectan-
gular samples with magnetic field directed perpendicular to the sample surface. Finally, we discuss
the effects of heat flow and temperature inhomogeneities on the magnetoresistance.

The theory of magnetotransport in solids™ is a mature
branch of condensed matter physics. Measurements of
magnetoresistance and classical Hall effect are long recog-
nized as valuable experimental tools to characterize con-
ducting samples. Interpreting the experiments within the
standard Drude theory™* one may extract many useful
sample characteristics such as the electron mobility and
charge density at the Fermi level. However, in materials
with more than one type of charge carriers — e.g., semi-
metals and narrow band semiconductors — the situation
is more complex. Indeed, already in 1928 Kapitsa ob-
served unconventional magnetoresistance in semi-metal
bismuth films®. More recently, interest in magnetotrans-
port has been revived with the discovery of novel two-
component systems including graphené® ™ topological
insulators ™16 and Weyl semimetal A common
feature of all such systems is the existence of the charge
neutrality (or, charge compensation) point, where the
concentrations of the positively and negatively charged
quasiparticles (electron-like and hole-like, respectively)
are equal and the system is electrically neutral.

A fast growing number of experiments on novel two-
component materials exhibit unconventional transport
properties in magnetic field: (i) linear magnetoresistance
(LMR) was reported in graphene and topological insula-
tors close to charge neutrality?830 as well as in narrow-
gap semiconductors®?, bismuth flmd3839  and three-
dimensional (3D) silver chalcogenides®#2 (ii) giant (and
sometimes also linear) magnetoresistance was identified
in semimetals WT . NbPAS [oBETES 7,6 GH9050
multilayer graphené® and many others?257: (iii) fi-
nally, the widely discussed negative magnetoresistance
was found in Weyl semimetals and related materiald>868,
Moreover, negative magnetoresistance may by regarded
as a “smoking gun” for detecting a Weyl semimeta )

although experiment™72 shows the existence of the effect
in “non-Dirac” materials as well.

Conventional Drude-like theories of transport in two-
component systems predict parabolic magnetoresistance
that saturates in classically strong fields™¥ 7374 Tak-
ing into account additional relaxation processes may
lead to semiclassical mechanisms of LMR in diverse
physical systems including 3D metallic slabs with
complex Fermi surfaces and smooth boundaries 70:
strongly inhomogeneous or granular materials?? 89 short
samples®0B8L:  disordered 3D metals®®83; and compen-
sated two-component systems®?. Quantum effects result
in LMR in strong fields in 3D zero-gap band systems
with linear dispersion® 87, In weak fields, resistivity of
two—dimensionalngD) electron systems acquires an inter-
action correction® that is linear in the field.

The extreme quantum limit of Refs. has been re-
alized in graphené®®, Bij, Tes nanosheets58, and possibly
in the novel topological material LuPdB®7. However,
this mechanism is applicable to the specific case of 3D
systems with linear dispersion subjected to a strong mag-
netic field Aw. > T (as usual, T' is the temperature, 7 is
the Planck constant, and w, is the electron cyclotron fre-
quency), where all electrons are confined to the first Lan-
dau level. Recently, this approach has been extended to
Weyl semimetals at finite temperatures and with short-
range disorder®. However, the above conditions are typ-
ically not satisfied by the majority of systems exhibiting
unsaturated LMR at high temperatures.

Experiments on strongly inhomogeneous (or strongly
disordered) systems are often interpreted using the clas-
sical approach of Refs. [T7/78 In particular, the random-
resistor model of Ref. [78 was introduced to explain
the non-saturating LMR in granular materials such as
AgSHUHI - More recently, this mechanism was used to



interpret the behavior of the hydrogen-intercalated epi-
taxial bilayer graphenes. However, this model (as well
as the quantum theory of Refs. B5H87) does not distin-
guish between single- and multi-component systems, con-
tradicting the crucial role of the charge neutrality point
in many aforementioned experiments. Moreover, both
theoretical approaches rely on the presence of disorder
and thus cannot be used to interpret the data obtained
in ultra-clean, homogeneous samples.

A phenomenological theory of magnetotransport in 2D
clean, two-component systems close to charge neutrality
was proposed by the present authors in Ref. [84. Sub-
jected to a perpendicular magnetic field, such systems
exhibit the compensated Hall effect, where the Hall volt-
ages due to positively and negatively charged carriers
partially (precisely at charge neutrality — completely)
cancel each other. Such compensation of the Hall volt-
age is accompanied by a neutral quasiparticle flow in the
lateral direction relative to the electric current??. In con-
strained geometries this leads to a nonuniform distribu-
tion of charge carriers over the sample area, effectively
splitting the sample into the bulk and edge regions. The
resistance of the edge region is dominated by the electron-
hole recombination, while the bulk of the sample exhibits
the usual, essentially Drude resistance. The total resis-
tance of the sample is then obtained by treating the edge
and bulk regions as independent, parallel resistors. The
linear dependence of the sample resistance on the mag-
netic field arises due to qualitatively different behavior
of the edge region. At charge neutrality, the resulting
LMR persists into the range of classically strong fields.
Away from the neutrality point, the nonzero Hall volt-
age leads to the observed saturation of the magnetoresis-
tance. Similar ideas were recently exploited by some of
us to explain the phenomenon of the giant magnetodrag
in graphene?, The importance of the electron-hole re-
combination processes for magnetotransport in narrow-
band semiconductors and semimetals has been pointed
out earlier by Rashba et. al. in Ref. [92]

In this paper we present a microscopic theory of mag-
netotransport in two-component systems. Combining the
kinetic equation with the sample electrostatics, we pro-
vide a rigorous justification for the phenomenological ap-
proach of Ref. 84l Furthermore, we extend our theory to
3D systems. We find that although in 3D the magnetore-
sistance is typically quadratic in the field, there exists a
linear regime in rectangular samples with magnetic field
directed perpendicular to the sample surface.

The remainder of the paper is organized as follows.
First, we discuss the qualitative physics of magnetotrans-
port in two-component systems. In the technical part of
the paper we present a Boltzmann equation approach to
magnetotransport in finite-size 2D and 3D systems. In
the latter case, we focus on the rectangular sample geom-
etry to simplify the analysis of the sample electrostatics.
We conclude the paper by discussing the experimental
relevance of our results.

I. QUALITATIVE DISCUSSION

Let us first recall the results of the classical linear
response theory X434 applied to two-component sys-
tems. A system of charge carriers subjected to a homo-
geneous external electric field, E exhibits an electrical
current. The current density, J = ej, is proportional to
the applied field, J, = cr‘lﬁEﬂ, where & is the conduc-
tivity tensor. In two-component systems, one can define
currents for each individual carrier subsystems, which we
will refer to as electron and hole quasiparticle flows, j,
and j,, respectively. The electric current is then given
by their difference, 7 = j; — 7.-

In external magnetic field, the system exhibits the clas-
sical Hall effect: a voltage is generated across the system
in the transverse direction to the electric current. In
a typical transport measurement, external leads are at-
tached to the sample in such a way, that no current is
allowed to flow in the direction of the Hall voltage. The-
oretical description of the effect is most transparent in
isotropic systems, where o™ = gq6®?. If we associate
the z-axis with the electric current and the z-axis with
the magnetic field, then the Hall voltage is generated in
the y direction, while J, = 0. In two-component systems,
the latter condition leads to a field-dependent longitudi-
nal resistivity 34

2 | =2 2
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(1)

where B is the magnetic field, ng . and ng ; stand for the
equilibrium electron and hole densities, and p, and py
are the electron and hole mobilities. Within the standard
Drude theory™* the conductivity oo can be expressed
in terms of the quasiparticle densities and mobilities as

00 = eng.ele + €No R A,

whereas the additional parameter ¢ is

oo = 6\/Heuh(n3,e +ng ) + n0,em0,4 (12 + 147).

In the presence of the electron-hole symmetry, the mobil-
ities of the two types of carriers coincide, pe = up = p,
and the resistivity simplifies to

ew pf + ng(uB)?’

where we have introduced quasiparticle and charge densi-
ties, po = no,e + no,» and ng = ne o — np0, respectively.

The results (1) and yield a positive magnetoresis-
tance that is quadratic in weak magnetic fields and sat-
urates in classically strong fields. The two exceptions
are provided by neutral systems (ng =0, nge = no.1),
where the quadratic magnetoresistance is non-saturating,
and single-component systems (e.g. for purely electronic
transport ng = po = no,e, No,n = 0), where the longitudi-
nal resistivity is independent of the magnetic field1*3*,
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FIG. 1. Typical semiclassical trajectories for oppositely

charged quasiparticles in two-component systems at charge
neutrality. The two panels illustrate electron-hole asymmet-
ric (a) and symmetric (b) systems. As a manifestation of the
compensated Hall effect, both quasiparticle currents are flow-
ing in the same direction in the bulk of the sample. In the
symmetric sample (b), the quasiparticle flow, P =j_+ j,,
is orthogonal to the electric current. In the asymmetric case
(a), the longitudinal component of P is also finite. Such a
flow leads to quasiparticle accumulation at the boundaries of
the otherwise homogeneous sample. The excess quasiparticle
density appears in a boundary region of the width of the or-
der of the electron-hole recombination length. Contributions
of the bulk and boundary regions to the sheet resistance ex-
hibit different dependence on the magnetic field. In classically
strong fields, the boundary region may dominate leading to
linear magnetoresistance.

Previously®®U we have pointed out an inconsistency

that appears when the above classical theory is applied to
finite-sized samples. Indeed, even partially compensated
Hall effect is accompanied by a neutral quasiparticle flow
in the direction transversal to that of the electrical cur-
rent, see Figs.[[land[2] As the quasiparticles cannot leave
the sample, this flow leads to quasiparticle accumulation
near the sample boundaries. The excess quasiparticle
density is controlled by inelastic recombination processes
that are excluded from the classical theory. The typical
length scale characterizing such processes, £r, hereafter
referred to as the recombination length, determines the
size of the boundary region with excess density of quasi-
particles. Here we consider rectangular samples with the
length L being the longest length scale in the system®

lr,ruB, W < L. (3)

The classical results are applicable if the boundary
regions are small as compared to the sample width,
lr < W. If, on the other hand, /i is comparable with
W, then the behavior of the system may strongly deviate
from the predictions of the classical theory.

Treating the bulk and boundary regions as parallel con-
ductors, we estimate the sheet resistance of the sample®*
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FIG. 2: Lateral profiles of the quasiparticle density dp(y),
charge density dn(y), quasiparticle flow P, ,(y) and electric
current density J;(y) in a 2D two-component system away
from charge neutrality, see Fig. [1| panel (a), calculated within
the theory presented in Sec. |[I} For concreteness, we chose
the carrier parameters of a typical topological-insulator film:
electron and hole mobilities e = 20up, pp = 1 m2/(V-s) and
velocities ve = 10° m/s, vn = 0.5v.. The sample is assumed
have the width W = 10um, with the distance to the gate
d = 0.5um and the dielectric constant of the surrounding in-
sulator € = 5. The carrier densities were calculated using a
generic two-band model with the energy gap A =4 meV at
room temperature 7' = 300 K. The recombination length is as-
sumed to take the value £ = 0.46pum at B =2 T. All curves
are normalized to the maxima of their absolute values.

In the bulk, the lateral quasiparticle flow leads to the
so-called “geometric” magnetoresistance?4:2

w n% n 1
—e 0y -
L Koo p(g) M2Bz 5

L
Ryuie = Wﬂm = Rog ~
where we have used Eq. in the limit of classically
strong magnetic fields, uB > 1.

In the boundary regions, the quasiparticle flows are
mostly directed along the external electric field, see
Figs. [1| and |2}, and the geometric enhancement does not
take place. Instead, the field dependence of the edge con-
tribution to the sample resistance,

L
Rcdge ~ € p (B O)’

is due to the recombination length, /. In homogeneous
samples, the simplest estimate®*?V yields £z that is in-
verse proportional to B in classically strong fields

l l
-0 o0
V1+u2B2 uB

where ¢y = 21/ D7p is the zero-field recombination length
determined by the diffusion coefficient D and the char-
acteristic recombination time 7g.

()



The asymptotic behavior of the recombination
length may be qualitatively understood as follows. In
classically strong magnetic fields, uB > 1, the charge
carriers move over a typical distance R. (the cyclotron
radius) during a typical diffusion time 7. Since the quasi-
particle life-time is determined by the recombination pro-
cesses, the overall distance covered by the electron dur-
ing the time 75 may not exceed R.\/Tr/T ~ 1/B, which
yields the estimate for the size of the boundary regions.

Combining the above arguments, we arrive at the fol-
lowing expression for the sheet resistance (4) in classically
strong magnetic fields, uB > 1,

1 [n2 1 6w 17"

Ro = S
epoit [ W2B%2  uBW

(6)

The sheet resistance @ exhibits all qualitative features
of the magnetoresistance in nearly compensated two-
component systems.

In wide samples, W > louB, magnetotransport is
dominated by the bulk and can be described by the clas-
sical theory, see Egs. and and the subsequent dis-
cussion. We consider such samples as essentially infinite.

Deviations from the classical behavior (1) and (2)) oc-
curs in finite-size samples of the width belonging to the
intermediate interval determined by the magnetic field,

14
0 « W < uBly.

uB
In this case, the sheet resistance of compensated (neutral,
ng = 0) systems is linear in the magnetic field

1
WB

— —B. 7
epo Lo @)

Ro =

Away from charge neutrality, LMR appears only in an
intermediate range of magnetic fields. In strong fields,
B 2 lop? /(LW n3), magnetoresistance saturates.

In narrow samples, W < £p ~ £y/uB, recombination
is ineffective and the above physical picture breaks down.
In this case, the two carrier subsystems behave as two in-
dependent single-component systems. As a consequence,
classical magnetoresistance is absent1*3*,

The sheet resistance @ is illustrated in Fig. where it
is plotted in a wide range of classically strong magnetic
fields in the above three regimes. Panel (a) shows Rp
for a symmetric system at charge neutrality, while pan-
els (b), (c), and (d) illustrate our results for asymmetric
systems at (solid curves) and away from (dashed curves)
the compensation point.

The above semiclassical mechanism of LMR in finite-
size, nearly compensated two-component system was
first suggested in Ref. (90 in the context of Coulomb
drag?l. The results -@ were derived rigorously in
graphene?® on the basis of a microscopic transport the-
ory. Subsequently, the macroscopic equations derived in
graphene were generalized to a generic compensated two-
component system using a phenomenological approach®.
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FIG. 3: (a) Sheet resistance Ro(B) of a 2D symmetric, two-
component system at charge neutrality for three different
values of the ratio of the sample width to the zero-field re-
combination length, W/¢o = 0.01, 2, 1000, represented by the
solid red, dotted blue, and dashed green lines, respectively
(the curves are rescaled for clarity). (b), (c), (d) Ro(B) of
a 2D asymmetric two-component system for three different
values W/lo = 0.008 [panel (b)], W/ly, = 2.1 [panel (b)], and
W /€y = 1000 [panel (c)]. In all three plots, solid lines corre-
spond to the charge neutrality point, while dashed lines show
results away from neutrality. The curves were calculated us-
ing the theory presented in Sec. [T} with the parameter values
correspond to typical topological-insulator films (see the cap-
tion to Fig. [2)), with the recombination length ¢y = 4.8um.

In this paper, we justify the phenomenological ap-
proach of Ref.[84land derive the LMR for a wide range of
systems using the Boltzmann kinetic equation. The key
point that makes our theory so general, is the simple fact
that in an magnetic field charge carriers driven through
the system by the external electric field experience a lat-
eral drift in the direction (E x B) defined by the electric
and magnetic fields. The ultimate cause of this drift is
the Lorenz force that acts on all charge carriers indepen-
dently of their density, mobility, details of the spectrum,
and additional quantum numbers. The second essential
feature of our theory is the presence of the boundary
leading to accumulation of the excess quasiparticle den-
sity in the narrow regions near the sample edges. Again,
this is a completely general feature since all samples used
in laboratory (as well as all industrial electronic devices)
have a finite size. The width of the boundary regions
(and hence, the degree of macroscopic inhomogeneity in
the system, see Fig. [2) is controlled by the quasiparti-
cle recombination length. The particular dependence ([5))
of r on the magnetic field is crucial for the resulting
LMR, given by Eq. (7). The original estimate®® (5] is
not universal?% insofar that the coefficient of the inverse
proportionality {g < 1/B (in classically strong fields) is
system (or model) dependent. In a sense, the technical
goal of the microscopic theory presented in this paper is
to calculate the field dependence of the effective recom-
bination length.



In our qualitative arguments, we have tacitly assumed
that the energy transfer plays no role in formation of
the macroscopic inhomogeneities of the quasiparticle cur-
rents and densities. At the microscopic level, this means
energy relaxation (and hence, thermalization) in the sys-
tem is much faster than quasiparticle recombination. As
a result, the temperatures of both carrier subsystems are
uniform within the sample (and are, in fact, identical).

The theory of Refs. [8490l98) as well as the present
qualitative discussion and the microscopic theory of
Sec. [l is focused on 2D systems. Similar behavior can
be found also in 3D samples. In particular, if cyclotron
orbits do not remove the carriers from a plane paral-
lel to one of the sample faces, a linear regime similar to
Eq. may be observed. In this paper, we make the first
steps towards a full microscopic understanding of magne-
totransport in 3D two-component systems, see Sec. m

II. TRANSPORT THEORY OF 2D
TWO-COMPONENT SYSTEMS

In this Section we show that the linear dependence of
resistivity on the sufficiently strong magnetic field is a
generic effect for two-component systems at charge neu-
trality. For brevity, we employ the natural system of
units where h =c=kp = 1.

The usual starting point for developing a microscopic
transport theory is the kinetic equation®. For a generic
two-component electronic system, the kinetic equation
has the standard form

Ofa Ofa
vaair—i—ea(E—%vaxB)%:St[fa}. (8)

The semiclassical distribution functions f, = fo (&, p, 7)
describe the positively and negatively charged quasiparti-
cles (“holes” and “electrons”, respectively, distinguished
by the index o = e, h) with the energies £,(p) and ve-
locities v, = 024 (p)/Op. The system is subjected to the
external electric and magnetic fields E and B.

The collision integral in the right hand side of Eq.
comprises contributions from impurity, electron-phonon,
and electron-electron scattering. We will describe these
scattering processes by the typical time scales Timp,
Tee; and 7pn. The impurity and electron-phonon scat-
tering contribute to momentum relaxation, while the
electron-electron and electron-phonon interactions deter-
mine the thermalization properties of the system, as well
as quasiparticle recombination. The traditional trans-
port theory™ assumes that in the absence of external
fields the system is in equilibrium. The electric current
(or more generally, the quasiparticle flows) appears as a
response to the applied fields. Within linear response,
the system experiences no heating and remains thermal-
ized. In this (and the following) Section we work under
the same assumptions.

Finding a general solution to the kinetic equation
is a complicated task that is best accomplished numeri-

cally. In the special case of Dirac fermions in graphene,
the solution is facilitated by the so-called collinear scat-
tering singularity®®. Otherwise, an analytical solution
can be found in the two paradigmatic limiting cases,
known as the “disorder-dominated” and “hydrodynamic”
regimes®>?1L which can be distinguished by comparing the
scattering rates for elastic and inelastic processes:

(i) in the disorder-dominated regime, the fastest scat-
tering process in the system is due to potential disorder,

Timp K Tees Tph- (9)

Since the electron-electron scattering time is typically in-
verse proportional to temperature,

Tegl ox T,
the relation @[) implies
TTimp < la

which means that the motion of the charge carriers is
diffusive. In this case, most of the transport coefficients
can be expressed in terms of the diffusive constant. As
a result, qualitative features of the physical observables
are independent of the microscopic details, such as the
precise form of the single-particle spectrum.

(ii) in the hydrodynamic regime, the fastest process is
due to electron-electron interaction

Tee K Timp, Tph- (10)

Now, the relation between the temperature and the im-
purity scattering time is reversed,

TTimp > 1,

so that the motion of charge carriers is ballistic. In this
limit, the system of charged quasiparticles behaves sim-
ilarly to a fluid and is described by the hydrodynamic
equations.

Remarkably, in both regimes the resistance of 2D two-
component systems close to charge neutrality exhibits
linear dependence on the orthogonal magnetic field (in
sufficiently strong fields).

A. Disorder-dominated regime
1.  Symmetric, parabolic bands at charge neutrality

We begin with the simplest case of the symmetric
parabolic spectrum with the band gap A,

ec(p) =en(p) = ep = A/2+p?/2m, (11)

where the quasiparticle velocity is proportional to the
momentum

Vo = Pp,/m.



Furthermore, we will assume the energy-independent mo-
mentum relaxation time

Th(€) = Te(g) = 7 = const.

At charge neutrality, the equilibrium state of the system
is described by the Fermi distribution function with the
zero chemical potential

1
0 - _ -
fp - 1+669/T.

Since the single-particle spectrum depends only on
the momentum, the equilibrium quasiparticle density is
given by

*p
po=2q | e 1 (12)

where g is the degeneracy factor reflecting other possible
quantum numbers, such as spin, valley, etc.

External fields drive the system out of equilibrium, giv-
ing rise to deviations of the quasiparticle densities from
the equilibrium value

d*p Po
Mg = — = fo— —, 13
No =g / 2n)? fa =75 (13)
and the corresponding flow densities 7 ,:
d*p
j., = —— v f,. 14
Ja =49 / on)? vf (14)

The nonequilibrium densities dn, and currents j, are
related by the continuity equations that can be derived
by integrating the kinetic equation

ony + one

Sh- (15)

div je(h) = —
Here 7r denotes the quasiparticle recombination time.
The recombination processes typically involve electron-
phonon scattering, although in certain circumstances
electron-electron? and three-particle?” collisions may
also contribute. A calculation of the recombination time
Tr using a particular microscopic model is beyond the
scope of the present paper.

Macroscopic equations?® for the flow densities (14)) can
be obtained by multiplying the kinetic equation (8) by
the quasiparticle velocity and summing over all single-
particle states. As a result, we find?™8

d’p v? eaEpg j
v el - —joXwe = -2 (16
{g/(%)? 2 } om  JeX¢ - (16)

where wj,=—w.=w, are the carrier cyclotron frequencies
w.=eB/m.

Comparing the integral in Eq. with the flow den-
sity 7 we find it natural to split the distribution func-
tions f, into the “isotropic” and “anisotropic” parts,

fa=F0(E) + £(e ep). (17)

The isotropic term depends only on the quasiparticle en-
ergy and hence does not contribute to the currents .
On the contrary, the anisotropic term is an odd function
of the momentum. It is this part of the distribution func-
tion that determines the currents , but at the same
time, it does not contribute to the integral in Eq. .

Within linear response, deviations of the isotropic
function f&l)(s) from the equilibrium distribution f,(,o)
can either reflect deviations of the local electronic tem-
perature from the equilibrium value determined by the
lattice, or the local fluctuations of the chemical potential
Sppa ().

Thermalization between the electronic system and the
lattice is achieved by means of electron-phonon coupling.
While the same coupling is also responsible for quasipar-
ticle recombination, the latter is a much slower process
and does not affect the local temperature. Relegating a
more detailed discussion of this issue to a future publi-
cation, hereafter we assume that the relation

Tph K TR
allows us to neglect local temperature fluctuations
0T (r) =0.

As a result, the isotropic part of the distribution function
may only depend on the local fluctuations of the chemical
potential

fa=F+

9 (0)
OLe Spafr) (18)

This implies the proportionality between the local den-
sity fluctuations and dpq (7):

M = Vol lia, (19)
where (cf. Ref. [0])
y PrO)
n={1), () =g [ () @)
A2

with v(e) being the density of states [1y has dimensions
of v(e)].

Since the equilibrium distribution fz(,o) is independent
of r, we can express the integral in Eq. as

9/ Tp —<v2>5ua=@

(2m)2 27°% " 2 2w

0N,

and introduce the diffusion coefficient in Eq.

DV éng — eaEpor/(2m) — j o, XwaT = —J (21)

a

The diffusion coefficient is the same for the electrons and
holes:

D = (v¥)7/(2wp). (22)



At charge neutrality the averages in the expression for
the diffusion coefficient can be evaluated analytically:

D(u=0) = % (1 + eA/2T> In (1 + e*A/QT) L (23)

The macroscopic equations and allow us to
find transport coefficients of the system, as well as the
carrier density and current profiles. These equations
are semiclassical in the sense that the effects of quan-
tum interference®® and Landau quantization®8587 are
neglected.

In this paper we are interested in solving the macro-
scopic transport equations and in confined ge-
ometries (in fact, that is why we have considered the
nonuniform distributions). For simplicity, we consider a
rectangular sample with the length that is much larger
than the width L > W as well as any correlation length
in the system. In this case, all physical quantities depend
only on the transversal coordinate y (—W/2 <y < W/2).
If no contacts are attached to the side edges of the sam-
ple, the quasiparticle flows have to vanish at the edges

JLly = £W/2) = 0. (24)

Combining the carrier densities into the charge
density, dn=dn.—0dny, and total quasiparticle density
dp=oéne+dny, and introducing the corresponding cur-
rents, j=3,—7. and P=3_.+7,, we may represent the
macroscopic equations and in the form®%

DVép+ P — jxw.r =0, (25a)
DVién+j—eEpyt/m — Pxw.r =0, (25b)
divP = —dp/TR, divy = 0. (25¢)

Looking for solutions independent of the x coordinate
and keeping in mind the hard-wall boundary conditions

, we find

P =P(yle,, j=j{yes, on = 0.

Moreover, we note that the equations (25) preserve the
direction of the applied electric field if choose it to be
E = Eoe;E.
Then we can use Eq. (25¢) to exclude the quasiparticle
density and simplify Egs. (25a)) and (25b) as
—D71r 0*P/0y? + P(y) + w.Tj(y) =0, (26a)

J(y) = jo +weTP(y), (26b)

where jo = eTpoEy/m is the electric current in the ab-
sence of magnetic field.

The second-order differential equation with the
hard-wall boundary conditions admits the solution®

WeT cosh(2y/¢R)
1+ w?r? <cosh(W/€R) B 1) ’ (27)

P(y) = jo

where the quasiparticle recombination length in magnetic
field is

gRZKQ/\/1+ng27 lo = 2/ D1R.

The quasiparticle current and the corresponding
electric current j(y) are illustrated in Fig.|ll The nonuni-
form nature of the currents does not allow for establishing
a meaningful resistivity in our system. Instead, we may

define the sheet resistance®?
w/2
. — e .
Ro=E/J, J=7 / J(y)dy. (28)
—W/2

The resulting value of R is given by

m 14w?r? tanh(x)
= < F - . 2
5™ e2rpg 14w2r2F(W/tR)’ (z) x (29)

The sheet resistance was previously obtained in
Ref. [84] using a phenomenological approach. Depending
on the sample width W, recombination length ¢y, and
magnetic field, one may identify three types of asymp-
totic behavior®:

(i) in wide samples, W > (w.T)?(r, the resistance (]Q_QD
is a non-saturating, quadratic function of the B field™

(30a)

The resistance exhibits geometric enhancement
that is a consequence of the compensated hall effect,
where the Hall voltage is absent despite the tilt of the
carrier trajectories.

(ii) in narrow samples, W < {g, quasiparticle recom-
bination is ineffective, all currents flow along the z-axis,
and hence the geometric enhancement factor is absent

m

Rpo =

g (30D)

(iii) samples of intermediate width, (g < W < w212/,
in classically strong magnetic fields, w.7>>1, exhibit a
linear behavior8428

m W
e2rpo (R’

Rpo = (30¢)

shown in Eq. above (note that w.7=uB).

The results of this section provide the microscopic jus-
tification to the phenomenological approach of Ref. [84l
Similar results were previously obtained for monolayer
graphene?®. In the following sections we generalize our
theory to the case of arbitrary quasiparticle spectrum and
prove that LMR in classically strong fields is a generic
feature of compensated, two-component systems.



2. Symmetric bands with arbitrary spectrum

In this section, we generalize our kinetic theory to the
case of the arbitrary quasiparticle spectrum, ¢(p), and
energy-dependent momentum relaxation time, 7(¢). For
simplicity, we only consider rotationally invariant spec-
tra, e(p)=¢p, p=|p|. The cyclotron frequency is now
also energy-dependent

Wh = —We = We, we(e) = eBu/p, (31)
while the velocity and momentum are given by the usual
relations

Oep

'0(8) = 87])

, P= p(E), sp(a) =E&. (32>

The energy dependence of the velocity and momentum
relaxation time makes the derivation of the macroscopic
transport equations rather tedious. Instead, we use the
kinetic equation (8] to relate the two parts of the distri-
bution function (17)). The anisotropic part of the kinetic
equation reads

(a) (a)
(0 fa Ofo” _ _Ja_
vV Y + e BEv—— 4 wy(¢) 5 @ (33)

where the a e ¢ describes direction of the velocity.
33) for £

Solving Eq. (33) for , we find

a)_zvk kl(

where the indices k, lfa: ,y indicate the 2D vector com-
ponents. The tensor 7¥ is given by

L 7(€)

Ta

)
— +eo B 85> 9, (34)

1 wa ()7 (€)
07 (i T)- 0

Now we can use Eq. to express the carrier flow
densities in terms of the isotropic part of the distri-
bution function. Instead of the direct momentum inte-
gration, we now evaluate the currents in two steps.
Firstly, we average over the direction of the velocity. This
yields the energy-dependent currents

NG :ij(g,B)( V!4 e Bl — ) 19, (36)

where D, (e, B) = v?%,/2. Secondly, we integrate over
the energy using the explicit form of the distribution
function. The expression is still valid, since none of
the assumptions of the previous section relied on the par-
ticular shape of the quasiparticle spectrum. Substituting

Eq. into Eq. we find

ik (e) = DF'(e, B) [V'dpa(r) + ea E' %(50)' (37)

Integrating Eq. over the energy, we obtain

= D!(B) (=V'énq + earn EY), (38)
with the averaged “diffusion tensor” is
- _ | _ Dx:v :l:Dmy
Dn(B) = o a3 = (157 ) o)

The individual matrix elements of ﬁe(h) (B) are given by

1 /e 7(¢)

b= T rraoem) O
1 /0 we(e)T3(e)

oo (FteE) 0

For the energy-independent 7 and w, the matrix ﬁe( n (B)
simplifies to

Da(B) = — 2 ( 1 WTT) , (40)

1+ w?r? \~waT

where D is given by Eq. .

The expression generalizes the above macroscopic
equation for the case of an arbitrary quasiparticle
spectrum and energy-dependent momentum relaxation
rate [for the parabolic spectrum, we recover Eq. (21) with
the help of the identity (v2/2) = ng/m]. The Correspond—
ing continuity equations are still given by Eq. (|15, where
Tr now stands for the mean value of the recombination
time. Again, in this paper we do not study microscopic
details of the recombination processes and, in particular,
the energy dependence of the recombination rate.

At charge neutrality, the densities of electrons and
holes coincide, dny = dn. = dp/2. Similarly to the case
of the parabolic spectrum, the hard-wall boundary con-
ditions (24)) ensure that the electric field does not deviate

from its direction along the the z-axis, E = Eye,. This
allows us to re-write Eq. in the form
1 dép
v = —3j% = evgDyr By + =Dy ——, 41
i = =% = ewDasEo + 3D 5L, (412)
. . 1 ddp
Ji =j¢ = evyDyyEy — iDma—y (41b)

Combining the currents with the continuity equation
, we find a second-order differential equation for p

25p 48
9% _ =P tp=2\Dmrr. (42)
Oy? 03,

The equations and are completely equivalent
to Egs. (26)). The only difference is the precise definition
of the diffusion coefﬁcients Hence, it is not surprising
that the solutlon to Eq. (42]) with the hard-wall boundary

conditions is blmllaI‘ to Eq. .

D, sinh(2y/¢R)
D, cosh(W/lg)"

(Sp = —elloEogR (43)



Finally, we use the solution and Eqgs. to find the
averaged electric current and sheet resistance

_ 1
T 22

D2 -
Ro (DM+ D“’F(W/@)) L (44)

Qualitatively, the result is similar to Eq. (29)), see
also Fig. 4l Most importantly, the dependence of Ry on
the magnetic field and sample geometry is given by the
same function F(W/lg). Therefore, we can identify the
same three types of behavior as in Egs. .

(i) in the limit of a wide sample the contribution
of the function F(W/{g) may be neglected. The re-
sulting magnetoresistance is quadratic and unsaturating,
R ~1/D,,.

(ii) the limit of a narrow sample corresponds to the
approximation F(W/{gr) = 1. In this case, the sheet re-
sistance (44]) is not strictly speaking a constant, but ex-
hibits weak, quickly saturating dependence on the mag-
netic field, Rg ~ Du./(D2, + D32,).

(iii) the limit of an intermediate sample size exists
in classically strong magnetic fields, where we may ap-
proximate F'(x) =~ 1/ and neglect the field-independent
term in Eq. (44). This leads to the linear magnetore-
sistance similar to Eq. . The parameter range for
this regime is similar to that of the previous section:
lrW ERDgy/Dgz. The resulting resistance is

1 Dy W
262 Dgy éR'

o= (45)
The result may be simplified if we formally assume

the limit B — oco. Then the elements of the diffusion
matrix are

b ) _ {wp)
T 2pe2 B2’ W 9ugeB’

The recombination length is inverse proportional to the

magnetic field
0n = 1 |21 /p?
R= B Vo T/
and hence the resistance is linear in the B-field

B [vo(p?/T) voW

(46)

3. Asymmetric bands

Now we discuss a generic two-component system with-
out electron-hole symmetry. For simplicity, we will con-
sider the parabolic spectra (as we have seen above, chang-
ing the shape of the quasiparticle spectrum does not lead
to qualitatively new physics)

ca(P) = AJ2 4 p?/2m,. (47)

In addition, the system may be doped away from charge
neutrality, i.e. the equilibrium chemical potential may be
shifted from the middle of the band gap. Nevertheless,
we may repeat the derivation of the continuity equations
(15) and macroscopic equations and arrive at the
following description of the system

DaV6na - eaEn(LaTa/ma _jaxwaTa = _jou

diVja = —(Fedne + I‘hdnh)/Q (48)

The electrons and holes are described by their respec-
tive densities 0nq(r) = 1o () — no,q, Mmasses Mgy, Mo-
mentum relaxation times 7, cyclotron frequencies w, =
eoB/meqc, and diffusion coefficients

D, = <U2>a7‘a/(21/07a). (49)

Here the averaging over energies is similar to Eq. ,
but with the different equilibrium distribution functions

for electrons and holes, f&o):

7 (0)
(a== [am@Tc0. e

A2

where v, (¢) is the corresponding density of states.
The recombination rates I', are generally different for
electrons and holes and may be approximated as

e =2yngs, I'p = 2yng,e, (51)

where the coefficient 7 is the function of T" and depends
on a particular model of electron-hole recombination.

In the absence of the electron-hole symmetry, the clas-
sical Hall effect is no longer completely compensated and
the Hall voltage is formed. The corresponding lateral
component of the electric field can be related to the
nonuniform charge density across the sample. In prin-
ciple this can be done by solving the Poisson equation
with the sample-specific boundary conditions. This elec-
trostatic problem can be rather complicated and may
admit only numerical solutions. While one may have to
solve the electrostatic problem to describe the behavior of
any particular sample quantitatively, qualitative physics
is independent of such complications. Here, we will con-
sider the simplest case of a gated sample. If the distance
between the 2D electron system and the gate electrode
is much smaller than any typical length scale describing
inhomogeneity of the charge density and carrier flows,
then the system is in the strong screening limit, where
the electric field is related to the charge density as®®

e don
E =Fye, — =—e 52
where Ej is the external field, C' = ¢/4nd is the gate-to-
channel capacitance per unit area, d is the the distance
to the gate, € is dielectric constant, and dn = dny, — on,

is the charge density.



The macroscopic equations are linear differential
equations that can be solved similarly to the above case
of the symmetric bands. Before presenting the general
solution, we discuss two particular limiting cases, (i) the
Boltzmann limit away from charge neutrality, and (ii) the
fast Maxwell relaxation.

4. Boltzmann limit

First, we consider the low-temperature (Boltzmann)
limit, T < A, where the effective number of charge car-
riers in both bands is small. In the simplest case, the
carriers have the same mass, m, = m, and momentum
relaxation time, 7, = 7 = const. Consequently, the two
cyclotron frequencies also coincide, wy, = —we = w.. The
electron-hole symmetry is broken by the non-zero chem-
ical potential, pg. = —po,n = . The above parameters
can be combined into the “Drude conductivities” of the
electrons and holes

Te(h) = 62n07e(h)7'/m. (53)
In this limit, the equilibrium distribution functions
have the simple form

_5+A/2$M)’ (54)

o) _
f e(h) = €XP ( T

allowing for the explicit expressions for the equilibrium
carrier concentrations (with v = gm/27 being the density
of states for the 2D parabolic spectrum)

A/ﬁ“). (55)

no,e(h) = V1 exp (— T

Furthermore, with exponential accuracy the diffusion co-
efficients can be approximated by

D, =D=Tr1/m. (56)

The above simplifications allow for a straightforward
solution of the macroscopic equations . The averaged
sheet resistance is given by

1 1+ ngQ

o= o T a2 e+ (1 - OF(W)tn)]’

(57)

where ¢ = n2/p? and the magnetic-field dependent re-
combination length /g is

0 —9 2eD
B 0+ T (1 +w2r?)

(58)

At charge neutrality, £ = 0, we recover the previous result
(29). The magnetoresistance Rn(B) is shown in Fig.
for several values of &.

Since the system is doped away from charge neutrality,
the classical Hall effect is no longer fully compensated.
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This can be seen in the solution to the equations ,
where the electric field acquires a constant component in
the lateral direction

B 70JC7'E0(05 —op)

Y o+ 0.+DC’ (59)

leading to the nonzero Hall voltage, Vg = E,W. The
corresponding Hall sheet resistance

Rg = Ey/j = RoE,/E,
is given by

WeT Oe — O,
RE = - < = 60
0 0. +op,+DC o, + o, (60)

y 1+w?r?
L+ w22 (6 + (1 = F(W/ER)]

5. Fast Mazwell relazation

A more general situation with unequal carrier masses
and momentum relaxation times also allows for a simple
solution under the assumption of fast Maxwell relaxation,

C < mye?.

In this limit, charge fluctuations in the two-component
system relax much faster than the usual diffusion.

Formally taking the limit C' — 0 in Eqgs. and ,
we recover the balance between the nonequilibrium den-
sity fluctuations of the electrons and holes

one = onp, = dp/2. (61)

Note, that this does not imply charge neutrality, since
these fluctuations occur on the background of nonzero
equilibrium charge density ng.

Now, we can express the quasiparticle flows in
terms of the density perturbation and electric field

o (e D) e g
Me 2
where
. 1 1 WaTa
= 1 + ngg (waToc 1 ' (63)

Here the cyclotron frequency, w, = e B/mg, has the op-
posite sign for electrons and holes.

The hard-wall boundary conditions imply the
equality j¢¥ = j/. Excluding the y-component of the elec-
tric field from Egs. , we can express the currents j¥ in
terms of the quasiparticle density dp. This allows us to re-
write the continuity equations in the form of the second-
order differential equation on dp(y), same as Eq. (42),
which we reproduce here for convenience,

Fap _ 139
dy? %

(64)



In contrast to Eq. , the effective recombination length
is now given by

é — 2 € h h e , 65
f \/(Fe +T0)(02" + o) (65)

where the two-component quasiparticle system is charac-
terized by the field-dependent conductivity matrix

iz 2,0

xTT Ty

o = (70, T2, ) = ST (66a)

Oq = oYr g - T, a
« « ma

and the field-dependent diffusion matrix

. T Ty
Du(B) = (Da Da ) — Dot

The solution to Eq. , which satisfies the bound-
ary conditions, differs from the previous result by
the normalization factor that is dictated by the relation
between the density and quasiparticle flows. In the
present case we find

oc”loy’ |+ |og¥|on” sinh(2y/Lr)
o2 D¥* + o D2e cosh(W/lg)

(Sp = _EOKR (67)

Substituting Eq. @ into Eq. , we express the inverse
sheet resistance in the form
Re' = (o)™ + AF(W/tr), (68)
where pZ? is the resistivity of an infinitely large system
poo = (G +6m) . (69)
and
(02%]oy?| + o2 |op®)?

A= — —. (70)
(087 + 03" )og oy,

The result , as well as the result of the previous sec-
tion, Eq. , has the same functional dependence on the
magnetic field as our previous result, Eq. . Therefore,
also in the present case we can identify the three limiting
cases of the wide, narrow, and intermediate-sized sam-
ples. In the latter case, we recover the linear dependence
on the magnetic field. However, in contrast to the case
of the neutral system, described by Eq. , the system
away from charge neutrality exhibits saturation of the
linear behavior. For illustration, we consider the formal
limit B — oo, where the resistance simplifies to

m 1
RO = . 71
= e2pot Lr/W + nd/p? (71)

The linear behavior follows from the inverse propor-
tionality of the recombination length to the magnetic
field, ¢gr o< 1/B. The saturation occurs when the field
becomes so strong, that the ratio W/¢g becomes com-
parable with pZ/n2. Clearly, at charge neutrality ng = 0
and we recover the unsaturating behavior of Eq. .
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6. General solution

Having discussed the limiting cases that allow for
relatively simple and physically transparent solutions,
we now turn to the most general case where the two
quasiparticle subsystems are characterized by unrelated
masses, momentum relaxation times, equilibrium densi-
ties, and recombination rates. We restrict ourselves to
samples with rectangular geometry and again consider
parabolic quasiparticle spectra , arguing that further
generalization to arbitrary spectra will yield no addi-
tional physical insight. The main qualitative conclusion
of this section is the same as before: in classically strong
magnetic fields, there exists an intermediate parameter
range, lo/uB < W < LouB (here p the some averaged
mobility of electrons and holes), where the system ex-
hibits linear magnetoresistance that is non-saturating at
charge neutrality and saturates if the system is doped
away from the neutrality point.

The general solution is most easily obtained upon
re-writing the macroscopic equations in the form
similar to Egs. (25)), i.e. in terms of the total quasi-
particle density dp = dne + dny, charge density fluctu-
ations dn = dn, — dny, quasiparticle low P =3, + 3,
and electric current j = j, — j.. Imposing the hard-wall
boundary conditions (24) on the continuity equation for
the electric current (25c)), we find that the lateral com-
ponent of j is equal to zero. All other quantities are
functions of the lateral coordinate y. In particular, the
macroscopic currents can be written as

3=0(),0),  P=(P(y) Pyy)) (72)

The first of the equations represents two vector
equations. Re-writing them in terms of the currents j
and P and writing the resulting equations in components,
we obtain the following four equations

j = O’+Eo + W+Py, (73&)
Py =o0_Ey+w_P,, (73b)
aon ddp .
(D+—|—HO’+)87y+D_87y+LU+PI+w_j :0, (73C)
aén dép .
(D,+H07)87y+D+67y+w7Pz+W+j:0. (73d)

Here we have used the short-hand notations

oL =engeTe/Meteng nTn/mp, wi=(wWeTetwnh)/2,

l)i:(l)e:l:l)h)/27 KZ:e/C,

and took advantage of the gated electrostatics in
order to exclude the lateral component E,.



The second of the equations (48]) can be used to obtain
the continuity equation relating the total quasiparticle
density dp and flow P, generalizing Eq. . The result
can be represented in the form

5p:—i% —kén, (74)
Y+ Oy e

where
v+ = (Fe £T%)/4.

Solution of the resulting system of equations , and
is straightforward, although tedious. Similarly to
the above solutions of the particular limiting cases, we
reduce the equations 7 and to a single second-
order differential equation, cf. Egs. and . Here
it is convenient to reduce the problem to a second-order
differential equation for P,

p, 4
0*Py _ 4,

S0Y— + S17+
= — ———F 75
azy E% Y 05 ( )

D§

where the effective recombination length is given by

tp= 20 (76)

Vbor— + by

and the following notations are introduced

so=(0oqw_+0o_wi)Dy—(oywi+o_w_)D_,

s1=(04wito_w_)(Ditkoy ) ~(0pw_to_wi ) (D_tro—),

Do=+/Dy(Dy+roy)—D_(D_+ro_),
bo = 2wiw_ Dy —(14w? +w?)D_,

b = (14w? +w? ) (Dy+koy) —2wiw_(D_+Ko_).

Solving the differential equation with the hard-wall
boundary conditions Py(£W/2) =0 [cf. Eq. (24)], we
average the result over the y coordinate [cf. Eq. (28)],

W/2
— 1
R=iw [ WA, (77)
—Wy/2
and obtain the solution
5 Soy— + s17+
P,=Ey———-——|F(W/lgr) —1|. 78
Y 05077+b17+[ (W/tr) = 1] (78)

Again, we have used the notation F(x) = tanh(z)/x.
Finally, we average the relation in order to find

the average electric current, J = —ej, and use the defi-

nition in order to find the inverse sheet resistance

50— +S817+

R='= +w, [F(W/tg)—1
O € O'+ W+[ ( /R) ]bo’}/_-‘rb1’}/+

(79)
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FIG. 4: The magnetic field dependence of the sheet longitu-
dinal (left) and Hall resistance (right) given by Egs. and
(80). The numerical values were obtained using the typical ex-
perimental parameters of topological-insulator films: electron
and hole mobilities pe = 20up, ur = 1 m?/(V-s) and veloci-
ties v, = 10° m/s, vp = 0.5v., and the sample parameters are
W = 10um, d = 0.5pum, and € = 5. The carrier densities were
calculated using a generic two-band model with the energy
gap A = 4 meV at room temperature T' = 300 K. The recom-
bination length in the absence of magnetic field at charge neu-
trality is £op = 0.37um. The solid line corresponds to charge
neutrality, on = 0, while the other lines correspond to nega-
tive densities 6n = 0.3,0.5,0.9,1.3,2.1 x 10*! cm~2. The in-
set in the left panel shows the magnetoresistance R for a
symmetric model with o = 20 m?/(V-s).

Averaging the y-component of the electric field [cf.

Eq. ], we find
aén SoEO + boE

Eyzfﬂaiy:HT:nEo,
with
K S0Y— + S17+
= — bo|FW/lR) — 1| ————1| .
e ol FOV/R) = 13—,

As a result, the Hall resistance of the sheet is given by
RE =E,/J =nRn. (80)

The results of Egs. and are shown in Fig.
where we plot our results using realistic parameters for

topological-insulator films.

The field dependence of the resistance comes from
the recombination length as well as from the explicit
dependence on the parameters s; and b; . However, for
classically strong fields, wi > 1, the latter dependence
cancels out since in this limit the quantities s; are pro-
portional to the magnitude of the field, s; = S; B, while
b; are proportional to the square of the field, b; = B;B2.
The proportionality coefficients

So=(o4p-+o_pi)Dy—(oppy+o_p_)D_,
S1=(04uyto_p)(DiAro ) (o uto_py ) (D_tro-),

Bo=2uyp-Dy— (15 +pu2) D,



Bi=(w} +u2) (Dy+roy)=2upp (D-+ro-),

are expressed in terms of the effective mobilities

Bt = 23 (TeiTh> .
c \'me mp

Then the resistance (79) becomes similar to all of the
above results , (44), , and , insofar the field
dependence is confined to the recombination length /p
in the argument of the function F(W/{g). Hence, also
the general solution exhibits the three parameter regimes
of a “wide”, “narrow”, and “intermediate-sized” sample.
In the most interesting latter case, the dependence of the
resistance on the magnetic field may be illustrated
by considering the formal limit B — oo. Then the result
can be expressed in the following simple form,

_ M
RD1 =€ |:0'0 + B:| y (81)
where
et (Sov= + S17+)
o) =01 — s 82a
oo Byy- + Biv+ (822)
M= 2Dgo 1 (Sov- + S174) (82b)

W (Bov- + Biy4)3/%

At the neutrality point, where ng. = ng = po/2, the
parameters of the solution simplify as o4+ = pop+ /2, and
thence Spy = poBo(1)/2. As a result, o9 =0, and we
recover the non-saturating LMR.

The results of the previous sections can be obtained
from Egs. and by taking the appropriate limits.
For example, close to charge neutrality, the quantity og
is determined by the equilibrium charge density both in
the cases of the electron-hole symmetry and fast Maxwell
relaxation (k — 00). In the limit ng — 0, we find ¢ o< n2
and hence

RS =0y (6 +Lr/W), (83)
where & = n2/pZ, similar to Egs. and .

B. Hydrodynamic approach

When the shortest time scale in the problem is due to
electron-electron interaction,
-1 -1 _—1
Tee > 7_imp7 7—ph ) (84)
electronic transport may be described using the universal
hydrodynamic approach.

The standard derivation of the hydrodynamic equa-
tions relies on the assumption of local equilibrium, which
in a two-component system could be described by the
distribution function

fa: :

exp {[Ea(P) — PUa(r) — pa(r)] /T(} + 1

(85)
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The electronic fluid is characterized by the local tempera-
ture T'(r), chemical potentials 1, (), and drift velocities
Uy (r). This distribution function nullifies the electron-
electron and hole-hole collision integrals, but not the
electron-hole collision integral. This means that the stan-
dard approach can only be used if the coupling between
the two types of charge carriers is relatively weak. This
is what happens, for example, in double-layer systems®!,
where the two types of carriers belong to physically dif-
ferent layers of the sample.

A complete analytic solution of the kinetic equation of
a generic two-component system with an arbitrary spec-
trum is not known. The problem can be solved in a
Fermi liquid??, but the resulting theory is rather cum-
bersome. At the same time, the final form of the hydro-
dynamic equations, especially within linear response?,
is universal and is typically believed to be applicable to
most experimentally accessible systems. Here we con-
sider an electron-hole symmetric [e,(p) = €p] system at
charge neutrality under a model assumption

-1 -1 —
T, LTy = Teel. (86)

In this case, the equilibration within each subsystem is
much faster than their mutual scattering, so that we can
use the distribution function as a starting point.
Furthermore, we expect that even if 7ep ~ Th, ~ Tee the
effective hydrodynamic description remains valid and de-
scribes the physics of the system at least qualitatively.
Remarkably, in graphene?®04 one can rigorously show
that the hydrodynamic approach yields a good quanti-
tative description of electronic transport despite the fact
that the ineqiuality is violated.

For simplicity, we will assume the parabolic spectrum
and energy-independent impurity scattering time. Gen-
eralization to a more general situation is straightforward.

Within linear response, the distribution function
may be expanded as

fo =19 +sr, (87)
af® 5T
(5fa = — gg ((iua + Ep T +pua) ) (88)

where duq, 0T, and u, are proportional to the electric
field E.

Similarly to the disorder-dominated regime discussed
in Sec[[TA] we assume here that thermalization between
the electronic system and the lattice is much faster than
quasiparticle recombination (even though both processes
are ultimately due to electron-phonon scattering)

7_ph << TR-
This allows us to neglect local temperature fluctuations
0T (r) =0.

In this case, electrons and hole densities are related to
fluctuations of the chemical potential, du,, by means of



Eq. , while the currents are proportional to hydrody-
namic velocities

Jo =m0Hun/2 = (e — A/2)u,. (89)

We remind the reader, that the averaging over all single-
particle states within a given band as defined in Eq.
is not dimensionless. The resulting averaged quantity
has dimensions of the original quantity divided by an
extra dimension of energy, such that the expression (e)
is dimensionless.

Usually, the hydrodynamic equations are derived by
multiplying the kinetic equation by symmetry-related
factors and integrating over all single-particle states. In
particular, integrating the kinetic equation itself (i.e.
with the factor of unity) yields the continuity equations
manifesting the particle number conservation. In two-
component systems, the continuity equations con-
tain extra factors reflecting quasiparticle recombination.
Integration of the kinetic equation multiplied by the
quasiparticle velocities leads to the macroscopic equa-
tions for the quasiparticle current flows

DViénp—eEpor/(2m)—j, X weT—Fep=—4,, (90a)

DVon.+eEpyr/(2m)+j, X weT+Fep=—4,, (90b)

which differ from Eq. only by the presence of the
friction force

Fen=xJe—3n)/2, (91)

where x >~ 7/7en. Under our assumption , the pa-
rameter y is necessarily small, even though in the hydro-
dynamic regime 7/7ee > 1 and 7/, > 1.

At charge neutrality, the currents and densities for the
two quasiparticle branches are not independent for the
electron-hole symmetry dictates the following relations:
dny, = Sne = 8p/2, j& = —jt = j/2, and j¥ = j = P/2.
Hence, the continuity equations and macroscopic
equations may be re-written in the form

eEpot/m — (14 x)j + weTP =0, (92a)
Doép/0y + P + w.rj =0, (92b)
OP/0y = —0p/ TR, (92¢)

Solving the above equations with the hard-wall boundary
conditions (24)), which imply P(£W/2) = 0, we find

_ eEolppor  wer  sinh(2y/(g)

0= = m D+ x) cosh(W/iy) P
~ m(l+x) 1+ x + w?r?

Fp == e2por 1+ x+w2r2F(W/iR)’ (93b)

where the effective recombination length is given by

(1 + X)DTR

1+ x +w?r?’ (54)

lp =

14

The dependence of the resistance on the mag-
netic field is once again controlled by the function
F(W/tg). Similarly to the above discussion of the gen-
eral disorder-dominated sample, we illustrate the behav-
ior of the resistance in the “intermediate-sized” sample
in classically strong magnetic fields by formally taking
the limit B — oo, which here means w.7 > /1 4+ x and
W > fg. In this case we again find the linear behavior

R — vV1+x
= 2epov/ DTR

The results of this section are qualitatively similar
to those previously obtained in the disorder-dominated
regime. In particular, the resistance differs from
Eq. by the presence of the parameter x describing
the mutual friction between the two carrier subsystems.
The friction slightly modifies the equation for the electric
current (92al) as compared to Eq. , while the con-
tinuity equations and the equation for the total quasi-
particle flow remain the same as Egs. and
, respectively. This gives us confidence, that the
equations provide us with a general description of
electronic transport in two-component systems close to
charge neutrality. Even though the derivation carried out
in this section relied on the simplified model assumption
, the resulting equations will remain valid for
any value of the electron-hole scattering rate 1/7cp.

(95)

III. TRANSPORT THEORY OF 3D
TWO-COMPONENT SYSTEMS

Now we turn to the study of magnetoresistance in 3D
two-component systems. Our goal is to demonstrate,
that within the “classical” range of magnetic fields, the
physics of the phenomenon remains the same as in the
2D case discussed above. However, practical calculations
are in general difficult. The two main reasons for the dif-
ficulties are (i) the need to solve the 3D Poisson equation
to account for the sample electrostatics, and (ii) a large
number of parameter regimes characterized by competing
length scales related to the sample geometry and micro-
scopic details of the charge carriers, as well as possible
spatial orientations of the applied magnetic field.

In this paper we try to avoid the technical compli-
cations as much as possible by considering a particular
“rectangular” sample geometry, see Fig. |5} We consider a
sample in the form of a “slab”, which is “infinitely” long
(i.e., much longer than any characteristic length scale
in the problem) in one direction, that we refer to as a-
direction, while the lateral cross-section of the sample
has a form of a thin rectangle, with one side being much
longer than another, d > W (but still much shorter than
the sample size in the a-direction). This particular shape
of the sample allows us to assume that any transport-
related quantity is a function of only one coordinate, y.

We assume that the external electric field is applied
along the x-direction, E = Eye,. Consequently, the elec-
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FIG. 5: 3D sample with the shape of a slab in an oblique
magnetic field. The magnetic field vector lies in the zy plane.

tric current is also flowing in the z-direction (assuming
the hard-wall boundary conditions in y and z directions)

J=jyes. (96)
The applied magnetic field lies in the yz-plane,
B =B (0, sinf, cosf). (97)

In what follows, we will first consider a particularly sim-
ple case, where the magnetic field is directed along the
z-axis (§ = 0) and then discuss the problem with arbi-
trary 6, focusing on the neutrality point.

A. DMagnetic field orthogonal to the thin, long face
of the cuboid sample

Let us first consider the technically simpler situation
where the magnetic field is applied along the z direction.
In this case, the classical Hall voltage is generated across
the y direction. The relation between the electric field
and quasiparticle flows is given by the standard Ohm’s
law [cf. Eq. in the 2D problem]

ejy =0, Ey + 04" Ey — eD}” dflzh’ (98a)
¢! = 0 Ey — 07 B, — e D™ dflze, (98)
ejn = 03" Ey — 0, Ey + eD}Y dflzh’ (98¢)
eji = —0*Ey — oVE, — eDZy%. (98d)

In this section, we do not derive the elements of the
conductivity tensor o* and the diffusion constants D"
from the microscopic theory, but rather treat them as
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macroscopic (phenomenological) parameters of the sys-
tem. Furthermore, we will assume the usual depen-
dence of o¥! and DE! on the external magnetic field, see
Eqgs. , and .

The quasiparticle flows, jg(h), obey the continuity
equations

djy,
0 — —(Fh577/h + Fe(sne)a (993,)
dy
N
di,y = —(Fh(snh + F65n€)7 (99b)

where I';(j,) are the corresponding recombination rates.

Finally, the 3D Poisson equation yields the relation-
ship between the electric field in the Hall direction and
quasiparticle densities,

By _ dme(ony, — on.).

i (100)

Combining the above equations 7 and ({100)),

we derive a closed system of second-order differential
equations for the quasiparticle density fluctuations [cf.

Egs. and (64)]

d2 (5nh 9 5nh
Ty2 ((sne =K (S’I’Le 5 (1013)
where the 2 x 2 matrix K is given by
Ty +4mof® T'p —4mof®
_ Dy Dj*
K? = (101b)
'y, —4noi® T+ 4mol®
Dz Dz

The above differential equations are subject to the
hard-wall boundary conditions [cf. Eq. (24)]
Je(y =+W/2) =0. (102a)

The boundary conditions (102al) have to be supplemented

by the vanishing boundary conditions? for the transversal

electric field E, (see also Appendix[)
E,(y =+W/2) =0. (102b)

The differential equations - (101)) with the bound-
ary conditions (102)) allow for the formal solution

~ -1
onp _ Eo . . = | KW oY | Di*
<(5ne> = sinh Ky lK cosh 2] <J§y/D;”” ,

(103a)



. . KW
E, =47E, (1 —1) K~ |cosh Ky [cosh 2] -1

~ —1
H E I T =~ -~ KW ~ my/ T
In) _ Lo h Lle 1 B 1 (0, / Dy
<j§> =- (Fh F@) K cosh Ky [cosh 5 ] 1| K (a(fy/Dg”) ,
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-1

~ U:vy Dz
R (Ugy;l)gz) , (103b)

(103c)

while the longitudinal currents j% can be found from Egs. (98c) and (98d|). The averaged electric current is

o Ty _xy\2
J:EO |:O_}a§x_~_0_gx_~_(o'h Oe¢ ) :|

rxr Trx
o +og

(103d)

zy zy zy ~ (K Uzy/Dm
+Eo (DY —4n(0yY —o2¥) DY +dn(0p? —0l¥)) F | —— L

where

~ ~ ~ -1
~ [ K 2 = K K
F() - a5 a5

2 W 2

In an infinitely wide sample (W — o0), the function F
vanishes, leaving the classical result, see the first line of
Eq. . This comprises the Drude conductivity in the
absence of the magnetic field and the classical, quadratic
magnetoconductivity.

The solutions ([103)) are somewhat tedious. Similarly
to Eqgs. and |) the matrix K defines two charac-
teristic length scales, given by its eigenvalues, (). To
make the discussion physically transparent, we focus on
the two limiting cases.

1. Fast Mazwell relaxation

In the limit of fast Maxwell relaxation, determined by
the inequality (the so-called “good metal” condition)

drol” > Iy, (104a)

one of the eigenvalues determines the effective recombi-
nation length [cf. Eq. (65))]

4 (Th, +Te)(oF™ + o27)
2 € h e
LT B T oD+ gD (104b)

while the other is related to the Thomas-Fermi screening
length

K3 = 4s* = 47 (g’;x + gem) = 4rme? <(9?ZL + (;Z) .
h e

(104c)
Here On, /0p = 0%% /(e D%®) is the thermodynamic den-
sity of states. In a typical situation, where the conduc-
tivities and diffusion coefficients for electrons and holes

0¥ /D"

are of the same order of magnitude, the condition for the
fast Maxwell relaxation (104a)) can be re-written in one
of the two equivalent forms
K1 K Ka, %gR > 1. (104d)
In classically strong magnetic fields, w,7o > 1, the re-
combination length is inverse proportional to the field,
lp ~1/B, (104e)
while the Thomas-Fermi screening length is approxi-
mately field-independent.
In the limit (104d]), the results (103)) simplify. Combin-
ing the densities (103a)) into the charge and quasiparticle
densities, we find near one of the boundaries (y ~ W/2)

EO me oy
on="2 |g>*W=2y) (Zh__ “e 1
edn=— [e Dz D (105a)
e (W=2y)/tr aewyaiw—i—a,fyagw 1 1
nlp orT4opt Dy Dze |’

—(W—-2y LT ~TT __ [)TL ~TX zy xy
:Eo[e ( ) D*2g3® — D3t g (ah o )

5 _
P 2 Dzrop®+ Do \ Di® D@

(&
xx LY T ~TY
)/t Oe On 104 0¢

(W—2y
+{lre Dot 4 Do

}. (105b)

The results (105) demonstrate the existence of two
boundary layers forming in the two-component system:
(i) the narrow (in the present limit of fast Maxwell re-
laxation) screening layer, see also Appendix, and (ii) the
wide recombination layer. The latter is similar to the
boundary layer found above in the 2D systems.

The spatial profile of the lateral electric field near the



boundary is similar to Eq. (105al)

o%—gt¥ 1 oy g
B —=F, |2 "h o © ;=(W2y)[“h _ “e 106
Y 0 ng-l—UﬁI + %2 e D}fz Dégx ( )

TY ~TIT TY xx

A W2y) /5 Te T T0) e ( o1 )}
2 T E

s o +oi® Dy* Dz

The two quantities satisfy the Poisson equation (100]).
Finally, the second line in the averaged current (103d))

yields the linear contribution to the magnetoconductiv-
ity, which we attribute to the surface regions of the sam-
ple [as opposed to the classical bulk contribution given

by the first line in Eq. (103d))]

_ o tr (D +DgY) (08 0" +op oY)
0s = 2+ TT yTT TT FTT .
w Di*or®+ Di*of

(107)

Here we have assumed tanh x; (o)W =1, corresponding to
the intermediate sample widths as discussed in the 2D
case, and used Eq. to neglect the contribution of
the second eigenvalue k5. The latter is quadratic in the
magnetic field, but vanishes exactly in any compensated
system, similarly to the classical magnetoresistance [as
well as the lateral electric field and the fluctuation

of the charge density (105al)].

As a result, a 3D compensated system in orthogonal
magnetic field exhibits linear magnetoresistance in the
limit of fast Maxwell relaxation similarly to the 2D case.

2. Slow Mazwell relaxzation

In very strong magnetic fields the condition (104a]) for

fast Maxwell relaxation is violated and the results ({105)),
(106)), and become invalid. Assuming that the mo-
tion of charge carriers remains classical, one may consider
the opposite limit of slow Maxwell relaxation where

drol® < T,. (108a)

In this case, the eigenvalues of the matrix K (which again
are labeled such that ko > k1) are given by

Iy +Te)(of* 4+ o%)
FhDgz + FCDiaj ’

KT = 47r( (108b)

k3 =T}/Di" +T./D*". (108c)
There are still two length scales characterizing the sys-
tem. Assuming that the model parameters describing
electrons and holes are of the same order of magnitude,
we may associate the smaller eigenvalue x; with the
inverse Thomas-Fermi screening length and the larger
eigenvalue ko with the inverse recombination length:
wlp < 1.

R1 ~ 7, Rg ~ 1/€R7
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Repeating the calculation leading to Eq. one would
now conclude that the dominant contribution to the mag-
netoconductivity is given by the much wider screening
surface layer. However, this contribution

2 TD2—T D% 44m(T)+T,)(0F —o2¥)
kAW I, D% 4T, Die

Tge~

X(Uzy_agry),

vanishes for a compensated system. In this case, the for-
mally weaker contribution of the recombination surface
layer determines the field dependence of the conductivity

2 (0WDE*o}!+T Dy*o)(Dy! D+ DV Dy?)

koW (TpD2e 4T Di*) D2 DE* ’
(109)

5§~

which is linear in the magnetic field.

We conclude that compensated 3D systems with the
geometry of Fig. [§exhibit linear magnetoresistance when
subjected to the perpendicular magnetic field.

B. Oblique magnetic field

Consider now the general situation where the magnetic
field is not collinear with any sample edges, see Fig. [5
In this section we restrict ourselves to the electron-hole
symmetric system at charge neutrality. In this case, the
macroscopic equation describing transport properties of
the system can be simplified similarly to the 2D case.

In the geometry of Fig. bl and under the assumption
d > W, all physical quantities depend only on the co-
ordinate y. Hence the continuity equation for the total
quasiparticle flow, P = (0, P,(y), P;(y)), takes the form

cf. Eq. @59)
P, = —0p/Tr. (110a)

The equations expressing the relation between the quasi-

particle flows and the electric field [cf. Egs. , ,
and } can be expressed in terms of the total quasi-
particle flow and the electric current :

op’ P, o ws |
o (1)< () e () =0

J—eEopot/m+ 7(Pwy — Pyw;) =0,

(110b)

(110c)

where wy, .y = eBy(,)/mc.
Solving the equations ([110|) with the hard wall bound-
ary conditions, Py(y = £W/2) = 0, we find

Jow,T
Pv(y) = 1+T2w2 |:

cosh \y B
cosh(AW/2) ’

and

i) L [1 +

- w272 cosh Ay
14 7202 '

1+ w272 cosh(AW/2)



Here jo = eEypoT/m is the electric current in the absence
of the magnetic field, w; = w +w?, and A is the inverse
field-dependent “recombmatlon length77

1 72w2
A\ = 1 .
Dtgr { * 1+ 72 wg}

The resulting averaged resistance of the sample is cal-
culated similarly to the case of the orthogonal geometry
and has the form

R m 1+ 72w? (111)
0o = )
epoT 1 + 11 “;ZQF(AW/Q)

where, as defined above, F(z) = tanhz/z.

In narrow samples, AW < 1, recombination is ineffec-
tive since the time it takes the carriers to move from
one slab facet to another is smaller than the typical re-
combination (as well as diffusion) time. Nevertheless, in
contrast to the above case of the orthogonal geometry
the magnetoresistance is nonzero,

Ro = po(1+ 72w§),

and is determined by the y-component of the magnetic

field. The physical reason fro this result is the effect of

the magnetic field on carrier motion in the z-direction.
In wide samples,

AW > 202 /(1 + 7%w)),

we recover the classical bulk magnetoresistance, which is
quadratic in the applied magnetic field:

Ro = ool + Tzwf}.

This result can also be obtained within the Drude the-
ory of two-component systems if the electric current is
allowed to flow only in the z-direction.
Finally, one may consider the intermediate situation:
1< AW < 72wl /(14 72wy). (112)
Such an interval may only exist when the direction of
the magnetic field is almost orthogonal to the sample
face: w, > w, or, equivalently, # < 1. Then the sample
resistance takes the form:

oW [1+ 72w 2[1 4 r2u??
DTR '

R = (113)

2,2
T Wz

Using w,7 > 1 and w, < w,, the above expression can
be simplified to

Ro = po(W/lo)Tw, /1 + T2w2.

The resistance ((114]) exhibits an approximately linear
field dependence if 7w, < 1, such that the square root
may be approximate by unity. In a general situation the
magnetoresistance is quadratic, see Fig. [0}

(114)
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FIG. 6: (Color online) 3D two-component system at charge

neutrality in an oblique magnetic field. The recombination
length in zero magnetic field is taken to be equal to the sheet
width: W/€y = 1. The solid red curves represent the calcu-
lated values of the magnetoresistance. The field is directed
at the angle 6 = 0.5°. The two panels show the same result
in the two different ranges of the parameter w.7: the panel
(a) shows the onset of the intermediate, nearly linear behav-
ior, while the panel (b) shows the recovery of the quadratic
magnetoresistance in strong fields. The dashed blue lines are
guides to the eye.

IV. CONCLUSIONS

In this paper, we have studied the recombination mech-
anism of magnetoresistance in finite-size, two-component
systems near charge neutrality®?. Precisely at the neu-
trality point the classical Hall effect is compensated. In
particular, there is no Hall voltage. The electric current
flowing through the system is accompanied by a lateral,
neutral quasiparticle flow. In any finite-size system (i.e.
in any sample studied in laboratory experiments) this
flow terminates at the boundary leading to quasiparticle
accumulation in the well-defined edge region, see Fig.
The width of that region is determined by inelastic scat-
tering processes and is of the order of the recombination
length. The latter depends on the external magnetic field
and hence the edge region contributes to the overall mag-
netoresistance of the sample. The relative strength of
this contribution (as compared to the bulk of the sys-
tem) depends on the sample geometry, strength of the
recombination processes, and magnetic field. In strong
enough magnetic fields, there exist a wide region of pa-
rameters, where the edge contribution dominates over
the bulk leading to the linear dependence of the sample
resistance on the external field.

Our explicit calculations show that the recombination
mechanism of LMR in compensated two-component sys-
tems is generic and independent of the details of the
quasiparticle excitation spectrum. Away from the neu-
trality point, the linear field dependence eventually sat-
urates at the strongest (but still classical) fields. Such
strong dependence of the magnetoresistance on the car-
rier density distinguishes the recombination mechanism
from the previously proposed extreme quantum®28% and
classical ™™™ theories.

Magnetoresistance observed in experiments on com-
pensated two-component systems3#30 does exhibit the
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FIG. 7: Spatial profiles of the lateral electric field (left) and
charge density (right) in the classical Hall effect in a sample
with the slab geometry of Fig.

essential qualitative features of the recombination mech-
anism. At the same time, LMR is observed in a wide va-
riety of materials, many of which do not conform to the
assumptions of the present paper. It is therefore very in-
teresting to extend the theory of recombination-assisted
magnetoresistance in two-component materials to the
cases of strongly disordered systems (including the long-
wavelength, smooth disorder), systems where recombina-
tion processes are mostly effective near the boundaries,
and situations where the electron-phonon coupling is not
strong enough to provide a mechanism for fast energy
relaxation and thermalization.
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Appendix: Screening boundary layer in the classical
Hall effect

Here we discuss the boundary layer in the classical Hall
effect in disordered metals with finite conductivity. In
contrast to the textbook case of an ideal conductor, here
the charges are not confined to the boundary and the
electric field is nonzero inside the metal.

The electric current density, J, inside a metal is related
to the electric field and charge density by means of Ohm’s

law [cf. Eq. (38)],
J =6E —eD(B)Vn, (A1)

where n denotes the volume density of charge carriers,
such that en is the charge density. In the presence of the
magnetic field, the diffusion coefficient is represented by

the matrix
~ D 1 wer
D<B>—1+W(WCT 1 )
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see Eq. . In a steady state, we may write the conti-
nuity equation as [cf. Eq. (25d])]

V.J=0. (A.2)

Finally, the electric field and charge density are related
by Maxwell’s equation,

V - E = 4rmen. (A.3)
Taking the gradient of Eq. (A.1) and using Eqgs. (A.2))
and (A.3), one finds

V. (6E)=eV- (i)vn) . (A.4)

Solution to the coupled differential equations and
depends on the system geometry.

Assuming the simplest geometry of Fig. 5| we may ex-
clude the electric field from Egs. and . This

way we find the equation™® for the carrier density n(y)

f Egs. (1), @), and @0D)]
n' = 4s°n,

(A.5)

where s is the inverse Thomas-Fermi screening length,
2 = /mo**(B = 0)/D (assuming c¥¥ = ¢*%).

Solving Eq. (A.5) with the hard wall boundary
conditions? [cf. Egs. and ([102D))]
JY(£W/2) =0, E,(£W/2) =0, (A.6)
we find the carrier density profile
o¥"FEy sinh 2scy
n(y) = ; (A7)

"~ 2esDVYY cosh »>W'

The lateral component of the electric field is given by

To¥® By <cosh 23y 1) (A8)

EByy) = 22DvY \ cosh »W
These results are illustrated in Fig. Clearly, the off-
diagonal component of the conductivity matrix, %" « B,
is nonzero only in the presence of the external magnetic
field. Both the charge density and electric field are non-
uniform close to the sample boundaries. The width of
the corresponding boundary layer is determined by the
screening length. In an ideal conductor, the screening
length is equal to zero. In this limit, the charge density
develops a singularity at the boundary correspond-
ing to the surface charge density [which in turn leads to
the jump of the lateral electric field at the boundary? in
contrast with the boundary condition ]

Substituting the results and into Eq. ,
we recover the usual field-independent resistance, typical
for single-component systemsl’3.
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