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We report a nonsaturating linear magnetoresistance in charge-compensated bilayer graphene in
a temperature range from 1.5 to 150 K. The observed linear magnetoresistance disappears away
from charge neutrality ruling out the traditional explanation of the effect in terms of the classical
random resistor network model. We show that experimental results qualitatively agree with a
phenomenological two-fluid model taking into account electron-hole recombination and finite-size
sample geometry.

Classical magnetoresistance is a perfect tool for exper-
imental studies of multicomponent electronic systems1

where conventional theory of electronic transport2 pre-
dicts a quadratic dependence of the resistance on the
weak applied magnetic field followed by a saturation
in classically strong fields. While most materials do
exhibit the quadratic behavior,3 there is a fast grow-
ing number of experiments reporting observations of lin-
ear magnetoresistance (LMR) in a wide variety of novel
materials including multilayer graphenes4–6, topologi-
cal insulators7–14, Dirac15–19 and Weyl20,21 semimetals,
transition-metal dichalcogenides22 as well as in narrow-
gap semiconductors23 and three-dimensional (3D) silver
chalcogenides24,25.

Semiclassical linear magnetoresistance has been pre-
dicted for 3D metallic slabs with complex Fermi sur-
faces and smooth boundaries26,27, for strongly inhomo-
geneous, granular materials28, and for compensated two-
component systems with quasiparticle recombination29.
Purely quantum effects (and screening of charged impu-
rities) lead to LMR in zero-gap band systems with linear
dispersion in the case where all carriers belong to the first
Landau level30–32. In weak fields, quantum interference
in two-dimensional electron systems yields an interaction
correction33 to resistivity that is linear in the Zeeman
magnetic field.

The extreme quantum limit of Refs. 30,31 has been
realized in graphene6 and in Bi2Se3 nanosheets12. The
quantum theory was also reported7 to be applicable to
the novel topological material LuPdBi. The classical the-
ory of Ref. 28 was recently used to interpret the behav-
ior of hydrogen-intercalated epitaxial bilayer graphene4.
It was argued that large samples of epitaxial bilayer
graphene contain a “built-in mosaic tiling” due to the
dense dislocation networks34, making it an ideal mate-
rial to realize the random network model of Ref. 28.
At the same time, neither theory can explain LMR in
homogeneous topological insulators35 and neutral two-
component systems8,11,23.

In this paper we report results of a systematic experi-
mental analysis of magnetotransport in exfoliated bilayer
graphene. Precisely at charge neutrality, we have ob-
served nonsaturating LMR in a wide range of magnetic
fields in Hall bars of widths 0.5, 0.95, and 2.0µm in a
temperature range from 1.5 to 150 K. Deviations from
charge neutrality lead to eventual saturation of the mag-
netoresistance. Our key experimental findings are not ac-
counted for within the random resistor network model28.
Indeed, this model is insensitive to the relative concen-
tration of different types of charge carriers and thus can-
not explain the observed saturation of the magnetoresis-
tance away from charge neutrality. This model also does
not explain the transition between the quadratic depen-
dence at very weak magnetic fields and LMR observed
at higher fields8. The extreme quantum limit is unlikely
to be reached in our system at 150 K for both electrons
and holes8,35. Moreover, the excitation spectrum in bi-
layer graphene is quadratic, which rules out the quantum
theory of Refs. 30,31.

We are able to explain our results in terms of a semi-
classical description of finite-size, charge-compensated
two-component systems in moderately strong, classical
magnetic fields8,29. The key element of the physical
picture of Ref. 29 is the electron-hole recombination36.
When external magnetic field is applied, recombination
processes allow for a neutral quasiparticle flow in the
lateral direction relative to the electric current37. Al-
though such neutral current cannot be directly detected
in our measurements, its presence leads to redistribu-
tion of charge carriers over the sample area influencing
the nonuniform profile of the electric current in the sam-
ple. As a result, the sample is essentially split into the
bulk and edge regions, which contribute to the total sheet
resistance of the sample as parallel resistors. The bulk
and edge resistances exhibit qualitatively different depen-
dence on the magnetic field yielding LMR. Away from
charge neutrality a nonzero Hall voltage is formed lead-
ing to the observed saturation of the magnetoresistance.
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FIG. 1: (Color online) (a) The gate voltage dependence of the
resistivity and (c) mobilities measured at B=0 T and T=25 K
for the three sections of the device. (b) The AFM image of
the sample (grey) with contacts (yellow). The sample con-
tains three Hall bar sections 2, 0.95, and 0.5µm wide (left
to right). (d) Hall and (e) the longitudinal resistances in the
wide section of the sample at T=1.5 K.

I. EXPERIMENTAL DETAILS AND SAMPLE
CHARACTERIZATION

We have prepared the sample by placing the exfoli-
ated bilayer graphene sheet on the substrate consisting
of a highly doped Si wafer covered by a 330nm-thick
SiO2 film. Subsequently, the sample was patterned into
a triple Hall bar device, see Fig. 1(b) for an atomic force
microscope (AFM) image. The sample consists of three
sections 2, 0.95, and 0.5µm wide. The length of each
Hall bar is 1.8µm. The sample was purified using an
AFM tip (instead of annealing) which allowed us to de-
crease the concentration of the charged impurities on top
of graphene considerably. The carrier concentration n in
the sample can be varied up to 5 × 1012cm−2 by applying
a gate voltage Vg to the conducting substrate, which acts
as a back gate.

Magnetotransport was studied by four-probe method
with simultaneous measurements of longitudinal Rxx and
transverse Rxy resistances in perpendicular magnetic
fields from 0 to 7 T and in a temperature range from
1.5 to 150 K passing an ac current with an amplitude of
10µA through the sample.

To characterize the sample and to define the charge
neutrality point (CNP), the field effect (FE) was mea-
sured for each section of the device. Figure 1(a) shows
the FE dependences measured at B = 0 T and T = 25 K
for the three sections of the device. All three sections
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FIG. 2: (Color online) Color plot of Rxx in the wide sample
at T = 1.5K as a function of magnetic field and gate volt-
age (a). The fan-like peak structure clearly demonstrates the
Landau levels. The central peak shows the shift of the charge
neutrality point with magnetic field (b).

exhibit a graphene typical FE with a sharp maximum
corresponding to the CNP. The precise value of V ∗

g cor-
responding to CNP depends on the Hall bar width and
is shifted from 0.8 V in the widest section of the sample
toward 3.6 V in the medium and 10.4 V in the narrow-
est Hall bar. The maximum resistivity in the widest and
middle sections is 5.6 kΩ while exceeding 6.2 kΩ for the
narrowest section.

The electron and hole mobilities were estimated from
the conductivity at 25 K using the one-band model
(see Fig. 1(c)). The electron and hole densities neces-
sary for this estimate were obtained from the measured
Shubnikov-de Haas oscillations at low temperatures. The
resulting mobilities increase with the width of the sam-
ple; we have obtained the following values for the mobili-
ties of the narrowest, medium, and widest sections of the
sample far away from charge neutrality: 2200, 3000, and
4000 cm2/Vs for holes and 2600, 3000, and 3800 cm2/Vs
for electrons.

The dependence of the mobility on the width of the
sample is attributed to scattering of carriers on the sam-
ple edges and is described in Ref.38. Although the above
mobilities are not very high, the samples are of a good
quality having a clear manifestation of CNP and ex-
hibiting the quantum Hall effect (see Fig. 1(d)). Mea-
surements of the Hall resistance in the wide section of
the sample at 1.5 K in relatively high magnetic field
9.5 T (Fig. 1(d)) demonstrate the features inherent to
bilayer graphene following from filling factors in the Hall
plateaus equal to ν = ±4,±8,±12. In strong magnetic
field the neutrality point is shifted towards higher gate
voltages, see Figs. 1(e) and 2. For the wide section of the
sample at 12T, CNP corresponds to Vg = 7 V. This effect
has also been observed in other sections of the sample.
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FIG. 3: (Color online) Magnetoresistance of the thin section
of the sample at (a) 25, (b) 50, (c) 100, and (d) 150 K for
several gate voltages indicated on the plot.

II. LINEAR MAGNETORESISTANCE

We have measured the longitudinal resistance for all
three sections of the sample and the Hall resistance be-
tween widest and medium sections in the interval of gate
voltages from −20 to 32.2 V with the step δVg = 2.4 V
that includes CNP for all three sections. The data for
the wide section of the sample at T = 1.5K are shown in
Fig. 2. To reduce the conductance fluctuations, further
measurements were performed at higher temperatures:
25, 50, 100, and 150 K. At such high temperatures quan-
tum effects, e.g. Landau quantization, are not detectable.

The magnetoresistance data for the thin section of the
sample at the four temperatures are shown in Fig. 3.
The data show linear behavior close to the neutrality
point (the green curve corresponding to the gate voltage
Vg = 10.6 V). Away from neutrality, the data show linear
behavior for an intermediate range of magnetic fields fol-
lowed by a saturation at stronger fields. Similar results
were obtained for the other two sections of the sample.
At the same time, the Hall resistance grows in amplitude
in strong fields, see Fig. 4.

Although these observations are in good qualitative
agreement with the theoretical predictions of Ref. 29,
there are several additional factors that may (and prob-
ably do) conspire to yield the observed behavior. The
charge neutrality point in our samples shifts towards
higher gate voltages in high magnetic field. As a re-
sult, the same value of Vg may correspond to different
carrier densities in low and high fields. Shifting away
from charge neutrality can cause both the saturation
of Rxx(B), as exhibited by most curves in Fig. 3, and
the nonzero Hall resistivity, see Fig. 4(b). The latter
can also be due to electron-hole asymmetry in the sam-
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FIG. 4: (Color online) (a) Magnetoresistance of the wide sec-
tion of the sample at T = 150 K and Vg = 1 V, closest to the
charge neutrality point. The solid (green) line represents the
experimental data; the dashed (blue) line represents the the-
oretical fit using the semiclassical description adapted from
Ref. 29, see Eqs. (1), with the parameters given in Table I. (b)
Hall resistance of the wide section of the sample at T = 150 K
and Vg = 1 V. The solid (green) line represents the experi-
mental data; the dashed (blue) line represents a fit by the
theory (1) where the carrier density was obtained from the
experimental values of Rxy/Rxx(B); the brown curve shows
the theoretical fit where the carrier density was recalculated
from the observed dependence of the maximum resistance (i.e.
CNP) on the magnetic field, see Figs. 1 and 2.

TABLE I: Microscopic parameters obtained from analyzing
the experimental data with the theory (1) for the three sec-
tions of the sample, see Figs. 4 and 5.

narrow medium wide

W 0.52µm 0.95µm 2µm

µ 0.25m2/Vs 0.35m2/Vs 0.42m2/Vs

`0 0.43µm 0.79µm 1.2µm

ple, where the mobilities of electrons and holes are suffi-
ciently different39,40. Both effects may appear if the sam-
ple contained macroscopic inhomogeneities or resonant
impurities, that strongly modify the density of states
near charge neutrality. Finally, in contrast to the the-
ory worked out in Ref. 29, the length of our samples is
comparable to their width and the samples cannot be
considered infinitely long.

Some of the above complications present a significant
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FIG. 5: (Color online) (a) Magnetoresistance of the narrow
(top curves) and medium (bottom curves) sections of the sam-
ple at 150 K and the gate voltage closest to the charge neu-
trality point (Vg = 8.2 V and Vg = 3.4 V, respectively). The
solid (green) lines represent the experimental data; the dashed
(blue) lines represent the theoretical fit using the semiclassical
description adapted from Ref. 29 to our sample geometry, see
Table I for the complete set of parameters. (b) Magnetoresis-
tance of the medium section of the sample at 150 K for several
values of the gate voltage showing the onset of saturation as
the system is tuned away from charge neutrality.

challenge for an analytic theory. Nevertheless, we may at-
tempt to analyze the measured data with the help of the
existing theory of Ref. 29. The simplest version of this
theory (applicable to a particle-hole symmetric system
with parabolic dispersion and energy-independent impu-
rity scattering rate) yields the following expressions for
the longitudinal and Hall resistivities of a two-component
system near charge neutrality:

Rxx = R0
1 + µ2B2

1 + µ2B2
[
tanh(W/`R)

W/`R

(
1 − n2

ρ2

)
+ n2

ρ2

] , (1a)

Rxy =
R0n

ρ

(1 + µ2B2)µB

1 + µ2B2
[
tanh(W/`R)

W/`R

(
1− n2

ρ2

)
+ n2

ρ2

] . (1b)

Here n and ρ are the charge and quasiparticle densities, µ
is the mobility (which is assumed to be the same for both
electrons and holes), W is the sample width, R0 is the
zero-field resistivity, and `R is the field-dependent recom-
bination length. Assuming that the dominant recombina-

tion process is the impurity-assisted electron-phonon cou-
pling that can occur anywhere in the sample with equal
probability, the recombination length found in Ref. 29 is
given by

`R =
`0√

1 + µ2B2
, `0 = 2

√
DτR,

where D is the diffusion coefficient and τR is the recom-
bination time in zero magnetic field. As a result, in clas-
sically strong fields (µB � 1) and for W � `R the mag-
netoresistance (1a) close to the charge neutrality point is
linear, Rxx ≈ R0WµB/`0.

Using the measured parameters of our sample in the
above expressions, we find that the theory predicts a
magnetoresistance that is stronger than what is actu-
ally observed in our experiment. However, our results
can be quantitatively described by Eqs. (1a) and (1b) if
we introduce an empiric expression for the recombination
length

`R =
`0√

1 + µ̃2B2
, (1c)

with µ̃ < µ. This modification turns out41 to effectively
account for the following issues: (i) electron-hole asym-
metry, (ii) energy dependence of the electron-hole recom-
bination length and mobility, and (iii) spatial inhomo-
geneity of the sample. In Figs. 4 and 5 we used µ̃ ≈ 0.5µ.

Electron-hole asymmetry manifests itself in the
nonzero Hall resistivity at charge neutrality. Moreover,
for any value of the carrier density the Hall resistivity is a
nonmonotonous function of the magnetic field. As men-
tioned above, this effect also leads to the apparent drift
of the charge neutrality point (in terms of the applied
gate voltage) with the external magnetic field.

At temperatures lower than the Debye energy the dom-
inant recombination process involves electrons and holes
near the bottom of the band. Indeed, far away from
the neutrality point, kinematic constraints preclude the
“direct” process where an electron from the upper band
is scattered into an empty state in the lower band by
means of single acoustic phonon emission. Instead, such
“hot” electrons require an additional scatterer (e.g. an
impurity42 or a second phonon) for recombination to take
place. In contrast, electrons close to the neutrality point
in bilayer graphene are slow enough so that the direct,
single-phonon recombination is allowed. Hence, within
the kinetic equation approach41 the effective length scale
describing the recombination processes depends on en-
ergy. Similarly, the impurity scattering time or carrier
mobility is strictly speaking energy-dependent as well.
Now, the macroscopic description of Ref. 29 involves
quantities that are averaged over the quasiparticle spec-
trum. Taking into account the existence of the several
distinct recombination processes, we arrive at the con-
clusion that after thermal averaging, the typical recom-
bination length `R may be described by slightly different
effective parameters as compared to, e.g., Drude conduc-
tivity.
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The width dependence of the carrier mobility indicates
that the edge region of the sample is characterized by
stronger scattering. As a result, all parameters describ-
ing electronic transport acquire an effective coordinate
dependence across the sample. Since in strong mag-
netic fields the current is mostly flowing near the sam-
ple edges29, we expect that the effective recombination
length `R is determined by the lower mobility typical of
the near-edge region.

Theoretical results shown in Figs. 4 and 5 were ob-
tained by using expressions (1) with the parameters listed
in Table I. The theory (1) assumes that electrons and
holes have the same mobility. While plotting Figs. 4 and
5 we have treated the mobility as a free parameter in-
stead of using the values quoted in Sec. I (see Fig. 1(a))
since experimentally one can reliably determine mobil-
ity only far away from the neutrality point, where the
classical Hall resistivity exhibits the standard behavior
Rxy = B/(ne). Close to charge neutrality, the mobil-
ity may deviate from such experimental values due to
electron-hole interaction processes similar to the drag ef-
fect. Far away from charge neutrality this interaction is
ineffective since with exponential accuracy only one band
is partially filled and contributes to low-energy physics.
In contrast, close to the neutrality point, both electrons
and holes participate in transport and hence one has to
take into account their mutual scattering. The resulting
change of the mobility does not exceed 50% in accordance
to theoretical expectations.

The values of the recombination length `0 shown in
Table I show significant dependence on the sample width
(roughly, `0 ∼W ). We interpret this observation as an
indication of a much larger recombination length that
would characterize a very large (in theory – infinite) sam-
ple (if it were possible to fabricate without strong struc-
tural disorder4,34). Assuming that the electron-hole re-
combination is dominated by electron-phonon interaction
(either impurity- or edge-assisted), we argue that in nar-
row samples the phonon spectrum is modified (compared
to an idealized infinite system), leading to a much shorter
recombination length of the order of the sample width.

The Hall resistance (1b) is expected to vanish at the
neutrality point. However, as we have already mentioned,
in our sample the neutrality point shifts toward higher
gate voltages when a strong magnetic field is applied. In
order to account for this effect, we have used the ratio
Rxy/Rxx = µBn/ρ to extract the field-dependent quan-
tity µBn/ρ from the experimental data. Using thus ob-
tained dependence in Eq. (1b), we find good quantitative
agreement between the calculated and measured values,
see Fig. 4. At the same time, the longitudinal resistivity
(1a) is much less sensitive to small deviations of density.
Using the extracted values of µBn/ρ in Eq. (1a) does not
lead to visible changes in the calculated curve shown in
Fig. 4.

The shift of CNP with magnetic field was observed di-
rectly, see Figs. 1 and 2. Assuming that the maximum
of the longitudinal resistivity corresponds to CNP, we

can extract the field dependence of the chemical poten-
tial (and hence, carrier densities) from the data. Using
thus obtained dependence, we recalculated the Hall re-
sistance, see the brown curve in Fig. 4(b). The result
shows reasonable agreement with the data, with the vis-
ible deviations may stem from the mismatch of tempera-
tures in the two data sets in Figs. 2 and 4 (T = 1.5K and
T = 150K, respectively).

Finally, away from the neutrality point the data shows
a tendency towards saturation in high magnetic fields,
see Fig. 5(b). The theoretical fits where performed with
a set of parameters depending on the gate voltage and
taking into account the shift of CNP with magnetic field.
In particular, the mobility appeared to show a slight in-
crease from 0.35m2/Vs (close to CNP, see Table I) to
0.44m2/Vs at Vg = −3.8V. At the same time, in that
range of gate voltages the recombination length `0 ap-
pears to be almost unchanged from the value shown in
Table I).

III. CONCLUSIONS

In this paper we reported the experimental observation
of linear magnetoresistance in narrow bilayer graphene
samples. The observed behavior is in good qualitative
agreement with the two-fluid model of Ref. 29. The ob-
served effect is specific to the charge neutrality point.
Away from neutrality the magnetoresistance shows an
approximate linear behavior only in a limited interme-
diate range of magnetic fields followed by a tendency to
saturation. Our observations are incompatible with the
quantum theory of Refs. 30,31 and with the random re-
sistor network model of Ref. 28, but are accounted for in
the semiclassical theory of two-component compensated
systems of Ref. 29.

Using an empirical modification of the simplest theo-
retical model (1), we were able to describe our data in
a quantitative fashion. A microscopic theory accounting
for the physics that is beyond the simplest version of the
two-fluid model of Ref. 29 should be based on the quan-
tum kinetic equation41,43. Further aspects of the phe-
nomenon of linear magnetoresistance are the subject of
future experimental work, especially in numerous novel
materials.
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