862 research outputs found

    Time-dependent local Green's operator and its applications to manganites

    Full text link
    An algorithm is presented to calculate the electronic local time-dependent Green's operator for manganites-related hamiltonians. This algorithm is proved to scale with the number of states NN in the Hilbert-space to the 1.55 power, is able of parallel implementation, and outperforms computationally the Exact Diagonalization (ED) method for clusters larger than 64 sites (using parallelization). This method together with the Monte Carlo (MC) technique is used to derive new results for the manganites phase diagram for the spatial dimension D=3 and half-filling on a 12x12x12 cluster (3456 orbitals). We obtain as a function of an insulating parameter, the sequence of ground states given by: ferromagnetic (FM), antiferromagnetic AF-type A, AF-type CE, dimer and AF-type G, which are in remarkable agreement with experimental results.Comment: 9 pages, 11 figure

    Magnetic long-range order induced by quantum relaxation in single-molecule magnets

    Get PDF
    Can magnetic interactions between single-molecule magnets (SMMs) in a crystal establish long-range magnetic order at low temperatures deep in the quantum regime, where the only electron spin-fluctuations are due to incoherent magnetic quantum tunneling (MQT)? Put inversely: can MQT provide the temperature dependent fluctuations needed to destroy the ordered state above some finite Tc, although it should basically itself be a T-independent process? Our experiments on two novel Mn4 SMMs provide a positive answer to the above, showing at the same time that MQT in the SMMs has to involve spin-lattice coupling at a relaxation rate equaling that predicted and observed recently for nuclear spin-mediated quantum relaxation.Comment: 4 pages, 3 figure

    The ROCK inhibitor Fasudil prevents chronic restraint stress-induced depressive-like behaviors and dendritic spine loss in rat hippocampus

    Get PDF
    Indexación: Web of Science; Scopus.Background: Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Methods: Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Results: Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudiltreated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Conclusion: Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity.https://academic.oup.com/ijnp/article/20/4/336/263217

    Enhanced gene delivery in vitro and in vivo by improved transferrin-lipoplexes

    Get PDF
    AbstractCationic liposomes and the complexes they form with DNA (lipoplexes) constitute the most promising alternative to the use of viral vectors for gene therapy. One of the limitations to their application in vivo, however, is the inhibition of gene delivery by serum. In a previous study, we demonstrated that transferrin (Tf)-lipoplexes were superior to plain lipoplexes in transfecting HeLa cells in the presence of high concentrations of serum. With the goal of obtaining efficient gene expression in vivo, we evaluated the efficacy of Tf-lipoplexes (containing DOTAP and cholesterol) in transfecting primary hepatocytes and adipocytes in the presence of high serum concentrations. The association of transferrin with cationic liposomes increased luciferase expression compared to plain lipoplexes in primary cells as well as in HepG2 and 3T3-L1 differentiated adipocytes. The complexes were not cytotoxic and were highly effective in protecting DNA from attack by DNase I. An efficient and reliable method was developed to prepare lipoplexes containing both Tf and protamine sulfate, where the latter was mixed with transferrin, followed by the addition of cationic liposomes and DNA. The resulting protamine-Tf-lipoplexes increased significantly the levels of gene expression in cultured cells and in various tissues in mice following i.v. administration

    Polaron Transport in the Paramagnetic Phase of Electron-Doped Manganites

    Full text link
    The electrical resistivity, Hall coefficient, and thermopower as functions of temperature are reported for lightly electron-doped Ca(1-x)La(x)MnO(3)(0 <= x <= 0.10). Unlike the case of hole-doped ferromagnetic manganites, the magnitude and temperature dependence of the Hall mobility for these compounds is found to be inconsistent with small-polaron theory. The transport data are better described by the Feynman polaron theory and imply intermediate coupling (alpha \~ 5.4) with a band effective mass, m*~4.3 m_0, and a polaron mass, m_p ~ 10 m_0.Comment: 7 pp., 7 Fig.s, to be published, PR

    Neodymium 1D systems: targeting new sources for field-induced slow magnetization relaxation

    Get PDF
    Two non-isostructural homometallic 1D neodymium species dis- playing field-induced slow magnetization relaxations are presented together with theoretical studies. It is established that both systems are better described as organized 1D single molecule magnets (SMMs). Studies show great potential of NdIII ions to provide homometallic chains with slow magnetic relaxation

    Pressure induced transition from a spin glass to an itinerant ferromagnet in half doped manganite Ln0.5Ba0.5MnO3 (Ln=Sm and Nd) with quenched disorder

    Full text link
    The effect of quenched disorder on the multiphase competition has been investigated by examining the pressure phase diagram of half doped manganite Ln0.5B0.5MnO3 (Ln = Sm and Nd) with A-site disorders. Sm0.5Ba0.5MnO3, a spin glass insulator at ambient pressure, switches to a ferromagnetic metal with increasing pressure, followed by a rapid increase of the ferromagnetic transition temperature Tc. The rapid increase of Tc was confirmed also for Nd0.5Ba0.5MnO3. These observations indicate that the unusual suppression of the multicritical phase boundary in the A-site disordered system, previously observed as a function of the averaged A-site ionic radius, is essentially controlled by the pressure and hence the band width. The effect of quenched disorder is therefore much enhanced with approaching the multicritical region.Comment: 4 pages including 3 figure
    corecore