448 research outputs found
Variability in Saturn's bow shock and magnetopause from pioneer and voyager: Probabilistic predictions and initial observations by Cassini
Probability distributions for the location of the Saturnian bow shock and magnetopause have been derived by extrapolating observations of dynamic solar wind pressures to the position of Saturn's orbit. These observations are those made by the Pioneer 11, Voyager 1 and 2 spacecraft near Saturn's orbit and by the Ulysses spacecraft near its aphelion. The magnetopause subsolar distance (measured from Saturn's center) is obtained using pressure equilibrium. The bow shock standoff distance is determined using empirical relations between bow shock size and solar wind dynamic pressure. Simple 2-D geometric models of the magnetopause and bow shock surfaces have been used to determine their morphologies over a large range in local time. Three cases have been studied: (1) An Earth-type magnetosphere with low internal plasma pressure; (2) An intermediate case calibrated with Voyager 1 observations; and (3) A Jupiter-like inflated magnetosphere. The comparison of these models with initial observations from the initial sunward orbits of the Cassini spacecraft indicates a more inflated magnetosphere than postulated by the previous modelling of the Pioneer-Voyager encounters
Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere
The interaction between the solar wind and a magnetosphere is fundamental to
the dynamics of a planetary system. Here, we address fundamental questions on
the large-scale magnetosheath flow around Saturn using a 3D magnetohydrodynamic
(MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel
~20% more flow over the poles than around the flanks at the terminator.
Further, we decompose the MHD forces responsible for accelerating the
magnetosheath plasma to find the plasma pressure gradient as the dominant
driver. This is by virtue of a high-beta magnetosheath, and in turn, the
high-MA bow shock. Together with long-term magnetosheath data by the Cassini
spacecraft, we present evidence of how nonaxisymmetry substantially alters the
conditions further downstream at the magnetopause, crucial for understanding
solar wind-magnetosphere interactions such as reconnection and shear
flow-driven instabilities. We anticipate our results to provide a more accurate
insight into the global conditions upstream of Saturn and the outer planets.Comment: Accepted for publication in Journal of Geophysical Journal: Space
Physic
Conservation laws, exact travelling waves and modulation instability for an extended nonlinear Schr\"odinger equation
We study various properties of solutions of an extended nonlinear
Schr\"{o}dinger (ENLS) equation, which arises in the context of geometric
evolution problems -- including vortex filament dynamics -- and governs
propagation of short pulses in optical fibers and nonlinear metamaterials. For
the periodic initial-boundary value problem, we derive conservation laws
satisfied by local in time, weak (distributional) solutions, and
establish global existence of such weak solutions. The derivation is obtained
by a regularization scheme under a balance condition on the coefficients of the
linear and nonlinear terms -- namely, the Hirota limit of the considered ENLS
model. Next, we investigate conditions for the existence of traveling wave
solutions, focusing on the case of bright and dark solitons. The balance
condition on the coefficients is found to be essential for the existence of
exact analytical soliton solutions; furthermore, we obtain conditions which
define parameter regimes for the existence of traveling solitons for various
linear dispersion strengths. Finally, we study the modulational instability of
plane waves of the ENLS equation, and identify important differences between
the ENLS case and the corresponding NLS counterpart. The analytical results are
corroborated by numerical simulations, which reveal notable differences between
the bright and the dark soliton propagation dynamics, and are in excellent
agreement with the analytical predictions of the modulation instability
analysis.Comment: 27 pages, 5 figures. To be published in Journal of Physics A:
Mathematical and Theoretica
A combined model of pressure variations in Titan's plasma environment
In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn's plasmadisk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is furthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main sources are the dynamic pressure associated with Saturn's cold, subcorotating plasma and the hot plasma pressure under disturbed conditions. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of up to about three as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by ≲10°. These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasmasheet. Our model may be used to predict near-Titan conditions from ‘far-field’ in situ measurements
Global MHD simulations of Saturns's magnetosphere at the time of Cassini approach
We present the results of a 3D global magnetohydrodynamic simulation of the magnetosphere of Saturn for the period of Cassini's initial approach and entry into the magnetosphere. We compare calculated bow shock and magnetopause locations with the Cassini measurements. In order to match the measured locations we use a substantial mass source due to the icy satellites (\sim1 x 10^{28} s^{-1} of water product ions). We find that the location of bow shock and magnetopause crossings are consistent with previous spacecraft measurements, although Cassini encountered the surfaces further from Saturn than the previously determined average location. In addition, we find that the shape of the model bow shock and magnetopause have smaller flaring angles than previous models and are asymmetric dawn-to-dusk. Finally, we find that tilt of Saturn's dipole and rotation axes results in asymmetries in the bow shock and magnetopause and in the magnetotail being hinged near Titan's orbit (\sim20 R _S)
A combined model of pressure variations in Titan's plasma environment
In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn?s plasma disk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is farthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main sources are the dynamic pressure associated with Saturn?s cold, subcorotating plasma and the hot plasma pressure under disturbed conditions. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of up to about 3 as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by ≲ 10◦ . These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasma sheet. Our model may be used to predict near-Titan conditions from ?far-field? in situ measurements.Fil: Achilleos, N.. University College London; Reino UnidoFil: Arridge, C. S.. University College London; Reino UnidoFil: Bertucci, Cesar. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Guio, P.. University College London; Reino UnidoFil: Romanelli, Norberto Julio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Sergis, N.. Academy Of Athens. Office for Space Research and Technology; Greci
- …
