2,925 research outputs found

    Spectroscopic properties, molecular structure, anticancer and antimicrobial evaluation of some new moxifloxacin metal complexes in the presence of 1,10-phenanthroline

    Get PDF
    New series of Y(III), Zr(IV), Pd(II), La(III) and U(VI) complexes with moxifloxacin (MOX) and 1,10-phenanthroline (Phen) were synthesized and the chelation behaviours have been investigated. The complexes were characterized using elemental analysis, molar conductance, magnetic properties, thermal studies and various spectral techniques such as FT-IR, UV-Vis, 1H NMR and mass spectra. The kinetic and thermodynamic parameters (E*, ΔH*, ΔS* and ΔG*) were calculated using Coats-Redfern and Horowitz-Metzeger methods. The bond length and force constant, F(U=O), for the uranyl complex was calculated. The DFT calculations were carried out to understand the optimized molecular geometry for the compounds. The calculated data indicated that Pd(II) complex with smaller energy gap value (∆E = 0.136 au) is more reactive than all compounds and La(III) complex with greater energy gap (∆E = 0.192 au) is less reactive. All studied compounds are treated as soft (η = 0.068-0.096) except MOX treated as hard (η = 0.16). The HOMO of all complexes is localized on MOX (100%) without any density on the Phen (0%) except Pd(II) complex, the HOMO is localized on Phen (61%). The LUMO in U(VI) complex is localized mainly on the U(VI) ion (63%), and in the Y(III) complex is localized mainly on Phen (89%). The cytotoxic activities against MCF-7, HCT-116 and the antimicrobial activity were tested.                     KEY WORDS: Moxifloxacin, 1,10-Phenanthroline, Spectroscopy, Thermal analysis, DFT, Antitumor agents   Bull. Chem. Soc. Ethiop. 2020, 34(2), 295-312 DOI: https://dx.doi.org/10.4314/bcse.v34i2.

    Thermal Diffusion and Diffusion Thermo Effects on MHD Thermosolutal Marangoni Convection Boundary Layer Flow over a Permeable Surface

    Get PDF
    The problem of thermal diffusion and diffusion thermo effects on thermosolutal Marangoni convection flow of an electrically conducting fluid over a permeable surface is investigated. Using appropriate similarity transformations, the governing system of partial differential equation is transformed to a set of nonlinear ordinary differential equations, then solved numerically using the Runge-Kutta-Fehlberg method. The effects of thermal diffusion and diffusion thermo, magnetic field parameter, thermosolutal surface tension ratio, and suction/injection parameter on the flow field, heat transfer characteristic, and concentration are thoroughly examined. Numerical results are obtained for temperature and concentration profiles as well as the local Nusselt and Sherwood numbers are presented graphically and analyzed. It is found that these governing parameters affect the variations of the temperature and concentration and also the local Nusselt and Sherwood numbers

    Alternative railway tools and sustainability in RAMS: A review

    Get PDF
    RAMS is a tool and methodology that combines reliability engineering, availability, maintainability, and safety in a way that is tailored to the system’s goals. A comprehensive view on RAMS’s components and theory behind the underlying mathematical model is not to be found in journal publication. This paper would also discuss several benefits and sustainability of RAMS. Life Cycle Cost (LCC) would also being introduce as a complementary discipline in term of costing that normally regarded parallel to RAMS. There are a series of methods that being utilized at every discipline of the RAMS component such as Fault Tree Analysis (FTA), Failure Mode Effect Critical Analysis (FMECA), Reliability Block Diagram and many more. Some commonly used methods would be highlighted in this paper. RAMS application and implementation will aid asset owners, contractors, and operators in efficiently procuring, developing, and operating their assets. However, further research and analysis is needed in the railway industry to build a viable framework for project and operation implementation using both tools

    Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

    Full text link
    Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking layer for feature discovery. The convolutional layer of leaky, integrate-and-fire (LIF) neurons represents primary acoustic features. The fully connected layer is equipped with a probabilistic spike-timing-dependent plasticity learning rule. This layer represents the discriminative features through probabilistic, LIF neurons. To assess the discriminative power of the learned features, they are used in a hidden Markov model (HMM) for spoken digit recognition. The experimental results show performance above 96% that compares favorably with popular statistical feature extraction methods. Our results provide a novel demonstration of unsupervised feature acquisition in an SNN

    Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> catalysts investigated by titration experiments

    Get PDF
    Co-precipitation of Cu,Zn,(Al) precursor materials is the traditional way of synthesizing Cu/ZnO/(Al2O3) catalysts for industrial methanol synthesis. This process has been investigated by titration experiments of nitrate and formate solutions. It was found that the solidification of the single components proceeds sequentially in case of nitrates: Cu2+ is precipitated at pH 3 and Zn2+ (as well as Al3+) near pH 5. This behavior prevents a homogeneous distribution of all metal species in the initial precipitate upon gradual increase of pH and requires application of the constant pH micro-droplet method. This effect is less pronounced if formate instead of nitrate is used as counter ion. This can be explained by the strong modification of the hydrolysis chemistry of the metal ions due to the presence of formate anions, which act as ligands and buffer. A formate-derived Cu/ZnO/Al2O3 catalyst was more active in methanol synthesis compared to a nitrate-derived sample although the same crystallographic phases were present in the precursor after co-precipitation and ageing. The effect of precipitation temperature was studied for the binary CuZn nitrate model system. Increasing the temperature of co-precipitation above 50 °C leads to down-shift of the precipitation pH of Zn2+ by a full unit. Thus, in warm solutions more acidic conditions can be used for complete co-precipitation, while in cold solutions, some Zn2+ may remain dissolved in the mother liquor at the same precipitation pH. The higher limit of temperature is given by the tendency of the initial Cu precipitate towards formation of CuO by oxolation. On the basis of these considerations, the empirically determined optimal pH and temperature conditions of the industrially applied synthesis can be rationalized

    Geometric Resonances in Bose-Einstein Condensates with Two- and Three-Body Interactions

    Full text link
    We investigate geometric resonances in Bose-Einstein condensates by solving the underlying time-dependent Gross-Pitaevskii equation for systems with two- and three-body interactions in an axially-symmetric harmonic trap. To this end, we use a recently developed analytical method [Phys. Rev. A 84, 013618 (2011)], based on both a perturbative expansion and a Poincar\'e-Lindstedt analysis of a Gaussian variational approach, as well as a detailed numerical study of a set of ordinary differential equations for variational parameters. By changing the anisotropy of the confining potential, we numerically observe and analytically describe strong nonlinear effects: shifts in the frequencies and mode coupling of collective modes, as well as resonances. Furthermore, we discuss in detail the stability of a Bose-Einstein condensate in the presence of an attractive two-body interaction and a repulsive three-body interaction. In particular, we show that a small repulsive three-body interaction is able to significantly extend the stability region of the condensate.Comment: 27 pages, 13 figure

    Isoprene hotspots at the Western Coast of Antarctic Peninsula during MASEC′16

    Get PDF
    Isoprene (C5H8) plays an important role in the formation of surface ozone (O3) and the secondary organic aerosol (SOA) which contributed to the climate change. This study aims to determine hourly distribution of tropospheric isoprene over the Western Coast of Antarctic Peninsula (WCAP) during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC′16). In-situ measurements of isoprene were taken using a custom-built gas chromatography with photoionization detector, known as iDirac. Biological parameters such as chlorophyll a (chl-a) and particulate organic carbon (POC) were compared to the in-situ isoprene measurements. Significant positive correlation was observed between isoprene and POC concentrations (r2 = 0.67, p < 0.001), but not between isoprene and chl-a. The hotspots of isoprene over maritime Antarctic were then were investigated using NAME dispersion model reanalysis. Measurements showed that isoprene mixing ratio were the highest over region of King George Island, Deception Island and Booth Island with values of ∼5.0, ∼0.9 and ∼5.2 ppb, respectively. Backward trajectory analysis showed that air masses may have lifted the isoprene emitted by marine algae. We believe our findings provide valuable data set of isoprene estimation over the under sampled WCAP

    Worker remittances and the global preconditions of ‘smart development’

    Get PDF
    With the growing environmental crisis affecting our globe, ideas to weigh economic or social progress by the ‘energy input’ necessary to achieve it are increasingly gaining acceptance. This question is intriguing and is being dealt with by a growing number of studies, focusing on the environmental price of human progress. Even more intriguing, however, is the question of which factors of social organization contribute to a responsible use of the resources of our planet to achieve a given social result (‘smart development’). In this essay, we present the first systematic study on how migration – or rather, more concretely, received worker remittances per GDP – helps the nations of our globe to enjoy social and economic progress at a relatively small environmental price. We look at the effects of migration on the balance sheets of societal accounting, based on the ‘ecological price’ of the combined performance of democracy, economic growth, gender equality, human development, research and development, and social cohesion. Feminism in power, economic freedom, population density, the UNDP education index as well as the receipt of worker remittances all significantly contribute towards a ‘smart overall development’, while high military expenditures and a high world economic openness are a bottleneck for ‘smart overall development’

    Performance of asphalt mixture incorporating kaolin clay at different aging

    Get PDF
    In the fast-changing construction industry, the usage of natural material resources is tremendous. In order to comply with the demand of construction, waste materials have been used as a replacement of natural mineral resources. In pavement engineering, waste materials can be added into road composition. Kaolin clay is one of industrial waste materials successfully been used as a replacement of cement in concrete, but in the pavement, it has lack extensive study. In this investigation, kaolin clay partially replaced bitumen and the performance of aged asphaltic concrete AC14 were investigated. Kaolin clay replaced bitumen at 0%, 3%, 6% and 9% by weight of bitumen were used through this study. Tests conducted to measure the mixture performance were Marshall Stability, resilient modulus and dynamic creep test. Generally, it shows that the samples of unaged and long-term aging of asphalt mixture containing kaolin clay at 6% to 9% showed excellent, while 9% kaolin clay were most favorable for short term aging
    corecore