556 research outputs found

    Analyzing First-Person Stories Based on Socializing, Eating and Sedentary Patterns

    Full text link
    First-person stories can be analyzed by means of egocentric pictures acquired throughout the whole active day with wearable cameras. This manuscript presents an egocentric dataset with more than 45,000 pictures from four people in different environments such as working or studying. All the images were manually labeled to identify three patterns of interest regarding people's lifestyle: socializing, eating and sedentary. Additionally, two different approaches are proposed to classify egocentric images into one of the 12 target categories defined to characterize these three patterns. The approaches are based on machine learning and deep learning techniques, including traditional classifiers and state-of-art convolutional neural networks. The experimental results obtained when applying these methods to the egocentric dataset demonstrated their adequacy for the problem at hand.Comment: Accepted at First International Workshop on Social Signal Processing and Beyond, 19th International Conference on Image Analysis and Processing (ICIAP), September 201

    Anomalous Neutrino Reactions at HERA

    Full text link
    We study the sensitivity of HERA to new physics using the helicity suppressed reaction eRpνXe_R p \rightarrow \nu X , where the final neutrino can be a standard model one or a heavy neutrino. The approach is model independent and is based on an effective lagrangian parametrization. It is shown that HERA will put significant bounds on the scale of new physics, though, in general, these are more modest than previously thought. If deviations from the standard model are observed in the above processes, future colliders such as the SSC and LHC will be able to directly probe the physics responsible for these discrepancies}Comment: 11 Pages + 2 figures is TOPDRAWER (included at the end or available by mail). Report UCRHEP-T113 (requires the macropackage PHYZZX). A line in the TeX file requesting an input file has been removed, it caused problem

    Aharonov-Bohm Effect and Disclinations in an Elastic Medium

    Full text link
    In this work we investigate quasiparticles in the background of defects in solids using the geometric theory of defects. We use the parallel transport matrix to study the Aharonov-Bohm effect in this background. For quasiparticles moving in this effective medium we demonstrate an effect similar to the gravitational Aharonov- Bohm effect. We analyze this effect in an elastic medium with one and NN defects.Comment: 6 pages, Revtex

    On Multiview Analysis for Fingerprint Liveness Detection

    Get PDF
    Fingerprint recognition systems, as any other biometric system, can be subject to attacks, which are usually carried out using artificial fingerprints. Several approaches to discriminate between live and fake fingerprint images have been presented to address this issue. These methods usually rely on the analysis of individual features extracted from the fingerprint images. Such features represent different and complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. However, very little work in this direction has been reported in the literature. In this work, we present the results of a preliminary investigation on multiview analysis for fingerprint liveness detection. Experimental results show the effectiveness of such approach, which improves previous results in the literatur

    Supersymmetric Vacua in Random Supergravity

    Full text link
    We determine the spectrum of scalar masses in a supersymmetric vacuum of a general N=1 supergravity theory, with the Kahler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2), with W denoting the superpotential and m_{susy} the supersymmetric mass scale; for more general distributions of the entries, our result is accurate when N >> 1. We conclude that for |W| \gtrsim m_{susy}/N, tachyonic instabilities are ubiquitous in configurations obtained by uplifting supersymmetric vacua.Comment: 26 pages, 6 figure

    Aiding first incident responders using a decision support system based on live drone feeds

    Get PDF
    In case of a dangerous incident, such as a fire, a collision or an earthquake, a lot of contextual data is available for the first incident responders when handling this incident. Based on this data, a commander on scene or dispatchers need to make split-second decisions to get a good overview on the situation and to avoid further injuries or risks. Therefore, we propose a decision support system that can aid incident responders on scene in prioritizing the rescue efforts that need to be addressed. The system collects relevant data from a custom designed drone by detecting objects such as firefighters, fires, victims, fuel tanks, etc. The drone autonomously observes the incident area, and based on the detected information it proposes a prioritized based action list on e.g. urgency or danger to incident responders

    Intelligent OS X malware threat detection with code inspection

    Get PDF
    With the increasing market share of Mac OS X operating system, there is a corresponding increase in the number of malicious programs (malware) designed to exploit vulnerabilities on Mac OS X platforms. However, existing manual and heuristic OS X malware detection techniques are not capable of coping with such a high rate of malware. While machine learning techniques offer promising results in automated detection of Windows and Android malware, there have been limited efforts in extending them to OS X malware detection. In this paper, we propose a supervised machine learning model. The model applies kernel base Support Vector Machine (SVM) and a novel weighting measure based on application library calls to detect OS X malware. For training and evaluating the model, a dataset with a combination of 152 malware and 450 benign were is created. Using common supervised Machine Learning algorithm on the dataset, we obtain over 91% detection accuracy with 3.9% false alarm rate. We also utilize Synthetic Minority Over-sampling Technique (SMOTE) to create three synthetic datasets with different distributions based on the refined version of collected dataset to investigate impact of different sample sizes on accuracy of malware detection. Using SMOTE datasets we could achieve over 96% detection accuracy and false alarm of less than 4%. All malware classification experiments are tested using cross validation technique. Our results reflect that increasing sample size in synthetic datasets has direct positive effect on detection accuracy while increases false alarm rate in compare to the original dataset

    Global Study of Electron-Quark Contact Interactions

    Get PDF
    We perform a global fit of data relevant to eeqqeeqq contact interactions, including deep inelastic scattering at high Q2Q^2 from ZEUS and H1, atomic physics parity violation in Cesium from JILA, polarized ee^- on nuclei scattering experiments at SLAC, Mainz and Bates, Drell-Yan production at the Tevatron, the total hadronic cross section σhad\sigma_{had} at LEP, and neutrino-nucleon scattering from CCFR. With only the new HERA data, the presence of contact interactions improves the fit compared to the Standard Model. When other data sets are included, the size of the contact contributions is reduced and the overall fit represents no real improvement over the Standard Model.Comment: 26 pages (now single-spaced), Revtex, 2 eps figures, uses epsf.sty. Some clarifications, minor corrections, 2 new references, also 3 new tables which present 95% CL bounds on the contact interaction scales Lambd

    Probing Top-Quark Couplings at Polarized NLC

    Get PDF
    The energy spectrum of the lepton(s) in e^+e^- --> tt-bar --> l^{+-} ...../l^+l^-..... at next linear colliders (NLC) is studied for arbitrary longitudinal beam polarizations as a possible test of new physics in top-quark couplings. The most general non-standard couplings for gamma-tt-bar, Ztt-bar and Wtb vertices are considered. Expected precision of the non-standard-parameter determination is estimated applying the optimal-observable procedure.Comment: Final version, To appear in Phys. Rev.

    Scattering in Anti-de Sitter Space and Operator Product Expansion

    Get PDF
    We develop a formalism to evaluate generic scalar exchange diagrams in AdS_{d+1} relevant for the calculation of four-point functions in AdS/CFT correspondence. The result may be written as an infinite power series of functions of cross-ratios. Logarithmic singularities appear in all orders whenever the dimensions of involved operators satisfy certain relations. We show that the AdS_{d+1} amplitude can be written in a form recognisable as the conformal partial wave expansion of a four-point function in CFT_{d} and identify the spectrum of intermediate operators. We find that, in addition to the contribution of the scalar operator associated with the exchanged field in the AdS diagram, there are also contributions of some other operators which may possibly be identified with two-particle bound states in AdS. The CFT interpretation also provides a useful way to ``regularize'' the logarithms appearing in AdS amplitude.Comment: 39 pages, using harvmac and epsf, eight figures; discussion in coinciding pole cases expanded, references added, misprints correcte
    corecore