274 research outputs found

    Electromechanical and biological evaluations of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 as a lead-free piezoceramic for implantable bioelectronics

    Get PDF
    Smart implantable electronic medical devices are being developed to deliver healthcare that is more connected, personalised, and precise. Many of these implantables rely on piezoceramics for sensing, communication, energy autonomy, and biological stimulation, but the piezoceramics with the strongest piezoelectric coefficients are almost exclusively lead-based. In this article, we evaluate the electromechanical and biological characteristics of a lead-free alternative, 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 (BNT-6BT), manufactured via two synthesis routes: the conventional solid-state method (PIC700) and tape casting (TC-BNT-6BT). The BNT-6BT materials exhibited soft piezoelectric properties, with d33 piezoelectric coefficients that were inferior to commonly used PZT (PIC700: 116 pC/N; TC-BNT-6BT: 121 pC/N; PZT-5A: 400 pC/N). The material may be viable as a lead-free substitute for soft PZT where moderate performance losses up to 10 dB are tolerable, such as pressure sensing and pulse-echo measurement. No short-term harmful biological effects of BNT-6BT were detected and the material was conducive to the proliferation of MC3T3-E1 murine preosteoblasts. BNT-6BT could therefore be a viable material for electroactive implants and implantable electronics without the need for hermetic sealing

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>tRNase Z removes the 3'-trailer sequences from precursor tRNAs, which is an essential step preceding the addition of the CCA sequence. tRNase Z exists in the short (tRNase Z<sup>S</sup>) and long (tRNase Z<sup>L</sup>) forms. Based on the sequence characteristics, they can be divided into two major types: bacterial-type tRNase Z<sup>S </sup>and eukaryotic-type tRNase Z<sup>L</sup>, and one minor type, <it>Thermotoga maritima </it>(TM)-type tRNase Z<sup>S</sup>. The number of tRNase Zs is highly variable, with the largest number being identified experimentally in the flowering plant <it>Arabidopsis thaliana</it>. It is unknown whether multiple tRNase Zs found in <it>A. thaliana </it>is common to the plant kingdom. Also unknown is the extent of sequence and structural conservation among tRNase Zs from the plant kingdom.</p> <p>Results</p> <p>We report the identification and analysis of candidate tRNase Zs in 27 fully sequenced genomes of green plants, the great majority of which are flowering plants. It appears that green plants contain multiple distinct tRNase Zs predicted to reside in different subcellular compartments. Furthermore, while the bacterial-type tRNase Z<sup>S</sup>s are present only in basal land plants and green algae, the TM-type tRNase Z<sup>S</sup>s are widespread in green plants. The protein sequences of the TM-type tRNase Z<sup>S</sup>s identified in green plants are similar to those of the bacterial-type tRNase Z<sup>S</sup>s but have distinct features, including the TM-type flexible arm, the variant catalytic HEAT and HST motifs, and a lack of the PxKxRN motif involved in CCA anti-determination (inhibition of tRNase Z activity by CCA), which prevents tRNase Z cleavage of mature tRNAs. Examination of flowering plant chloroplast tRNA genes reveals that many of these genes encode partial CCA sequences. Based on our results and previous studies, we predict that the plant TM-type tRNase Z<sup>S</sup>s may not recognize the CCA sequence as an anti-determinant.</p> <p>Conclusions</p> <p>Our findings substantially expand the current repertoire of the TM-type tRNase Z<sup>S</sup>s and hint at the possibility that these proteins may have been selected for their ability to process chloroplast pre-tRNAs with whole or partial CCA sequences. Our results also support the coevolution of tRNase Zs and tRNA 3'-trailer sequences in plants.</p

    Exploration of pathways related to the decline in female circumcision in Egypt

    Get PDF
    BACKGROUND: There has been a large decline in female genital circumcision (FGC) in Egypt in recent decades. Understanding how this change has occurred so rapidly has been an area of particular interest to policymakers and public health officials alike who seek to further discourage the practice elsewhere. METHODS: We document the trends in this decline in the newest cohorts of young girls and explore the influences of three pathways—socioeconomic development, social media messages, and women’s empowerment—for explaining the observed trends. Using the 2005 and 2008 Egypt Demographic and Health Surveys, we estimate several logistic regression models to (1) examine individual and household determinants of circumcision, (2) assess the contributions of different pathways through which these changes may have occurred, and (3) assess the robustness of different pathways when unobserved community differences are taken into account. RESULTS: Across all communities, socioeconomic status, social media messages, and women’s empowerment all have significant independent effects on the risk of circumcision. However, after accounting for unobserved differences across communities, only mother’s education and household wealth significantly predict circumcision outcomes. Additional analyses of maternal education suggest that increases in women’s education may be causally related to the reduction in FGC prevalence. CONCLUSIONS: Women’s empowerment and social media appear to be more important in explaining differences across communities; within communities, socioeconomic status is a key driver of girls’ circumcision risk. Further investigation of community-level women’s educational attainment for mothers suggests that investments made in female education a generation ago may have had echo effects on girls’ FGC risk a generation later

    COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak

    Get PDF
    This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function

    Measurement of B_{s}^{0} meson production in pp and PbPb collisions at \sqrt{SNN}

    Get PDF
    The production cross sections of B_{s}^{0} mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B_{s}^{0}→J/ψϕ→μ^{+}μ^{−}K^{+}K^{−} at a center-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range |y|<2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p_{T}) of the B_{s}^{0} mesons in the range of 7 to 50 GeV/c and is compared to the predictions of perturbative QCD calculations. The B_{s}^{0} production yield in PbPb collisions is measured in two p_{T} intervals, 7 to 15 and 15 to 50 GeV/c, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor (R_{AA}) is found to be 1.5±0.6(stat)±0.5(syst) for 7–15 GeV/c, and 0.87±0.30(stat)±0.17(syst) for 15–50 GeV/c, respectively. Within current uncertainties, the B_{s}^{0} results are consistent with models of strangeness enhancement, and suppression by parton energy loss, as observed for the B+ mesons
    corecore