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Among the many anthropogenic changes that impact humans and wildlife,
one of the most pervasive but least understood is light pollution. Although
detrimental physiological and behavioural effects resulting from exposure to
light at night are widely appreciated, the impacts of light pollution on infec-
tious disease risk have not been studied. Here, we demonstrate that artificial
light at night (ALAN) extends the infectious-to-vector period of the house
sparrow (Passer domesticus), an urban-dwelling avian reservoir host of
West Nile virus (WNV). Sparrows exposed to ALAN maintained transmissi-
ble viral titres for 2 days longer than controls but did not experience greater
WNV-induced mortality during this window. Transcriptionally, ALAN
altered the expression of gene regulatory networks including key hubs
(OASL, PLBD1 and TRAP1) and effector genes known to affect WNV dissemi-
nation (SOCS). Despite mounting anti-viral immune responses earlier,
transcriptomic signatures indicated that ALAN-exposed individuals probably
experienced pathogen-induced damage and immunopathology, potentially
due to evasion of immune effectors. A simple mathematical modelling exer-
cise indicated that ALAN-induced increases of host infectious-to-vector
period could increase WNV outbreak potential by approximately 41%.
ALAN probably affects other host and vector traits relevant to transmission,
and additional research is needed to advise the management of zoonotic
diseases in light-polluted areas.
1. Introduction
Among the many anthropogenic changes that impact humans and wildlife, one
of the most pervasive but least understood is light pollution [1]. Artificial light
at night (ALAN) is a common form of light pollution worldwide in both urban
centres and non-urban areas including farms, airports, warehouses and even
natural areas such as green spaces near roadways [2,3]. Early research on
human health found that individuals working throughout the night routinely
suffer higher rates of type II diabetes, heart conditions and other non-infectious
maladies compared to day-working staff [4]. In domesticated rodents, exposure
to short-wavelength light at night, similar to that of cool-white LEDs, has been
linked to metabolic dysregulation, immunosuppression and the development of
some cancers [4]. Levels of blue light (420–480 nm) as low as 0.2 lx can suppress
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melatonin secretion in humans [5,6], and in wildlife, compar-
able forms of ALAN alter many behavioural, life history and
physiological traits [7,8].

Despite the diverse and strong effects of ALAN, no study
has yet investigated whether and to what degree it might
affect infectious disease risk, which is surprising given that
many hosts and vectors use light cues to coordinate daily
and seasonal rhythms [9,10]. Light is among the most reliable
environmental cues, and light regimes induce temporal fluc-
tuations in immune defences and other factors that influence
the risk of infection [11]. Our goal here was to discern
whether ALAN could alter zoonotic disease risk for
humans and wildlife by changing the ability of a reservoir
host to amplify virus for subsequent transmission, and if
so, to implicate some molecular mechanisms that might be
responsible for these changes. Differences in transmission
ability between individual hosts, which we term host compe-
tence [12–14], are partly mediated by endocrine-sensitive
physiological processes [11,15]. For example, melatonin and
glucocorticoids both affect host behaviours driving exposure
risk as well as immune defences underlying resistance to
infection and transmissibility [16,17].

We investigated ALAN effects on West Nile virus (WNV)
infections in house sparrows (Passer domesticus) because this
species is among the most common infection reservoir in
light-polluted areas and a close commensal of humans [18].
House sparrows are also among the more competent hosts
for WNV [19], which we chose as our pathogen for two
reasons: (i) more than 46 000 cases of WNV-induced human
disease have been reported across the US since its introduc-
tion to New York in 1999 [20]; and (ii) following its
emergence in the US, WNV decimated avian populations,
particularly corvids and other passerine species that
commonly occupy light-polluted habitats [21].
2. Material and methods
(a) Capture and housing
We captured house sparrows using mist nets at two sites in the
Tampa Bay area with comparable levels of light pollution. All
birds were captured between the hours of 5.30 and 9.30. Birds
were then transported to the University of South Florida vivar-
ium where they were housed individually in 1300 × 1500 × 1800

cages for the next 7–25 days in visual and audial proximity to
each other. In captivity, birds were housed under ALAN/treat-
ment (12 L : 12 D approx. 8 lx artificial light; n = 23) or natural
light/control conditions (12 L : 12 D; n = 22). Food (mixed
seeds) and water were provided ad libitum throughout the
study. Following this initial period, all birds were transported
to the USF Biosafety level-3 (BSL-3) suite where they were kept
individually in similar cages but inside bioBUBBLE containment
systems (bioBUBBLE Inc, Fort Collins CO). Light conditions
during this period were identical to conditions described earlier.

(b) Dexamethasone suppression test
To examine HPA function, we performed the dexamethasone
(DEX) suppression test twice: once at capture and once after
7–25 days in captivity. Blood samples for the DEX suppression
test required: (1) a baseline corticosterone (CORT) sample
obtained within 3 min of capture, (2) a post-stressor blood
sample collected after 30 min of restraint in a cloth bag following
initial capture, which was immediately followed by a DEX injec-
tion (s.q., 28 µg dissolved in 50 µl peanut oil) and (3) a final
sample collected 1 h after injections. Blood samples were
collected from the brachial vein using sterile 26-gauge needles
and microcapillary tubes, and serum was frozen at −20°C until
hormone assay.

(c) West Nile virus infection
Following transfer to the BSL-3 facility, we exposed all birds
(n = 45) to 101 (PFU) of WNV, NY99 strain via subcutaneous
inoculation within the same time frame [22] (ALAN exposure
duration varied to determine if time of ALAN exposure affected
infection outcomes but was not a significant term in models, so it
is not further addressed). Following WNV exposure, all birds
were maintained under the same light regimes while we sampled
serum on days 2, 4, 6 and 10 to quantify WNV viraemia in circu-
lation [23]. We also measured body mass (to 0.1 g prior to and on
each blood sampling day) to assess effects on individual health
and group WNV-induced mortality (mortality was closely mon-
itored from the point of exposure through day 10, when the
experiment was concluded). Serum and whole blood samples
were frozen at −20°C until extraction, and qPCR or sequencing
methods protocols were performed.

(d) Corticosterone assays
CORT concentrations were quantified in serum using an enzyme
immunoassay kit from Arbor Assays (Arbor Assays, Ann Arbor,
MI, product no. K014-H5; [13]). Samples were run in duplicate
and standardized across plates. Concentrations were derived
from known values along the standard curve, and all values
fell within the curve.

(e) RNA extraction and real-time polymerase chain
reaction for viraemia

WNV RNA was extracted from 10 µl of stored serum using the
Qiagen QIAmp Viral Extraction Mini Kit (Qiagen Cat. No.
52906). Viraemia was quantified using quantitative real-time
polymerase chain reaction using a one-step Taqman kit (iTaq
Universal Probes One-Step Kit; Bio-Rad Cat. No. 1725141).
Standards were extracted from known concentrations (via
plaque-assay) of WNV stock and quantified using the same
methods listed earlier. Forward and reverse primers and probe
sequences are listed in electronic supplementary material, text
[23]. All samples were run in duplicate with negative controls.

( f ) West Nile virus and corticosterone statistical
analyses

Linear mixed models were used in RSTUDIO and SPSS to analyse
most data, after log10 transformation of WNV viraemia which
produced variable distributions amenable to model assumptions.
Statistics in the electronic supplementary material, text confirm
that analyses conducted in both programmes were consistent.
We first modelled viraemia as a dependent variable in which
ALAN conditions, days post-exposure and their interactions
were fit as fixed effects. Given the repeated measures nature of
the study, we used the individual bird as a random effect. We
modelled WNV tolerance in a similar fashion except that in
these models, body mass change (from pre-WNV values) was
the dependent variable. To account for unequal variance
among groups, we performed several iterations of this model
that accounted for this and compared them using an ANOVA;
because the models were not significantly different, we reported
the conservative estimates provided by the linear mixed model
allowing for unequal variance (electronic supplementary
material, text). We included all data over the course of the
entire infection and used days post-exposure, ALAN and WNV
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titter (as a continuous covariate) and all two- and three-way
interactions as predictors [24]. As above for viraemia, the indi-
vidual bird was included as a random effect and body mass
prior to WNV exposure was included as a covariate to control
for pre-existing differences in vigour among individuals [24].
CORT data were analysed similarly to viraemia with the follow-
ing exceptions. First, we conducted an omnibus mixed model in
which CORT was the dependent variable and time in captivity,
ALAN and their interaction were fixed effects with individual
bird as a random effect. In a second series of models, we
analysed each of four HPA traits separately: baseline CORT
(first measurement), post-stressor CORT (second measurement),
post-dexamethasone CORT (third measurement) and total
CORT (area under the total concentration curve), as each variable
serves a distinct physiological role across the time period which
they were sampled and hence could affect WNV competence
differently. In these simpler mixed models, time was binary (at
capture versus after a period of captivity but prior to WNV
exposure), but otherwise model composition was identical to
the omnibus models. Finally, we used Cox regression to assess
effects of ALAN on direct mortality risk to WNV. We set alpha
to less than 0.05 and used SPSS v. 24 and GraphPad PRISM for
analyses and figure production, respectively.

(g) Outbreak potential modelling
Using a previously developed model [25], the pathogen basic
reproductive number can be written as

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2bcIP
m

k
k þm

M
B

s

where a is the bite rate, b and c are the respective probabilities
that birds and mosquitoes are infected by a bite, IP is the bird
host infectious period, m is the mosquito mortality rate, k is the
WNV development rate in the mosquito and M/B is the ratio
of adult mosquitoes to birds.

Assuming that ALAN only affects host competence traits
measured in the experiment (i.e. infectious period) and does not
affect vector traits, the proportionate change in the reproductive
number due to ALAN is

r ¼ R0(ALAN)� R0(control)
R0(control)

� 100% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IP(ALAN)
IP(control)

s
� 1

0
@

1
A:

The infectious periods of ALAN and control birds were estimated
as the total amount of time for which viraemia exceeds the 105

transmission threshold, yielding respective values of approxi-
mately 4 and 2 days. This results in a change in outbreak
potential, r ¼ 100� ffiffiffiffiffiffiffiffi

4=2
p � 1

� �
� 41%.

To estimate the absolute outbreak potential in the presence
and absence of ALAN (R0(ALAN), R0(control) respectively), we
estimated the remaining component parameters of the reproduc-
tive number from experiments and the literature; where ranges of
parameters were reported, we took the approximate midpoint
value (electronic supplementary material, text). The parasite
development rate and adult mosquito mortality were calculated
as the inverses of the reported extrinsic incubation periods of
WNV and Culex quinquefasciatus, a common and competent
WNV vector in Florida, lifespan, respectively [26]. The resulting
values for R0 in the presence and absence ALAN were
R0(ALAN) = 12.66 and R0(control) = 8.95.

(h) Whole blood RNA extraction and sequencing
RNA was processed and sequenced following the protocols
described by Louder et al. [27]. Following sequencing, reads
were adapter trimmed with TRIM GALORE v. 0.3.8 [28]. Trimmed
reads were then aligned to the zebra finch (Taeniopygia guttata)
v. 3.2.4 reference genome [29] with STAR v. 2.5.3 [30] specifying
‘–sjdbOverhang 74’. We assigned Ensembl gene IDs and quanti-
fied reads with htseq-count v. 0.6.0 [31] specifying ‘-s reverse’ to
account for the strand-specific library preparation. A total of 9688
genes with an average count value greater than 5 across all 18
samples were used to generate a count matrix and retained for
downstream analysis.
(i) RNA sequencing—differential expression
DESEQ2 v. 1.21.21 [32] was used to read in the count matrix and
perform normalization of counts to sequencing depth. Normal-
ized counts of each sample were then rlog transformed and
visualized via principal components analysis within the pcaEx-
plorer R package (electronic supplementary material, figure S4)
[27]. We generated the DESEQ model ‘∼ nested.ind + TreatDay’,
where ‘nested.ind’ accounts for repeated sampling of individuals
and ‘TreatDay’ is a grouping variable of the interaction between
treatment and day (i.e. four groups: 2dpe-Control, 2dpe-ALAN,
6dpe-Control and 6dpe-ALAN). We then extracted results from
the model selecting pairwise contrasts between 2dpe-ALAN
versus 2dpe-Control, 6dpe-ALAN versus 6dpe-Control, Con-
trol-6dpe versus 2dpe and ALAN-6dpe versus 2dpe. In each
case, we used the ‘lfcShrink’ function within DESEQ2 to perform
log2 fold change shrinkage to enhance visualization of
individual gene expression plots. DESEQ2 performs a Wald test
followed by false discovery rate (FDR) [28] correction to deter-
mine differential expression (DE). We classified genes with an
FDR less than 0.10 as DE, which is the standard for DEseq ana-
lyses and default determined by the package; values listed for
the FDR less than 0.05 are in the electronic supplementary
material text. As the interaction term between treatment and
day on viraemia was significant on day 6, we were primarily
interested in the effects of light pollution on gene expression at
this point. We further filtered the comparisons of 6dpe-ALAN
versus 2dpe-ALAN and 6dpe-ALAN versus 6dpe-Control. For
6dpe-ALAN versus 2dpe-ALAN, we eliminated genes that
were also DE in the 6dpe-Control versus 2dpe-Control. As the
control birds were also infected with WNV, this isolates
the genes responding to both WNV and ALAN treatment in
the 6dpe-ALAN birds. For 6dpe-ALAN versus 6dpe-Control,
we removed genes also DE in the 2dpe-ALAN versus 2dpe-Con-
trol comparison. This eliminates genes that did not change in
relative expression level between sampling points. In each of
these filtration steps, we only removed genes with the same regu-
lation pattern (i.e. up or down), as we were interested in genes
that show the opposite expression patterns between days and/
or treatments.

For each of the four DESEQ2 comparisons, we performed gene
ontology (GO) analysis with the GOrilla webserver [33] after
converting zebra finch Ensembl IDs to gene symbols in the
Ensembl-BioMart webserver [34,35]. A total of 7321 of 9688
had associated gene symbols. We then sorted DESEQ2 results by
ascending FDR value and used the entire ranked list of 7321
genes to perform GO analysis. A GO category was considered
significantly enriched if the FDR value was less than 0.05.

Lastly, we performed cell type enrichment analysis with the
CTen tool [36]. CTen identifies cell types from heterogeneous
tissue (e.g. whole blood) transcriptomic data. Here, we restricted
our analysis to DE genes, separated into up- and downregulated,
in the d6 ALAN versus Control and ALAN d6 versus d2 contrasts.
This approach helps distinguish whether gene expression differ-
ences were due to changes in transcription or relative cell type
abundance following infection and ALAN treatment. We followed
the ‘Advanced Example’ on the CTen Webserver (http://www.
influenza-x.org/~jshoemaker/cten/advanced_example.php), and
a cell type was considered significantly enriched with an
enrichment score of greater than 2.

http://www.influenza-x.org/~jshoemaker/cten/advanced_example.php
http://www.influenza-x.org/~jshoemaker/cten/advanced_example.php
http://www.influenza-x.org/~jshoemaker/cten/advanced_example.php
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Figure 1. West Nile virus infection viraemia, body mass and WNV-induced mortality results. Effects of experimental West Nile virus exposure on house sparrows
(Passer domesticus) exposed to artificial light at night (ALAN; 8 lx during night hours for two to three weeks prior to WNV exposure) versus controls (animals kept on
12 L : 12 D for duration of experiment). Blue points and dashed lines signify ALAN-exposed individuals, and black points and solid lines signify controls. (a) Indi-
viduals exposed to ALAN had significantly higher viral titers on d6 post-exposure, indicated by the asterisk. The horizontal dashed light represents the conservative
transmission threshold or the minimum amount of virus in circulation required to transmit WNV to a vector (i.e. 105 PFU). (b) Effects of WNV and ALAN on change in
group mean body mass throughout the course of WNV infection. On d6, ALAN-exposed individuals lost appreciable mass whereas controls continued to gain body
mass. (c) Relationship between WNV titre and body mass change on d6 post-WNV exposure. The vertical dashed line represents the WNV transmission threshold;
individuals to the right of this dashed line are infectious to mosquitoes, and individuals to the left of this dashed line are not. Only ALAN-exposed individuals were
infectious on d6. (d ) No effect of ALAN on WNV-induced mortality. (Online version in colour.)
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( j) RNA sequencing—weighted gene network
correlation analysis

We used weighted gene network correlation analysis (WGCNA)
v. 1.64-1 [37] to cluster genes with correlated gene expression into
modules and then test these modules for associations with exper-
imental groups. To generate the input for WGCNA, we first
performed a variance-stabilized transformation of read counts
on all 9688 genes in DEseq2. We then removed 59 genes that
had a median absolute deviation of zero, for a total input of
9628 genes. We generated a signed network with the following
parameters: soft threshold power (β) = 18, minimum module
size = 30 and module dissimilarity threshold = 0.1. We then
tested modules for associations with day, treatment and individ-
ual treatment × day groups. For module–trait correlations of
interest, we visualized module gene expression with heatmaps
and performed a target versus background GO analysis in GOr-
illa testing module genes (target) against all genes (background)
used in the analysis. Lastly, we visualized module hub genes
with Visant [37]. To do so, we restricted our visualization the
top 300 genes ranked by intramodular connectivity from each
module. Within these 300 genes, we calculated the topological
overlap (i.e. strength of interaction) between each gene and
ranked descending. We plotted the top 300 strongest interactions
and identified the top 1–6 genes with the highest number of con-
nections (degree distribution) to other genes and classified these
as the module hubs.
3. Results
We detected a significant effect of ALAN on the temporal
course of WNV viraemia in house sparrows (ALAN× day:
F4,124 = 2.9, p = 0.023, 4 time points; figure 1a [no main
effect]). At 2–4 days post-exposure (dpe; all animals became
infected), both ALAN-exposed and control birds had
comparable viral titres. However, at 6 dpe, the interaction
between ALAN treatment and dpe was significant (t = 2.7,
p = 0.009). Post hoc analyses (conducted using ‘emmeans’ in
R studio) further confirmed the existence of a significant
interaction (treatment × 6 dpe t =−2.9, p = 0.005 [electronic
supplementary material, text]).The conservative estimate for
minimum circulating viral titre needed to transmit WNV to
vectors is approximately 105 plaque-forming units (PFU;
horizontal dashed line in figure 1a; [38]), suggesting the
ALAN-exposed individuals remained infectious longer than
controls. Specifically, eight ALAN-exposed sparrows pos-
sessed viral titres above the transmission threshold whereas
no control birds were infectious at 6 dpe (figure 1c).

In previous studies, we found that CORT, an avian stress
hormone, enhanced host-attractiveness to Culex mosquito
vectors [39] and increased WNV viraemia above the trans-
mission-to-vector threshold [38]. Given these results, we
investigated whether any effects of ALAN on WNV
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competence could be explained by increases in CORT using
the DEX suppression test [40]. We found that CORT was unli-
kely to be involved in the observed ALAN effects in the
present study, as there was little evidence that ALAN affected
HPA function (treatment: F1,40 = 2.8, p = 0.104). To further
probe whether ALAN effects on WNV competence were
mediated by HPA dysregulation, we included CORT values
in models to predict viraemia and tolerance; however, no
single measure (baseline, stressor-induced or post-dexa-
methasone concentrations or the integral of CORT over the
measurement period) was a significant predictor in any
model.

Additionally, our study was designed to determine
whether duration of ALAN exposure influenced corticoster-
one regulation or viraemia. Hence, birds were exposed to
ALAN in captivity for a range of 7–25 days. However, days
in captivity had no effect on viraemia in the mixed models
( p = 0.802; electronic supplementary material, text); thus, we
binned all birds under either ALAN or control groups and
removed this term from further iterations of the models.

We next asked whether ALAN might modify the capacity
of individuals to tolerate WNV or ameliorate damage associ-
ated with infection (e.g. maintain body mass while infected
sensu [41]). A linear mixed model involving body mass as
the dependent variable, treatment, day and their interaction
as fixed effects and individual bird as a random effect was
built using the ‘nlme’ software package in R. We found no
effect of ALAN on WNV tolerance across the entire post-
WNV-exposure period (ALAN× integrated WNV titre: F1,34
= 1.3, p = 0.257). However, birds with the highest WNV
titres overall lost more body mass than birds with lower
cumulative titres (integral WNV titre: F1,34 = 6.6, p = 0.015).
Subsequently, we assessed directly whether body mass chan-
ged over time differently in ALAN-exposed and control birds
after WNV infection. Birds in the control group gained mass
post-infection, whereas body mass reached a nadir in ALAN-
exposed birds 6 dpe (figure 1b); mass gain in virally infected
birds is counterintuitive, but has precedent [42]. Again, post
hoc analyses (‘emmeans’ in RSTUDIO) indicate that body mass
differed at day 6 between controls and ALAN birds (treat-
ment × 6 dpe t = 2.8, p = 0.007). On 10 dpe, body mass
returns to comparable levels between groups (figure 1b).
When we analysed how WNV tolerance changed over the
infectious period, we found that it varied with days post-
exposure (dpe ×ALAN×WNV titre: F3,83 = 3.1, p = 0.030).
This three-way interaction was driven by distinct WNV×
ALAN effects on 6 dpe (β = 1.3 ± 0.60, t = 2.1, p = 0.041;
figure 1c): at this time, only some ALAN-exposed birds
(approx. 50%) maintained WNV titres above the transmission
threshold; no control birds were infectious on day 6. We
found no effect of ALAN on survival of WNV infection
post-exposure (x21 ¼ 0:26, p = 0.610; figure 1d ); about 60% of
birds in each group survived to 6 dpe. We confirmed that
no collinearity existed among these three variables (ALAN,
viraemia and body mass) using variance inflation factors
and Eigenvalue condition indices (electronic supplementary
material, text).

To evaluate the epidemiological implications of the above
effects, we compared the relative change in outbreak poten-
tial in the presence and absence of ALAN by evaluating the
pathogen basic reproductive number, R0, based on a simple
single host, single vector model of WNV transmission [25].
We conservatively assumed that ALAN effects on house
sparrows arise solely via extension of the infectious period;
additional parameter values relating to demographic and
transmission processes were estimated from the literature
(electronic supplementary material, text). Under these con-
ditions, ALAN effects on host infectiousness increased R0

from 8.95 to 12.66. In other words, assuming no prior
exposure of hosts to WNV (i.e. no pre-existing immunity in
the bird population) and no other effects of ALAN on
house sparrow hosts or Culex vectors, ALAN would increase
R0 for WNV by 41%.

To implicate physiological mechanisms mediating ALAN
effects on WNV competence, we conducted RNA-seq on
whole blood samples at 2 and 6 dpe. WGCNA [43] identified
22 modules of co-regulated genes. One module (purple;
figure 2a,b) included genes associated with innate immunity
and were relatively increased in abundance in 2 dpe ALAN
individuals (r =−0.66, p = 0.003; [44]). OASL, a gene linked
to WNV resistance in both birds [43] and mammals [44,45],
acted as hub (i.e. the most highly connected gene) within
this module (figure 2b). Suppressor of cytokine signalling 1
(SOCS1), responsible for suppressing IFN-gamma (anti-
viral) activity, was also assigned to the purple module and
transcript levels increased in day 2-ALAN individuals
(figure 3a), an outcome that may facilitate WNV dissemina-
tion through the host body [46–48]. Conversely, transcript
levels of SOCS3, which also suppresses cytokine signalling,
were decreased in ALAN-exposed individuals at 6 dpe
(figure 3b). Two other modules revealed strong effects of
ALAN treatment on the blood transcriptome, particularly at
6 dpe (turquoise module r = 0.84, p = 1.000 × 10−5], figure 2c,
d; tan module [r = 0.84, p = 1.000 × 10−5], figure 2e,f ). In one
module, both PLBD1 and ATP11B (figure 2d ) were hubs
[49,50]. PLBD1 is expressed during severe infection in malaria
patients [51]. Similarly, ATP11B is expressed in individuals
experiencing innate immune hyperactivation [52]. In the
other module, TRAP1 (i.e. Heat Shock Protein [HSP] 75)
was a hub (figure 2f ); TRAP1 inhibits cellular apoptosis by
reducing reactive oxygen species [50,51]. Altogether, these
results demonstrate that ALAN alters various components
of the immune system [53,54].
4. Discussion
In this study, we demonstrated that ALAN extended the
infectious-to-vector window for a zoonotic pathogen in a
wild reservoir species. Ecologically, this effect could enhance
transmission risk, as suggested by changes in R0 when only
this parameter (duration of infection) was allowed to vary
with light pollution. Although this approach is unarguably
a great simplification of the true effects of ALAN in nature,
this result should instigate additional theoretical and empiri-
cal studies of ALAN and infectious disease. At the molecular
level, transcriptomic data suggest that ALAN-exposed birds
were less effective at tolerating infection on day 6 post-
exposure, probably from a combination of pathogen-induced
damage or immunopathology, although neither of these were
directly measured [49,50]. The mechanism underlying body
mass gain in control birds during WNV infection is not
well understood, but not unprecedented [23]. Many of the
birds exposed to ALAN with significant loss of body mass
on day 6 died shortly thereafter; this may be why the
group average on day 10 reflects a ‘catching up’ of body
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mass of individuals who survived the studied course of infec-
tion. Much is still unknown about body mass regulation
during viral infections, so we emphasize the need to further
investigate relationships between pathogen-induced or collat-
eral damage and body mass in passerines. The higher
abundance of gene transcripts of typical WNV anti-viral
response genes earlier in ALAN-exposed than control birds
also suggests that immune responses were generally dysregu-
lated. These differences could have contributed to the loss of
body mass in ALAN-exposed birds, as there are significant
energetic costs involved in mounting immune responses,
but direct investigations are necessary [22,41]. Regardless of
the mechanism, ALAN did not cause greater WNV-induced
mortality, a result that could enable infectious birds to transmit
WNV to vectors for longer than in non-polluted areas.

Whereas anti-viral immune defences were bolstered ear-
lier, ALAN birds remained infectious for longer than
controls, which prompts questions regarding the mechanisms
that allow the high viral burden to persist. The dysregulation
of the TRAP1 network indicates that inhibition of apoptosis
may have been important [50,51]. Additionally, SOCS
genes, which assist in the negative feedback of immune
mechanisms via the JAK-STAT signalling pathway, might
have attenuated cytokine secretion and thus enabled WNV
to disseminate more easily. ALAN-exposed individuals
upregulated SOCS1 on day 2 post-WNV exposure and down-
regulated SOCS3 on day 6 post-WNV exposure. Previous
studies have found that upregulation of SOCS during WNV
infection increases neuroinvasive capacity [46]. SOCS has
also been proposed as a mechanism by which flaviviruses,
including WNV, actively evade host defences [46]. It is
likely that high viral titres persisted as a result of a
combination of these and other mechanisms [15].

Prior studies on laboratory rodents found that individuals
exposed to various forms of light at night had exaggerated
immune responses, many with the capacity to induce collat-
eral damage [4]. Although the exact mechanisms by which
ALAN altered immune defences here is obscure, other hor-
mones (i.e. melatonin) could play a role [9]. Our study
ruled out corticosterone as a factor, despite other evidence
in birds that ALAN alters the regulation of avian physiology
via stress-response pathways [16,55]. Because melatonin
enhances viral resistance and attenuates cellular and tissue
damage by acting as an antioxidant and free radical scaven-
ger, ALAN-induced suppression may contribute to the
increased viral titre observed in this study [9,56]. Alterna-
tively, incoordination of biological rhythms may also have
contributed to the effects we observed. Most organisms
evolved to use photoperiod to synchronize endogenous circa-
dian rhythms with the environment. Indeed, 10% of the
mammalian genome shows intrinsic circadian oscillations,
including immune parameters such as Toll-like receptor
expression and neutrophil activity [57]. Shifting the time at
which individuals are exposed to WNV (i.e. from crepuscular
to night-time periods) may also affect infection outcomes, as
other studies have found oscillations in pathogen defences
that impact the likelihood that viral dissemination occurs
[58,59]. This issue is worthy of future study. Lymph nodes,
which also influence viral dissemination, and the spleen,
which is a key site of WNV replication, also display circadian
patterns of gene expression [60]. Peritoneal macrophages
involved in inflammation upregulate the secretion of cyto-
kines, including TNF-α and IL-6, at different points during
the 24-hour period. ALAN cues that contradict zeitgeber
time may mismatch circadian rhythms of hosts to their
environments and hence induce upregulation of certain
anti-viral defences at inappropriate times.

We must acknowledge that studies such as ours, which are
conducted in captivity, have some limits and should be cau-
tiously extrapolated to the natural world. For example, the
gain of body mass during the course of infection may not
occur in nature as resources typically are not as accessible
[61]. Furthermore, mortality could differ for ALAN-exposed
birds if morbidity decreased survival probability via predation
risk [62]. Ultimately, though, experimental WNV infections will
never be realized in nature, so we advocate for additional work
like ours, with study elements directed at emulating natural
conditions (e.g. naturalistic food availability), which will be
useful to the parametrization of epidemiological models [63].

Our results also should motivate further investigation of
mechanisms whereby ALAN affects epidemic risk. Indeed,
light pollution might alter other drivers of R0 such as
vector and host diversity and the nature and timing of their
interactions (i.e. over days and seasons [60]). Most WNV vec-
tors, for instance, take blood meals at dusk and dawn [64];
with ALAN, the blood-meal feeding window might be
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extended, or vectors might arouse too early to find a blood
meal [65]. Mosquito density also tends to be lower in urban
than rural environments; however, urban heat islands make
ideal breeding habitat for many species of vectors [66,67].
More work must determine which vector species thrive in
light-polluted environments and how vector community
composition affects local disease dynamics [65]. Incoordina-
tion of the immune system has also been noted in
laboratory rodents and could result in increased suscepti-
bility at time of exposure, thus increasing an important
parameter in outbreak potential involving the likelihood
that a host develops infection upon mosquito bite (i.e.
exposure [4,25]). The pineal-derived hormone mentioned
above, melatonin, also coordinates such circadian behaviours
which could have complex effects on WNV dynamics, par-
ticularly as vectors also rely on melatonin for temporal
coordination of behaviours [68].

As we further explore ALAN effects on infectious disease
risk, it will be important to study whether and how lighting
spectra can be adjusted to mitigate risk. Motion-activated or
directed light sources can be substituted for current illumina-
tion practices, and lighting overall could also be reduced
when alterations would have the greatest positive impacts
on wildlife (i.e. migrations, breeding seasons). The Inter-
national Dark-Sky Association has led efforts to eliminate
lighting in tall urban buildings during avian migrations to
reduce extensive window strikes that occur during critical
migratory periods [2]. An analogous example to curtail vec-
tored-disease transmission in the southeastern US would be
to reduce the lighting of vulnerable areas during the height
of arbovirus transmission season (e.g. late autumn [69]).
Additional mitigation opportunities likely reside in the
advent of new technologies detectable by human, but less
so wildlife, vision (e.g. high-wavelength (red) wavelengths
versus the broad-spectrum options typically used [64]).
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