177 research outputs found
Rydberg-atom trajectories in a ponderomotive optical lattice
Using semiclassical simulations, we investigate the trajectories and the microwave spectra of Rydberg atoms excited in a ponderomotive optical lattice. We relate distinct features found in the microwave spectra to characteristic types of trajectory. Several methods are presented that are designed to greatly improve the trapping efficiency of the lattice and to generalize the trapping from one to three dimensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85435/1/njp10_11_113036.pd
Exploring User Acceptance of a Text-message Base Health Intervention among Young African Americans
Information technology has been used in diverse ways. It has been used in both the public and private sectors to reduce costs and increase satisfaction. Technology may also be instrumental in improving individuals’ healthy behaviors. For instance, statistics suggest that technology-based interventions may promote healthy sexual behaviors; however, few studies have explored willingness to participate in technology-mediated interventions. In this study, we use the diffusion of innovation theory to identify factors that influence one’s intention to use a text-message service to receive sexual health information. The results indicate that technology diffusion factors rather than risk beliefs and privacy concerns impacted participant\u27s intention to use a text-message intervention. The findings of this study have significant implications for innovative uses of technology to promote health. Mobile-health interventions that are easy to use and that provide more benefits than other interventions are most likely to be adopted. However, these interventions should seek to maximize privacy protections and communicate clearly about these protections
Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure
Growth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention
Manipulation and Detection of a Trapped Yb+ Ion Hyperfine Qubit
We demonstrate the use of trapped ytterbium ions as quantum bits for quantum
information processing. We implement fast, efficient state preparation and
state detection of the first-order magnetic field-insensitive hyperfine levels
of 171Yb+, with a measured coherence time of 2.5 seconds. The high efficiency
and high fidelity of these operations is accomplished through the stabilization
and frequency modulation of relevant laser sources.Comment: 10 pages, 9 figures, 1 tabl
Quantum Interference of Photon Pairs from Two Trapped Atomic Ions
We collect the fluorescence from two trapped atomic ions, and measure quantum
interference between photons emitted from the ions. The interference of two
photons is a crucial component of schemes to entangle atomic qubits based on a
photonic coupling. The ability to preserve the generated entanglement and to
repeat the experiment with the same ions is necessary to implement entangling
quantum gates between atomic qubits, and allows the implementation of protocols
to efficiently scale to larger numbers of atomic qubits.Comment: 4 pages, 4 figure
Efficient Photoionization-Loading of Trapped Cadmium Ions with Ultrafast Pulses
Atomic cadmium ions are loaded into radiofrequency ion traps by
photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The
photoionization is driven through an intermediate atomic resonance with a
frequency-quadrupled mode-locked Ti:Sapphire laser that produces pulses of
either 100 fsec or 1 psec duration at a central wavelength of 229 nm. The large
bandwidth of the pulses photoionizes all velocity classes of the Cd vapor,
resulting in high loading efficiencies compared to previous ion trap loading
techniques. Measured loading rates are compared with a simple theoretical
model, and we conclude that this technique can potentially ionize every atom
traversing the laser beam within the trapping volume. This may allow the
operation of ion traps with lower levels of background pressures and less trap
electrode surface contamination. The technique and laser system reported here
should be applicable to loading most laser-cooled ion species.Comment: 11 pages, 12 figure
Impact of 90Y PET gradient-based tumor segmentation on voxel-level dosimetry in liver radioembolization
Abstract
Background
The purpose was to validate 90Y PET gradient-based tumor segmentation in phantoms and to evaluate the impact of the segmentation method on reported tumor absorbed dose (AD) and biological effective dose (BED) in 90Y microsphere radioembolization (RE) patients. A semi-automated gradient-based method was applied to phantoms and patient tumors on the 90Y PET with the initial bounding volume for gradient detection determined from a registered diagnostic CT or MR; this PET-based segmentation (PS) was compared with radiologist-defined morphologic segmentation (MS) on CT or MRI. AD and BED volume histogram metrics (D90, D70, mean) were calculated using both segmentations and concordance/correlations were investigated. Spatial concordance was assessed using Dice similarity coefficient (DSC) and mean distance to agreement (MDA). PS was repeated to assess intra-observer variability.
Results
In phantoms, PS demonstrated high accuracy in lesion volumes (within 15%), AD metrics (within 11%), high spatial concordance relative to morphologic segmentation (DSC > 0.86 and MDA  0.99, MDA < 0.2 mm, AD/BED metrics within 2%). For patients (58 lesions), spatial concordance between PS and MS was degraded compared to in-phantom (average DSC = 0.54, average MDA = 4.8 mm); the average mean tumor AD was 226 ± 153 and 197 ± 138 Gy, respectively for PS and MS. For patient AD metrics, the best Pearson correlation (r) and concordance correlation coefficient (ccc) between segmentation methods was found for mean AD (r = 0.94, ccc = 0.92), but worsened as the metric approached the minimum dose (for D90, r = 0.77, ccc = 0.69); BED metrics exhibited a similar trend. Patient PS showed low intra-observer variability (average DSC = 0.81, average MDA = 2.2 mm, average AD/BED metrics within 3.0%).
Conclusions
90Y PET gradient-based segmentation led to accurate/robust results in phantoms, and showed high concordance with MS for reporting mean tumor AD/BED in patients. However, tumor coverage metrics such as D90 exhibited worse concordance between segmentation methods, highlighting the need to standardize segmentation methods when reporting AD/BED metrics from post-therapy 90Y PET. Estimated differences in reported AD/BED metrics due to segmentation method will be useful for interpreting RE dosimetry results in the literature including tumor response data.https://deepblue.lib.umich.edu/bitstream/2027.42/146544/1/40658_2018_Article_230.pd
The Associations of Multiple Dimensions of Discrimination and Abdominal Fat in African American Adults: The Jackson Heart Study
Discrimination may be adversely associated with abdominal obesity, but few studies have examined associations with abdominal fat
Quantum Networking with Photons and Trapped Atoms
Distributed quantum information processing requires a reliable quantum memory and a faithful carrier of quantum information. Atomic qubits have very long coherence times and are thus excellent candidates for quantum information storage, whereas photons are ideal for the transport of quantum information as they can travel long distances with a minimum of decoherence. We discuss the theoretical and experimental combination of these two systems and their use for not only quantum information transfer but also scalable quantum computation architectures
- …