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Distributed quantum information processing requires a reliable quantum memory and a faithful carrier of
quantum information. Atomic qubits have very long coherence times and are thus excellent candidates for
quantum information storage, whereas photons are ideal for the transport of quantum information as they can
travel long distances with a minimum of decoherence. We discuss the theoretical and experimental combina-
tion of these two systems and their use for not only quantum information transfer but also scalable quantum
computation architectures. © 2007 Optical Society of America
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. INTRODUCTION
rapped atoms are among the most attractive systems for
calable quantum computation as they can be well iso-
ated from the environment and manipulated easily with
asers.1–22 However, as one tries to scale these systems to

any hundreds or thousands of atomic quantum bits (qu-
its), current experimental setups may be too limited to
eal with the complexity of these very large systems. One
pproach to overcome this scaling problem in ion traps is
o shuttle the ions through multizone traps.23–26 In such a
ystem, quantum gates are performed in entangling zones
f the larger trap structure, and the atoms are shuttled to
ther zones for storage or further operations as necessary.
till, as the number of atoms grows and the dimensions of
he traps shrink, preserving coherence may become ex-
eedingly difficult.27

Another approach to scaling up atomic quantum com-
utation systems is to use photon-mediated entangle-
ent. With this approach, atoms in many different trap-

ing zones can be entangled without the need for cooling
o the motional ground state or even localization within
he Lamb–Dicke regime. Even though this approach is
ypically probabilistic, it has been shown to scale polyno-
ially with 1/Pa–a and n (Pa–a is the success probability

or atom–atom entanglement in a given trial, and n is the
umber of qubits),28–30 thus eliminating the need for chal-

enging cavity-QED techniques necessary for the genera-
ion of deterministic quantum information transfer be-
ween atomic and photonic sources.13,14,22,31 While QED
echniques are not strictly necessary, they can be incorpo-
ated into the protocols described in this paper and can
elp to increase the probability of spontaneously emitting
photon into the mode of interest.
Probabilistic atom entanglement leads to deterministic

uantum computation in a way similar to linear optical
uantum computing where quantum interference of two
0740-3224/07/020300-16/$15.00 © 2
hotons is used to create quantum gates. By combining
tomic and photonic systems, the benefits of atomic quan-
um memory32–34 and the quantum communication of
hotons are combined. If two photons emitted by two
tomic sources interfere on a beam splitter (BS), then the
ppropriate measurement of the photons from the two at-
ms can project the atoms into an entangled state that
an be used as a resource for further quantum informa-
ion processing.

Here, we present a theoretical and experimental over-
iew of the entanglement between atomic and photonic
ystems. We show the progress toward the generation of
robabilistic remote atom entanglement, and how this en-
anglement provides a key component for scalable quan-
um computation. Although work with trapped atomic
ons is highlighted in this paper, all the techniques dis-
ussed are also applicable to neutral atoms and perhaps
ven isolated quantum dots.35–39

This paper starts with a general introduction to the en-
anglement between a single atom and a single photon.
ext, we show how remote entanglement can be created
sing atom–photon entangled pairs and is followed by ex-
erimental progress toward this end. The paper concludes
ith a discussion on how this approach to remote-atom
ntanglement, though probabilistic, can lead to scalable
uantum computation.

. PROBABILISTIC ENTANGLEMENT
ETWEEN A SINGLE ATOM AND A SINGLE
HOTON
onsider an atomic system possessing long-lived elec-

ronic states that can be used as a viable qubit and also
aving a strong electric dipole coupling to an excited elec-
ronic state. For concreteness, the atomic qubit states are
ssumed to be hyperfine levels in the 2S ground states
1/2

007 Optical Society of America
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f a single valence electron atom,40 although other atomic
evel schemes can be used. We assume the atomic system
as short-lived 2P1/2 and 2P3/2 excited states that sponta-
eously decay exclusively to the 2S1/2 ground state. Simi-

ar systems with decay channels to other electronic states
such as low-lying 2D states) may also apply but require
he application of radiation driving population from these
tates back to the S–P levels.

When a single atom is prepared in one of the excited 2P
tates, a single photon can be spontaneously emitted via
ultiple decay channels after a mean time of � (the natu-

al lifetime of the P state) typically in the nanosecond
ange. Attributes of the emitted photon from the multiple
ecay channels can become entangled with the resulting
S1/2 ground states of the atom.

The simplest atomic level diagram for this system
nuclear spin I=1/2) is shown in Fig. 1(a). The main re-
uirement for atom–photon entanglement is to drive the
tom to a state with multiple decay channels, which re-
ult in different levels of the atomic ground state �Si�. The
esulting (unnormalized) state of the photon and atom is

� = �
i,j,�m

Ci,j,�m�Si���j����m�, �1�

here Ci,j,�m are atomic Clebsch–Gordon (CG) coeffi-
ients, �j are the photon frequencies, and ��m are the
hoton polarizations.
The photons are emitted in a specific radiation pattern

epending on the change in angular momentum of the
tom along the quantization axis, �m (defined by an ap-
lied magnetic field of typically a few Gauss [Fig. 1(g)]).
or �m=0, the (unnormalized) polarization state of a
pontaneously emitted photon is ��0�=−sin ���̂� and for
m= ±1, the states are ��±1�=e±i��cos ���̂�±i��̂�� /�2,
here � and � are spherical polar and azimuthal angles of

he emitted photon’s wave vector with respect to the
uantization axis, and �̂ and �̂ are their associated
pherical coordinate unit vectors. Based on these formu-
as, there are a number of protocols, which are good can-
idates for atom–photon entanglement, five of which are
llustrated in Figs. 1(b)–1(f).

Ideally, the atom will decay to two different 2S1/2 levels
ia two distinct decay channels of distinguishable photon
ubit states (either polarization or frequency states). Po-
arization qubits typically require the photon to be emit-
ed in a specific direction. One convenient choice is for a
hoton emitted perpendicularly to the dipole axis ��
� /2�. In this case, the �m= ±1 radiation is linearly po-

arized and orthogonal to the �m=0 radiation. Another
ossibility is emission along the quantization axis ��=0�.
ere, no �m=0 photons are emitted due to the radiation

ntensity pattern [Fig. 1(g)]; whereas the �m= ±1 photons
ave opposite (orthogonal) helicity. With polarization qu-
its, single-qubit rotations are easily accomplished via
uarter- and half-wave plates, and qubit state detection is
one with polarizing BSs and single-photon detectors.
One possible decay scheme is shown in Fig. 1(b), where

he 2P3/2 �2,1� state is prepared. From here, the atom
pontaneously decays back to either the 2S1/2 �1,0� (�↓�)
tate while emitting a 	+-polarized photon or to the 2S1/2
1,1� (�↑�) state while emitting a �-polarized photon (with
dentical CG coefficients). With this decay scheme, the
hoton polarizations are orthogonal when viewed perpen-
icularly to the quantization axis, with the � decay pho-
on polarized parallel to the quantization axis (defined as
V�), and the 	+ decay photon polarized perpendicularly to
he quantization axis (defined as �H�). The resulting
tom–photon entangled state is �1/3�↓ ��H�+�2/3�↑ ��V�,
here the different prefactors come from the spatial ra-
iation intensity modes for �m=−1 and �m=0 transi-
ions. Although this state is not a maximally entangled
ell state, it is still sufficient for multiatom entanglement
xperiments as shown later.

Figures 1(c) and 1(d) show similar decay schemes,
hich give rise to entanglement between the atomic qubit

ig. 1. Possible schemes for atom–photon entanglement. (a) En-
rgy level diagram for an atom with nuclear spin I=1/2 and
agnetic moment 
I�0. (b) Decay scheme unique to the 2P3/2

evel with two possible decay channels. If the photon is emitted
erpendicularly to the quantization axis, the polarization modes
re linear and orthogonal. (c) Decay scheme consisting of three
ecay channels where viewing along the quantization axis elimi-
ates the photon from the �m=0 decay channel due to the radia-
ion pattern, and the �m= ±1 photons have orthogonal circular
olarizations. (d) Same decay scheme as (c) but viewed perpen-
icularly to the quantization axis. The �m=0 photon decay chan-
el is linear and orthogonal to the �m= ±1 decay channels. After
ecay, the �1,−1� and �1,1� can be coherently combined in the �0,0�
tate establishing the atomic qubit. (e) Two ��m�=1 decay chan-
els with the same polarization comprise a photonic frequency
ubit. The �m=0 photon can be eliminated by a polarizer or by
he radiation pattern if viewed along the quantization axis. (f)
wo �m=0 decay channels with the same polarization and dif-
erent frequencies. Viewed perpendicularly to the quantization
xis, the �m= ±1 photons are eliminated via a polarizer. As de-
cribed in the text, this decay scheme can be used to perform
uantum gates between the atom and the photon. [Note that
ases (c)–(f) also apply to the 2P3/2 levels.] (g) Radiation emission
atterns for the �m=0 and �m= ±1 decay channels defined by a
agnetic field B� .
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nd the photon polarization qubit. In both of these
chemes, the atom is prepared in the 2P1/2 �0,0� (or 2P3/2
2, 0�) state with three decay channels. Along the quanti-
ation axis [Fig. 1(c)], no �m=0 photons are detected due
o the radiation pattern, and the �m= ±1 photons have
rthogonal circular polarizations. The resulting polariza-
ions can be converted into the �H�– �V� basis with a
uarter-wave plate creating the ��↓ ��H�+ �↑ ��V�� /�2 Bell
tate. Similarly, if observed perpendicularly to the quan-
ization axis [Fig. 1(d)], the polarization of the �m=0 de-
ay channel is orthogonal to the �m= ±1 decay channels.
hile this results in populating three atomic levels, �1,

1� and �1,1� can be coherently combined in the �0,0� state
ransferring the population to the clock qubit states.40

In addition to photon polarizations, two resolved fre-
uencies can also be used for the photonic qubit. As com-
ared with polarization qubits, frequency qubits can be
ifficult to manipulate, as it is much more challenging to
eparate and detect frequency components (typically
eparated by a few gigahertz for atomic systems) than to
easure different polarization modes. However, direct
easurement of the photon frequency qubits is possible

y using a Mach–Zehnder interferometer with a path
ength difference equal to c /2��, where �� is the fre-
uency splitting of the photonic qubit. Qubit rotations can
lso be performed by changing the path length difference
f the interferometer. One technical challenge for further
tomic state rotations is synchronization of the photon ar-
ival time with the free evolution of the atomic hyperfine
ubit (1/��=100 ps for ��=10 GHz), which may be fea-
ible using very fast electronics and detectors. However,
irect diagnosis of the photonic qubit is not necessary
hen performing remote-atom entanglement, as will be

hown later.
With remote entanglement, frequency qubits are ex-

ected to be more robust than polarization qubits. Closely
paced frequency components of the same polarization
ave essentially zero dispersion in typical optical paths
nd thus are highly insensitive to phase jitter and bire-
ringence inherent in optical paths.41–47 Furthermore, be-
ause these frequency qubit states have the same spatial
mission patterns, efficient mode matching is possible
ven with an increased collection solid angle.30

One scheme using frequency qubits is shown in Fig.
(e), where an atom prepared in the 2P1/2 �1,1� state de-
ays to the 2S1/2 �1,0� and �0,0� states emitting a photon
ith a single polarization but in a superposition of differ-
nt frequencies. Here, a �-polarized photon to the 2S1/2

1,1� state can be eliminated via a polarizer or by detect-
ng along the quantization axis resulting in the atom–
hoton entangled state ��↑ ���↑�+ �↓ ���↓�� /�2.
While either photonic qubit allows for the creation of

ntanglement between atoms and photons, frequency qu-
its further enable the possibility to propagate prior su-
erposition or entanglement of the atom to the photon,
hich can be used for quantum gates.30 Consider the

etup illustrated in Fig. 1(f), where an atom (of half-
nteger I) is initially prepared in a superposition of the

agnetic field insensitive clock qubit states �F ,mF=0�
�↑ �, and �F+1,mF=0���↓ �. Upon excitation with a
-polarized laser pulse, the atom can be coherently driven
o the corresponding clock qubit states in the excited 2P1/2
evels,48,49 �F�+1,mF�=0���↑��, and �F� ,mF�=0���↓�� re-
pectively, where F�=F. Cross coupling between the levels
↑ �↔ �↓�� and �↓ �↔ �↑�� is prohibited by selection rules. Af-
er spontaneous emission of a �-polarized photon into the
ppropriate mode (with �m= ±1 photons eliminated via a
olarizer), the atom and photon are entangled in the state
↑�↑ ���↑�+c↓�↓ ���↓�, where c↑ and c↓ correspond to the ini-
ial superposition amplitudes of the atom before excita-
ion.

For any of the atom–photon entanglement schemes de-
cribed above, the probability of detecting the entangle-
ent in a given trial is less than unity, Pa–p�pep�1.
ere, pe is the probability of single photon emission

atomic excitation), and p= f�T��
 /4�� is the probability
f a photon being detected in the desired spatial mode,
here f=I�
 / �I� is of order unity and describes the inten-

ity of the atomic emission pattern into the light collec-
ion solid angle �
 compared to the average emission in-
ensity over all space, � is the quantum efficiency of the
ingle-photon detectors, and T is the optical transmission.
his results in an atom–photon entanglement success
ate of Ra–p=Pa–p /Trep, where the repetition time Trep can
e of the order of the excited state lifetime, �.
Ideally, Pa–p could approach unity. The excitation prob-

bility could be near unity by using an ultrafast laser
ulse �pe	1� as discussed in more detail later. One could
lso increase the collection efficiency of scattered photons
y placing the atom within an optical cavity. This could
otentially allow for the collection of all scattered pho-
ons, effectively allowing �
 /4� to approach unity with-
ut sacrificing fidelity.17,22,50,51 Photon detector efficien-
ies can also be near perfect.52–54 Nonetheless, the success
robability on a given trial is assumed in the following
iscussions to be p�1.

. ENTANGLING TWO ATOMIC QUBITS
HROUGH INTERFERENCE OF PHOTONS
toms separated by a distance too large for significant
tom–atom interactions may instead be entangled via
heir emitted photons. Protocols that accomplish this re-
uire the ability to mode match photons produced by two
toms such that, after a BS, the photons from each atom
re indistinguishable.55–57

In one such protocol, proposed by Cabrillo et al.,55 two
toms are each prepared in a known ground state �↓� of a
hree-level � system [Fig. 2(a)]. The two atoms are then
imultaneously weakly driven �pe=��1� to the excited
tate �e� from where the atom will decay either to the
riginal state or to a second ground state �↑�. After the
eak excitation pulse, the two atoms are each in the (un-
ormalized) state �↓ �+���e� or for atoms a and b: ��↓ �a
���e�a� � ��↓ �b+���e�b�= �↓ �a�↓ �b+���↓ �a�e�b+���e�a�↓ �b
��e�a�e�b. For successful atom–atom entanglement, a
ingle photon must be detected from one of the two atoms,
here the detector is only sensitive to the �e�→ �↑ � decay

hannel. If the atomic excitation is sufficiently small such
hat the probability of both atoms emitting a photon is
egligible, �2�2�, then by the projection postulate, after
etection of the single photon, the atoms are in the en-
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angled state ��↓ �a�↑ �b+ei��↑ �a�↓ �b� /�2 where the phase
=k�x comes from the optical path length difference be-

ween each atom and the detector.
One limitation to the entanglement fidelity achievable

ith this protocol is the probability of multiple photon
missions. By choosing ��1, this probability is lowered
ut at the expense of lowering the entanglement success
robability. This protocol also requires that the atoms
ust be well localized such that the path length the pho-

on travels to the detector is known much better than the
avelength of the emitted photon.58,59 Otherwise, the
hase in the final entangled state will be unknown and
ill ruin entanglement. Similarly, if an atom experiences
recoil upon emission, the evidence of which atom emit-

ed the photon will again ruin the entanglement fidelity.
hese last two restrictions, however, may be overcome if
he atoms are localized to well within the Lamb–Dicke
imit.

A more robust two-photon protocol for remote-atom en-
anglement, not requiring localization within the Lamb–
icke limit and insensitive to the photonic phase, was
roposed independently by Duan and Kimble56 and Si-
on and Irvine.57 The atomic energy levels for this ap-

roach are the same as the previous protocol, but the ex-
ited state is prepared with arbitrarily high probability

ig. 2. Entanglement schemes for two remotely located atomic
ubits. (a) In the single-photon protocol by Cabrillo et al. (Ref.
5), each atom is weakly excited with a probability � from the
round state �↓� to the excited state �e�. The photon detectors are
nly sensitive to the �e� to �↑� decay, and a detection of a single
hoton projects the atoms into the entangled state ��↓ �a�↑ �b

ei��↑ �a�↓ �b� /�2. (b) In the two-photon protocol, each atom is pre-
ared in the excited state with two decay channels giving rise to
wo distinguishable photonic qubit states. (c) Detection setup
uitable for either entanglement protocol. With the protocol by
abrillo et al., only one of the two detectors detects a photon;
hereas the two-photon protocol requires coincident detection on

ach detector projecting the atoms into the entangled Bell state
�−�atom= ��↑ �a�↓ �b− �↓ �a�↑ �b� /�2. (d) Alternative setup when using
olarization qubits in the two-photon protocol. Coincident detec-
ion between D1 and D3 or D2 and D4 projects the atoms into the
tate ��−�atom, whereas coincident detection between D1 and D2
r D3 and D4 results in ��+�atom= ��↑ �a�↓ �b+ �↓ �a�↑ �b� /�2.
nd requires the coincident detection of two photons, one
rom each atom [Fig. 2(b)]. The excited state has two de-
ay channels with distinguishable photonic qubit modes—
ither polarization or frequency modes. After simulta-
eous excitations, the atoms each emit a single photon
nd are in the state:

1
2 ��↓�a��↓�a + �↑�a��↑�a� � ��↓�b��↓�b + �↑�b��↑�b�

= 1
2 ���+�atom��+�photon + ��−�atom��−�photon

+ ��+�atom��+�photon + ��−�atom��−�photon�, �2�

here ��↓� and ��↑� represent the photonic qubit, and
�±�atom= ��↑ �a�↓ �b± �↓ �a�↑ �b� /�2, and ��±�atom= ��↑ �a�↑ �b

�↓ �a�↓ �b� /�2 are the maximally entangled Bell states for
he atoms (with similar definitions for the photons). If the
wo photon modes are matched on a 50/50 BS, then they
ill exit on different ports only if they are in the antisym-
etric state ��−�photon= ���↑�a��↓�b− ��↓�a��↑�b� /�2 respect-

ng the symmetry of the overall photonic wave function.60

herefore, coincident photon detection in the two output
orts of this BS projects the atoms into ��−�atom [Fig. 2(c)].
dditionally, with a polarizing BS placed in either output
ort, it is possible to detect the (polarization qubit) pho-
ons in the state ��+�photon thus projecting the atoms into
he state ��+�atom [Fig. 2(d)]. For the other two photonic
ell states ��±�photon, both photons always go to one detec-

or and thus cannot herald a unique entangled state of
he atoms.57

For high fidelity atom–atom entanglement, it is impor-
ant to emit only a single photon from each atom. With
tom–photon entanglement, good entanglement fidelities
an still be obtained using weak cw excitations, where the
robability of spontaneously emitting two photons is p2e
pe

2 /2. Hence, when detecting a single photon, the prob-
bility of a second emitted photon, potentially affecting
he fidelity of the entanglement, is only pe /2. However, in
he two photon atom–atom entanglement protocol, the
robability of two photons being detected from one atom
s of the same order as detecting two photons from differ-
nt atoms (discussed in more detail in the next section).
mitting only a single photon requires the excitation
ulse duration to be much shorter than the excited state
ifetime and allows for p2e→0. In addition to eliminating

ultiple excitations, a fast excitation pulse can also allow
or near-unit-excitation probability �pe	1�, which can
ead to a significant increase in entanglement success
robability.
With the right parameters, one could allow for quan-

um gates between the atoms using this protocol.30 For
his, the choice of pulse length (bandwidth) must allow for
nique simultaneous excitation of all hyperfine states.30

herefore, the pulsed laser bandwidth needs to be larger
han the largest hyperfine splitting but smaller than the
ne structure splitting to eliminate coupling to the differ-
nt excited state levels (Fig. 3).

Since the probability of detecting a single emitted pho-
on is typically low, the requirement to detect two such
hotons can make this protocol significantly slower than
he single-photon protocol. However, with the possibility
o considerably increase the effective photon collection
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olid angle via an optical cavity, the latter approach can
e comparable in success probability (or even greater if
he atoms are excited with unit probability) due to the in-
rinsic limitation of pe�1 in the single-photon protocol.

. COUPLING PHOTON MODES WITH A
EAM SPLITTER
he central component of the photonic coupling used to
ntangle atomic qubits is the interference of photons on a
S. This involves single photons entering the two input
orts of the BS as shown in Fig. 4. If the spatial and tem-
oral modes of the two photons coincide on the BS, there
re two indistinguishable ways for the photons to emerge
n separate output ports: both photons are transmitted
hrough the BS, and both photons are reflected from the
S [Figs. 4(d) and 4(e)]. It is the destructive interference
f these two amplitudes60 that can project the atoms into
n entangled state.
We consider the general interference of two photonic
odes on a BS, which can be conveniently described by

ffective angular momentum rotation operators.61 As
hown in Fig. 4(a), spatial modes a and b are depicted by
he two straight paths through the BS, and the BS trans-
ers photons between these two modes. Given n and m
hotons in respective modes a and b before the BS, the
ction of the BS is identical to rotations within an effec-
ive J=N /2 angular momentum system where N=n+m.
ormally, the two-mode input state �n�a�m�b evolves to

�n�a�m�b → e−i�Ĵy�n�a�m�b, �3�

here the rotation angle � is � times the reflectivity R of
he lossless BS, and Ĵy=−i�â†b̂− âb̂†� /2.61 The photon an-
ihilation and creation operators, â and â† for modes a

ig. 3. Energy levels (not to scale) and laser bandwidth require-
ents for the generation of a high efficiency single-photon source

atomic values shown are for 111Cd+). For simultaneous excita-
ion of all hyperfine states, the bandwidth of the laser pulse must
e much larger than the largest hyperfine splitting but smaller
han the fine structure splitting to eliminate coupling to the dif-
erent excited state levels. To eliminate multiple scatters, the
ulse duration must be much smaller than the excited state life-
ime (have a bandwidth much larger than the linewidth of the
xcited state).
nd b̂ and b̂† for mode b, follow the usual bosonic commu-
ation relations 
â , â†�= 
b̂ , b̂†�=1.

We write down the evolution of two-mode photonic
tates for up to N=2 total photons using angular momen-
um rotation matrices.62 Obviously, the trivial case of N
0 photons does not evolve. For a total of N=1 photon in

he two input modes, we find that the equivalent spin-1/2
ystem evolves as

��0�a�1�b

�1�a�0�b

 → � cos

�

2
sin

�

2

− sin
�

2
cos

�

2
���0�a�1�b

�1�a�0�b

 . �4�

or N=2 photon input states, we similarly find

�
�0�a�2�b

�1�a�1�b

�2�a�0�b
� → �

1

2
�1 + cos ��

1

�2
sin �

1

2
�1 − cos ��

− 1

�2
sin � cos �

1

�2
sin �

1

2
�1 − cos ��

− 1

�2
sin �

1

2
�1 + cos ��

�
��

�0�a�2�b

�1�a�1�b

�2�a�0�b
� . �5�

As discussed previously, when an atom emits a photon,
ttributes of the photon (e.g., polarization or frequency)
an become entangled with the atomic qubit, spanned by

ig. 4. (a) Spatial modes a and b are straight paths through the
S, and the BS interferes with these two modes. (b)–(e) Four pos-
ible output modes of two photons entering a BS from different
orts. A negative phase is acquired only upon reflection from low
o high index of refraction—mode a in (c) and (e).
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he atomic qubit states �↓� and �↑�. This internal degree of
reedom of the photon (photonic qubit) is represented by
he two states q=� ,� in a given spatial mode s=a ,b. We
egin with a description of the quantum state of a single
tomic qubit and the photonic mode into which the atom
mits, including various imperfections such as back-
round light and multiple atomic excitations. We then ex-
end this situation to the case of two atoms whose emitted
hotons interact on a BS following the above transforma-
ions.

A single atom is prepared in its excited state with exci-
ation probability pe, given one of the atomic level
chemes in Fig. 1, with a probability of double sequential
xcitation p2e�pe. For a weak excitation pulse of duration
e��, pe�1, and p2e=pe

2 /2, while for an ultrafast excita-
ion where te��, we expect p2e	 te /��pe

2 /2. Given that
he atom is excited, the probability p that a single photon
s detected in mode s is determined by the overlap be-
ween the atomic emission mode and spatial mode s in ad-
ition to transmission losses and the detection efficiency
s discussed previously. (We assume that p�1, but this
nalysis applies equally well to cases where p�1, appro-
riate for cavity-QED setups, where the atom preferen-
ially emits into mode s.) The desired (postselected) atom–
hoton entangled state is of the form

��ent� = cos �s�↓�s�0�s
��1�s

� + sin �s�↑�s�1�s
��0�s

�, �6�

here �n�s
q is a state of n photons in spatial mode s and

nternal photonic qubit state q. The parameter �s depends
n the particular excitation scheme (Fig. 1) and is usually
ear � /4. For ultrafast excitation schemes, �s may de-
cribe the initial atomic qubit state that is mapped onto
he atom–photon entangled state.30,49 After a repetition
ime Trep long enough for the spontaneous emission of a
hoton, the complete quantum state of the atom–photon
ystem is a mixed state of several alternatives with re-
pective probabilities given in Table 1.

The first term in Table 1 corresponds to the typical case
f zero photons in either qubit state � or qubit state � re-
ulting in a random atomic qubit state �M�s= �↓ �s or �↑ �s,

Table 1. Mixed Quantum State of a Single Atom a
Longer than the Spontaneou

uantum State Probabili

M�s�0�s
��0�s

� 1−ppe−p
os �s�↓ �s�0�s

��1�s
�+sin �s�↓ �s�1�s

��0�s
� ppe

M�s�0�s
��1�s

� 1
2ppbg

M�s�1�s
��0�s

� 1
2ppbg

M�s�0�s
��2�s

� 1
4p2pbg

2

M�s�2�s
��0�s

� 1
4p2pbg

2

M�s�1�s
��1�s

� 1
2p2pbg

2

os �s�↓ �s�1�s
��1�s

�+sin �s�↓ �s�2�s
��0�s

� 1
2p2pepbg

os �s�↓ �s�0�s
��2�s

�+sin �s�↓ �s�1�s
��1�s

� 1
2p2pepbg

M�s�0�s
��1�s

� pp2e

M�s�1�s
��0�s

� pp2e

M�s�0�s
��2�s

� 1
4p2p2e

M�s�2�s
��0�s

� 1
4p2p2e

M�s�1�s
��1�s

� 1
2p2p2e

aThe atomic qubit is represented by states �↑ �s and �↓ �s ��M�s is an equal mixture
tates � and �. The lowest-order possibilities are listed with their associated probab
hile the second term corresponds to the desired creation
f entanglement between the atomic qubit and a single
hotonic qubit. The remaining terms are errors occurring
rom background events (background light entering the
hotonic mode) with probability ppbg and multiple excita-
ion events with probability pp2e and p2p2e corresponding
o the detection of one or both emitted photons, respec-
ively. Here, pbg�1 is the ratio of background photons to
tomic fluorescence photons detected in time Trep. These
rror events are assumed to have an effective 50% chance
f populating either photonic qubit state � or photonic qu-
it state � of spatial mode s, and multiple excitations are
ssumed to result in a random mixed state �M�s= �↓ �s or
↑ �s. The error states listed are the lowest-order possibili-
ies in their respective probabilities �p ,pbg ,p2e�1�.

When each of two atom–photon systems is indepen-
ently and simultaneously prepared in the above form,
he photonic part of these states can be interfered on a
S, and subsequent detection of the photons after the BS
an project entanglement between the atoms. We now de-
cribe the quantum state of the atoms and photons after
he BS under the assumption that only photons with
dentical internal modes � or � (e.g., the two states of po-
arization or frequency) interfere on the BS according to
he transformations in Eqs. (4) and (5). In general, we as-
ume that the two atoms are prepared in unique en-
angled superpositions with their photons represented by
he two angles �a and �b. Anticipating the postselection of
tates that result in two photons leaving the BS in dis-
inct modes (either in separate spatial modes or in the
ame spatial mode but with distinct internal modes), we
rite down only those states and their associated prob-
bilities after time Trep in Table 2.
In Table 2, the desired atom–atom entangled states are

�����ab = N1�cos �a sin �b cos2
�

2
�↓�a�↑�b

− sin �a cos �b sin2
�

2
�↑�a�↓�b
 , �7�

Single Photon of Spatial Mode s after Time Trep
ission Lifetime of the Atoma

Description

No photons
Good photon
Background photon
Background photon
Background photons
Background photons
Background photons
Background+good photons
Background+good photons
Double-excitation photon
Double-excitation photon
Double-excitation photons
Double-excitation photons
Double-excitation photons

wo atomic qubit states�, and the photon mode can support photons of internal qubit
nd a
s Em

ty

pbg

of the t
ilities.
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�����ab = N2�cos �a sin �b sin2
�

2
�↓�a�↑�b

− sin �a cos �b cos2
�

2
�↑�a�↓�b
 , �8�

�����aa = N3
�cos �a sin �b�↓�a�↑�b

+ sin � cos � �↑� �↓� �sin ��, �9�

Table 2. Mixed Quantum State of Two Photon Mode
Systems are Prepared According to Table

hotonic State Atomic State Probabili

�0�a
��1�a

�� ��1�b
��0�b

�� �����ab p2pe
2�cos2

�M�a�M�b p2�1
4

pbg
2 �1

+p2epbg

�+
1
4

p2e

�1�a
��0�a

�� ��0�b
��1�b

�� �����ab p2pe
2�cos2

�M�a�M�b p2�1
4

pbg
2 �1

+p2epbg

�+
1
4

p2e

�1�a
��1�a

�� ��0�b
��0�b

�� �����aa 1
4

p2pe
2�cos

�M�a�M�b 1
2

p2
1
2

pbg
2

�0�a
��0�a

�� ��1�b
��1�b

�� �����bb 1
4

p2pe
2�cos

�M�a�M�b 1
2

p2
1
2

pbg
2

�0�a
��1�a

�� ��0�b
��1�b

�� �↓ �a�↓ �b p2pe
2 cos2

�M�a�M�b p2�1
4

pbg
2 +

�+p2e
p

�1�a
��0�a

�� ��1�b
��0�b

�� �↑ �a�↑ �b p2pe
2 sin2

�M�a�M�b p2�1
4

pbg
2 +

�+p2e
p

aThe BS has reflectivity R=� /�, and only those states with two single photons
esses in the probabilities p, pbg, and p2e are not listed.
a b a b
�����bb = �����aa, �10�

here Ni are normalization constants. The first two
tates are correlated with single photons emerging in the
wo different BS spatial modes a and b having opposite
hotonic qubit states, and the last two states are corre-
ated with single photons emerging in the same output
ort of the BS again with opposite photonic qubit states.
s shown in Fig. 2(d) for the case of polarization photonic
ubit states, these four outcomes can be uniquely deter-

Two Atomic Qubits Given that Two Atom–Photon
the Photon Modes are Coupled on a BSa

�b cos4
�

2
+sin2 �a cos2 �b sin4

�

2 �
� �+

1
2

pbgpe
1+ �cos 2�a−cos 2�b�
cos �

2 ��
2 � �+p2epe
1−

sin2 �

2
+ �cos 2�a−cos 2�b�

cos �

2 �

�b sin4
�

2
+sin2 �a cos2 �b cos4

�

2 �
� �+

1
2

pbgpe
1− �cos 2�a−cos 2�b�
cos �

2 ��
2 � �+p2epe
1−

sin2 �

2
− �cos 2�a−cos 2�b�

cos �

2 �

2 �b+sin2 �a cos2 �b�sin2 �

2 � �+pbgpe+p2e�pbg+pe�sin2 �+p2e�1−
sin2 �

2 ��
2 �b+sin2 �a cos2 �b�sin2 �

2 � �+pbgpe+p2e�pbg+pe�sin2 �+p2e�1−
sin2 �

2 ��
�b cos2 �

�cos2 �a+cos2 �b��1+cos2 ���
cos2 �a+cos2 �b��cos2 �+

1
4

p2e sin2 ��
�b cos2 �

�sin2 �a+sin2 �b��1+cos2 ���
sin2 �a+sin2 �b��cos2 �+

1
4

p2e sin2 ��
in distinct modes are written with their associated probabilities. Higher-order pro-
s and
1 and

ty

�a sin2

+
sin2

2

�1−
sin

2

sin2 ��
�a sin2

+
sin2

2

�1−
sin

2

sin2 ��
2 �a sin

�2−
sin

2

2 �a sin

�2−
sin

2

�a cos2

1
4

pbgpe

bg+pe�

�a sin2

1
4

pbgpe

bg+pe�

emerging
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ined by separating the photonic qubit states at the out-
ut of each BS output port and triggering on the relevant
wo-photon coincidence event.

For a 50/50 BS ��=� /2�, the above states simplify to
ne of the following entangled states:

��ent�diff = N�cos �a sin �b�↓�a�↑�b − sin �a cos �b�↑�a�↓�b�,

�11�

��ent�same = N�cos �a sin �b�↓�a�↑�b + sin �a cos �b�↑�a�↓�b�,

�12�

here N is a normalization constant, and the subscripts
diff” and “same” refer to cases where the two photons
merged in different spatial modes or the same spatial
ode but separate photonic qubit states. This postselec-

ion process can amount to a measurement gate between
he two atoms originally prepared in arbitrary states
iven by �a and �b.30 For �a=�b (identically prepared at-
ms), the above states simplify to the odd-parity Bell
tates ��−�atom= ��↓ �a�↑ �b− �↑ �a�↓ �b� /�2 and ��+�atom

��↓ �a�↑ �b+ �↑ �a�↓ �b� /�2, respectively.
When the BS is not exactly 50/50 ���� /2�, the result-

ng errors can limit the fidelity of the gate or the en-
angled state. By detecting all possibilities of photonic
utput states, a biased BS can be diagnosed by the ap-
earance of events with identical photonic qubit states
merging in distinct BS output ports (last two rows of
able 2) assuming that errors from background counts or
ouble-excitation events are rare. In the following, we
herefore assume that the BS is unbiased ��=� /2�.

Including noise from background counts and double ex-
itations, we find that when two photons are detected in
oincidence in the desired output ports of the BS (for ei-
her the ��ent�diff or the ��ent�same state), the postselected
ixed state of the two atoms alone becomes

�post = Pgood��ent���ent� + Pbad�MaMb��MaMb�, �13�

here the probabilities of a desired entangled state Pgood
nd the noisy mixed state Pbad are given by

Pgood =
1

4
p2pe

2�cos2 �a sin2 �b + sin2 �a cos2 �b�, �14�

Pbad =
p2

2 �pbg�3

4
pbg + pe
 + p2e�pbg + pe +

1

2
� .

�15�

he above probabilities do not add to one because they are
elative to the (most probable) null case of not detecting
hotons in each of the output modes of the BS. Neverthe-
ess, we can calculate a lower limit on the fidelity of the
eralded entangled atomic qubit state most importantly
or the maximally entangled Bell states ��−�atom and
�+�atom ��a=�b=� /4�. Noting that the fidelity of the ran-
om mixed state �MaMb� is 1/4, we find that the fidelity of
he postselected state is
F =
Pgood + 1

4Pbad

Pgood + Pbad

=
pe

2 + 
pbg� 3
4pbg + pe� + p2e�pbg + pe + 1

2��
pe

2 + 4
pbg� 3
4pbg + pe� + p2e�pbg + pe + 1

2��
. �16�

ne criterion for the generation of entanglement is that
he fidelity be greater than 1/2, which leads to the condi-
ion that Pgood�Pbad/2, or pe

2�2pbg� 3
4pbg+pe�+2p2e�pbg

pe+ 1
2 �. It is clear that when using a weak excitation

ulse of duration te��, the entanglement fidelity is se-
erely limited �Pbad�Pgood�, since p2e=pe

2 /2. However,
hen using ultrafast excitation pulses such that pe→1
nd p2e→0, only the background photons can affect the
esulting fidelity: F	1−3pbg.

. EXPERIMENTS WITH PHOTON
OLARIZATION QUBITS
hile matter–light entanglement has been implicit in
any experimental systems over the past few

ecades,58,63–77 the first system with sufficient control for
irect measurement of entanglement between matter and
ight was the trapped ion system.73,74 In this system, a
hoton is spontaneously emitted from a single trapped
tomic ion, which is initially excited to a state with two
ecay channels, resulting in photons of different polariza-
ions [Fig. 1(b)].

A diagram of the relevant energy levels and a descrip-
ion of the experiment with a single 111Cd+ ion is shown in
ig. 5. First, the ion is optically pumped to the 2S1/2 �0,0�
tate followed by a microwave pulse that drives the popu-
ation to �1,0�. From here, an approximately 50 ns pulse of
+-polarized laser light resonant with the 2S1/2
=1↔ 2P3/2 F=2 transition weakly excites the ion to the

2P3/2 �2,1� state, which has a radiative lifetime of
.65 ns.78 As described earlier, the ion decays via two
hannels to the ground state and if viewed perpendicu-
arly to the quantization axis creates the entangled state
1/3�H��↓ �+�2/3�V��↑ �.
The collected light passes through a � /2 wave plate for

olarization rotation, and the resulting polarization state
s measured by a polarizing BS and two photomultiplier
ubes (PMTs). Upon the detection of a photon on either
MT, manipulation of the ion is performed. First, the qu-
it is transferred to the clock states via a microwave pulse
riving the �1,1� population to the �0,0���↑̃� state. A sec-
nd microwave pulse resonant with the �↓ �↔ �↑̃� transi-
ion with adjustable phase and pulse length subsequently
otates the atomic qubit to any desired measurement ba-
is, and the resulting state is measured with a
+-polarized laser pulse via standard trapped ion reso-
ance fluorescence techniques.79,80 The resulting fidelity

s measured to be �87%. Factors contributing to the re-
ulting fidelity compared to the possible 97% include:
ultiple excitations of the ion during the cw pump pulse

2.5%), mixing of photon polarizations due to the nonzero
olid angle (0.5%), imperfect atomic and photonic qubit
otations (1.5%), background PMT counts leading to false
ositives (5%–10%), and imperfections in the polarization
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ptics (3%). Since the qubit is transferred to the clock qu-
it states right after photon emission, we estimate that
agnetic field fluctuations affect the atomic qubit fidelity

y �1%. When combined, these sources of error are con-
istent with the observed fidelity.

As mentioned above, this entanglement generation is a
robabilistic process. With the cw excitation scheme, the
robability of emitting a single photon in each trial is re-
tricted to pe�0.1 to suppress multiple excitations. The
esulting success probability is Pa–p=pe�T��
 /4��= �0.1�
�0.2��0.4��0.02��1.6�10−4. The experiment repetition

ate is R=1/Trep=104 s−1 resulting in an entanglement
eneration rate Ra–p=Pa–pR�1.6 s−1, but improvements
uch as higher excitation probability using an ultrafast
aser pulse and an increased repetition rate significantly
ncrease this yield.

. EXPERIMENTS WITH PHOTON
REQUENCY QUBITS

n a recent experiment, indirect evidence of the entangle-
ent between an atomic qubit and a photon frequency qu-

it was demonstrated in the cadmium ion system.49 A dia-
ram of the relevant energy levels and a description of the
xperiment are given in Fig. 6. First, the ion is optically

ig. 5. Experimental procedure for atom–photon entanglement
ith photon polarization qubits (Refs. 73 and 74). (a) The atom is

nitialized to the �1,0� state via optical pumping to the �0,0� state
nd a microwave transfer pulse. (b) The atom is driven to the
P3/2 �2,1� excited state resulting in spontaneous emission via two
hoton decay channels of orthogonal polarizations when viewed
erpendicularly to the quantization axis. The resulting en-
angled state is �1/3�H��↓ �+�2/3�V��↑ �. (c) Microwave �
wave�
ulse resonant with the �1,1�↔ �0,0� transition coherently trans-
ers the population to the clock qubit states. (d) Second micro-
ave pulse prepares the atomic qubit for measurement in any
asis. (e) 	+-polarized laser pulse performs the state detection of
he atomic qubit using resonance fluorescence techniques.
umped to �0,0���↑ �, and a microwave pulse prepares
he ion in the state ��↓ �+ �↑ �� /�2 [Fig. 6(a)].

Next, a single �-polarized ultrafast laser pulse coher-
ntly drives the superposition to the clock states in the

2P3/2 manifold with near-unit probability—similar to the
cheme described in Section 2 [Fig. 1(f)]. The coherence

ig. 6. Experimental procedure for atom–photon entanglement
ith photon frequency qubits (Ref. 49). (a) The ion is initialized

n the state ��↓ �+ �↑ �� /�2 via optical pumping to the �0,0� state
nd a microwave � /2 pulse. (b) Superposition of atomic qubit
tates is coherently driven to the 2P3/2 excited state via a reso-
antly tuned �-polarized ultrafast laser pulse. (c) Second pulse
rives the qubit back to the ground state a short time later. (d)
econd � /2 microwave pulse with variable phase completes the
amsey experiment, and the atomic state is measured using a

esonance fluorescence technique. (e) Results from the micro-
ave Ramsey experiment. Circles show the near perfect Ramsey

ringes for the case with no ultrafast laser pulse. With a single
ltrafast laser pulse, the coherence is lost due to the spontaneous
mission of a photon that is not measured in a controlled, pre-
isely timed fashion (squares). The average population in the
right state is above 0.5 due to the fluorescence branching ratios
Fig. 10 (inset)]. Upon application of a second ultrafast laser
ulse, the coherence in the ion is maintained by driving the qubit
tates back down to the ground states (triangles).
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n this excitation scheme is demonstrated using a micro-
ave Ramsey experiment. In the absence of ultrafast la-

er pulses, the Ramsey contrast is essentially perfect. Fol-
owing the application of the ultrafast laser pulse, the
tom is driven to the excited state. The excited atom then
pontaneously decays, and without precise measurement
f the photon polarization, frequency, and emission time
with respect to the 14 GHz frequency qubit separation)
he coherence is lost, as seen in Fig. 6(e). The uncon-
rolled measurement of the photon results in tracing over
he photon portion of the density matrix, and the result-
ng loss in contrast is consistent with prior ion–photon en-
anglement.

To show that the excitation pulse is indeed coherently
riving the superposition to the excited state, the Ramsey
oherence is recovered by driving the ion back down to the
round state before spontaneous emission occurs [Fig.
(c)]. With a pair of picosecond laser pulses incident on
he ion between the microwave pulses, the contrast reap-
ears with a phase shift proportional to the time �t spent
n the excited state and the hyperfine frequency differ-
nce between the ground and excited state levels: �t��0
�1�= �680 ps��13.9 GHz�=18.9� [Fig. 6(e)]. The observed
ontrast is only 40% of the contrast without ultrafast la-
er pulses due to limited laser power in the second pulse
nd spontaneous decay �	23% � during the delay time be-
ween the ultrafast pulses.

. REMOTE ATOM ENTANGLEMENT
XPERIMENTAL PROGRESS
. Two-Photon Interference
nce two atoms are entangled with their respective pho-

ons, the next step for remote atom entanglement is the
nterference of the photon modes from each atom on a BS.
rogress toward this end has been recently
emonstrated.81,82 In the cadmium ion system, two ions
re placed in a trap and a BS setup is used to interfere
he emitted photons (Fig. 7). In this setup, light scattered
y the two ions is collected using an f /2.1 objective lens
ith a working distance of 13 mm. A pinhole is placed at

he intermediate image for suppression of background
hotons and the intermediate image is reimaged by a dou-
let lens. The image is then broken up into two paths by a
S, and the transmitted and reflected beam pairs are di-
ected to a second BS where the light from each ion is su-
erimposed. Irises are used to block the unwanted beams,

ig. 7. Detection system for the two-photon interference experi-
ent. The light from the two ions is separated on a BS and mode
atched on the second BS. The photons are detected on single-

hoton sensitive PMTs. A camera is used for coarse alignment,
nd the nonoverlapping photon modes are blocked by irises.
nd the overlapping beams are directed to PMTs with a
ime resolution of 	1 ns.78 The equal path lengths of the
ransmitted and reflected beams ensure that the photons
mitted by two ions are mode matched in size and diver-
ence. Coarse alignment is performed by imaging the
ight after the second BS on a single-photon sensitive
amera, where the overall magnification of the imaging
ystem is 	1000, and the diffraction-limited images of the
wo ions are separated by 2 mm, each with a spot size of
.5 mm.
To demonstrate two-photon interference, first, the pho-

on statistics of a single ion excited by a 	+-polarized cw
aser is investigated (dashed curve in Fig. 8). In this case,
he g�2� autocorrelation function shows the expected
amped Rabi oscillations83,84 between the 2S1/2 �1,1� and

2S3/2 �2,2� levels. It is unlikely that two photons are emit-
ed from one ion in close proximity, since after emission of

single photon, the ion is assured to be in the ground
tate. The maximum observed antibunching for the single
on is g1

�2��0�=0.18 as expected for the time resolution of
he PMTs.82

Next, two ions are equally illuminated and purpose-
ully not mode matched on the BS. In this case, half of the
ignal results from two photons from the same ion, and
he other half results from one photon from each ion.
ince these photon modes are not matched on the BS, the
etected photons are uncorrelated. We therefore expect a
educed antibunching, g2,um

�2� �0�= 1
2 
1+g1

�2��0���0.59, in
greement with the measurement [dotted curve in Fig. 8].
If the photon modes from each ion are matched on the

S, then the photons always leave on the same output
ort, and thus no coincident detections are observed.85

he suppression of coincidence events is clearly visible in
he autocorrelation signal of the mode-matched ions (solid
urve in Fig. 8) and has a measured g2,m

�2� �0� of 0.31. This
orresponds to an interference signal of 	57% (amplitude

ig. 8. Intensity autocorrelation for cw excitation. The dashed
urve shows strong antibunching for a single ion with g1

�2��0�
0.18 limited by the resolution of the detection system. With this
alue, the expected antibunching of light from two nonoverlap-
ing ions is expected to be g2,um

�2� �0�=0.59 in good agreement with
he experimental value (dotted curve). If the two-photon modes
re matched, the interference leads to a significant reduction of
oincidence detections (solid curve). The measured antibunching
as g2,m

�2� �0�=0.31 corresponding to a mode overlap of 	57%.
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atching of 75%) and compares well to the results ob-
erved in Ref. 81. This mode overlap is not ideal and is
ikely due to phase front distortions from the two atomic
ources as they sample different parts of many optical
urfaces before finally interfering on the BS.

To entangle two remotely located atoms, it is likely nec-
ssary to use single-mode optical fibers. This is because
nterfering the two photon modes requires very high sta-
ility of the atom and collection optics with respect to the
S, as well as good spatial mode matching from the two

maging systems. With free-space mode matching, any
elative motion of the trapped atoms and the imaging op-
ics can ruin the entanglement fidelity by producing false
ositive detection events, while in the fiber coupled case,
ffects such as mechanical vibrations and thermal drifts
ill simply lower the rate of coincidence counts (ignoring
ark counts). In the cadmium system, however, the spon-
aneously emitted photons are deep in the ultraviolet at
14.5 nm, where it is very difficult to use optical fibers.

. Single-Photon Sources
t is important for the atoms to emit only a single photon
uring an entanglement trial especially with remote-
tom entanglement. Such a single-photon source was re-
ently demonstrated in our laboratory by optically excit-
ng a single cadmium ion using a picosecond mode-locked
i:sapphire laser.82 This laser is tuned to 858 nm and is
ent through a pulse picker to reduce the repetition rate
rom 81 to 27 MHz with an extinction ratio of better than
00:1 in the infrared. The pulses are frequency qua-
rupled through single-pass nonlinear crystals, and the
esulting 214.5 nm laser pulses have a pulse extinction
atio near 10−8 and a transform-limited pulse width of
1 ps. This allows for the excitation of the ion on a time

cale much faster than the 2.65 ns excited state lifetime.
The single ion is repeatedly excited with the pulsed la-

er resulting in a periodic emission of photons at the laser
ulse separation time of 37.5 ns, and the intensity auto-
orrelation function of the photons is recorded using a
ultichannel scaler (Fig. 9). The half-width of each peak

s given by the excited state lifetime, and the peak at zero

ig. 9. Intensity autocorrelation of the light emitted by a single
on excited by an ultrafast laser. The near-perfect antibunching
t t=0 shows that at most one photon is emitted from an excita-
ion pulse.
ime delay corresponding to coincidentally detected pho-
ons is almost entirely suppressed. This near-perfect an-
ibunching is highly nonclassical and demonstrates that
t most one photon is emitted from the ion following an
xcitation pulse (limited by the possibility of emitting and
etecting a photon during the excitation pulse �10−6).
he residual peak at zero time delay has a height of 	2%
f the other peaks, originating from diffuse scattered light
rom the pulsed laser. With fast electronics, this residual
eak could be identically zero by vetoing photons emitted
uring the picosecond laser pulse.
The use of ultrafast lasers also allows for unit-

robability excitation �pe	1� while maintaining a single-
hoton source. This corresponds to performing a Rabi �
ulse on the optical S–P transition. We observe optical
abi flopping by measuring the Rabi angle as a function
f pulse energy.

In the experiment, the Rabi angle is measured by pre-
aring the ion in a known initial ground state and apply-
ng a single excitation pulse of known polarization.49 With
nowledge of the fluorescence branching ratios and the
bility to perform efficient state detection, Rabi flopping
ith the pulsed laser can be detected using every laser
ulse with a high signal-to-noise ratio (Fig. 10). An alter-
ative method would be to detect the photon scattering
ate from an ion as a function of the pulse energy, where
abi angles with an odd (even) multiple of � would have a
aximum (minimum) of scattered photons as the ion
ould be left in the excited (ground) state at the end of
ach pulse.86

ig. 10. Ion bright state population as a function of pulse en-
rgy. Each point represents a collection of 60,000 runs. As the
opulation in the excited P state is driven to unity, the bright
tate population approaches 1/3 (horizontal dashed line) deter-
ined by the spontaneous emission branching ratio. The data

re fit to a single parameter giving a value a=0.42 pJ−1/2. Inset:
elevant energy levels for the S–P Rabi oscillation experiment.

�-polarized ultrafast laser pulse excited the ion from the
round state to the excited state with variable energy. The three
ossible decay channels are shown with their respective fluores-
ence branching ratios. After a time �10 
s� following the excita-
ion pulse, the bright state population of the ion was measured
sing resonance fluorescence detection.
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In the experiment, the ion is prepared in the �0,0�
round state through optical pumping.87 A single linearly
olarized picosecond laser pulse excites the ion on the P3/2

1,0� state. After a time �10 
s�, much longer than the ex-
ited state lifetime, the ion has decayed back to the S1/2
round-state levels via spontaneous emission following
he fluorescence branching ratios. The atomic ground
tates are then measured using resonance fluorescence
etection, where all three F=1 states are equally bright,
hile the F=0 state is dark79,80,88 with the results shown

n Fig. 10. The available power from the pulsed laser lim-
ts the Rabi rotation angle to roughly �, and the data
gree well with the estimates based on the beam waist,
ulse length, and pulse shape.49 The probability of mea-
uring the bright state is equal to 1/3 the probability of
xcitation to the excited state as follows from the CG co-
fficients [Fig. 10 (inset)]. Hence, we have shown that
nit excitation and single-photon emission can be
chieved with ultrafast laser pulses.

. SCALING TO COMPLEX QUANTUM
ETWORKS
. Deterministic Quantum Computation and Quantum
epeaters
s the number of atoms grows within a trap used for a
uantum register, so too does the complexity of the sys-
em. While there is progress in constructing more elabo-
ate atom traps capable of deterministically separating
nd shuttling atoms,23–26 an alternative approach is to
eep traps relatively simple and have the atoms remain
n a given trapping zone, where the necessary atomic mo-
ional control is relaxed. This approach requires the abil-
ty to interconnect different zones via photon-mediated
ntanglement (Fig. 11).

Recent progress has shown that remote deterministic
uantum gates can be constructed for remotely located at-

ig. 11. Entanglement device capable of entangling multiple at-
ms simultaneously using micromirror arrays (Ref. 89). Any pair
f atoms can be entangled by routing the emitted photon from
ach atom to a BS, where single-photon detections can project
he atoms into an entangled state. Parallelism is possible with
his setup for N atoms with 2N mirrors and N /2 BS pairs.
ms even with the use of probabilistic entanglement.90

ven though the entanglement is probabilistic, it is her-
lded, and one can simply repeat the procedure until the
etectors announce the creation of the entangled pair of
toms. Once successful, the entanglement shared by the
wo atoms can be further used with local deterministic
ates within each trapping zone.

One approach to scalable quantum computation based
n probabilistic entangling gates is to have an array of
rapping zones, each containing two atoms—a logic atom
nd an ancilla atom denoted as i and i�, respectively [Fig.
2(a)].90 The purpose of the logic atoms is to encode all
uantum information, and the ancilla atoms, linked using
he probabilistic entangling protocol, are used as a quan-
um bus. Once successful entanglement between the an-
illa atoms is established, conventional local determinis-
ic gates allow for an effective quantum gate between the
wo logic atoms. The resulting logic gate is deterministic,
ecause the quantum information stored within the logic
toms is not affected by unsuccessful attempts to en-
angle the ancilla atoms. This can be assured by either
patial separation of the logic and ancilla atoms so that
aser operations on one atom do not affect the other or by
sing different atomic species,91–93 where the two atoms
ould be in very close proximity, since light resonant for
perations on one atom would not affect the other.

ig. 12. (a) Schematic of the quantum computation model based
n probabilistic photon-mediated entanglement between atoms.
he ancilla atoms �i� , j�� are entangled through the probabilistic
rotocols described in the text, and deterministic gates on the
ogic atoms �i , j� are constructed from local motional gates and
robabilistic remote ancilla entanglement. (b) Schematic of quan-
um repeaters with trapped atoms based on probabilistic remote
ntanglement and local Coulomb interactions.
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There are four necessary steps to create deterministic
emote atom entanglements: (1) attempt entanglement of
he ancilla atoms until successful, (2) apply local deter-
inistic motional controlled-NOT (CNOT) gates on each

ogic–ancilla pair, (3) measure the ancilla atoms in the ap-
ropriate bases, and (4) apply single-qubit rotations to
he logic atoms based on the measurement results. The
peed of each four-step procedure is limited by the first
tep. With a probability of successful entanglement Pa–a
of order p2pe

2), the average time for completion of the re-
ote CNOT gate is Trep/Pa–a, where as before, Trep is the

ime needed for an ancilla entanglement trial.
Efficient quantum repeaters can also be constructed us-

ng this setup allowing for the reliable quantum informa-
ion transfer over very long distances [Fig. 12(b)]. In ad-
ition to the entanglement probability mentioned
reviously, one must also consider the probability of pho-
on loss within the fiber connecting the atomic nodes. This
owers the probability of successful ancilla atom entangle-

ent to Pa–a� =Pa–aPfiber, where Pfiber=e−�L0 is the photon
ttenuation in the channel over the communication dis-
ance L0, and � is the fiber attenuation coefficient. The
ime necessary to connect two nearest-neighbor segments
distance of L0) would be T1=Trep/Pa–a� . This leads to a
ext-nearest-neighbor communication time of T2=2T1
nd hence over n segments (total distance D=nL0) of Tn
nT1=De�L0�Trep/Pa–a� /L0. This linear scaling with dis-

ance compares favorably to the exponential scaling be-
avior if no repeater nodes are used: Tn=e�D�Trep/Pa–a�.

. Cluster-State Model
ven though the above model for quantum computation is
fficiently scalable with probabilistic entanglement be-
ween ancilla qubits, the robustness of the computation
elies on the ability to perform local deterministic gates.
ecent advances have shown that even if all entangling
ates are probabilistic with arbitrarily small probability,
ne can still realize efficient quantum computation based
n the use of deterministic single-bit operations and
uantum memory.28,29 The proof of this result is most con-
enient with the cluster-state approach to quantum com-
uting. The cluster-state model is computationally
quivalent to the conventional circuit model, but in terms
f physical operations, it is quite different.94 In this
odel, one first prepares a large-scale entangled state

alled the cluster state. Together with single-bit opera-
ions, the cluster state with a 2D geometry becomes suf-
cient for universal quantum computation.94 As deter-
inistic single-bit operations for trapped atoms has been

emonstrated, the task then reduces to how to realize
arge-scale cluster states with only probabilistic entan-
ling gates.

A pictorial description of the generation of cluster
tates with atomic qubits is shown in Fig. 13. The first
tep in creating a 2D cluster state is to generate long 1D
luster chains. One could start with entanglement of two
toms and then get these atoms further entangled with
thers one by one through the probabilistic gates. How-
ver, this direct approach leads to very inefficient (super-
xponential) scaling of the required resources due to the
robabilistic nature of the gate operation.29 For prepara-
ion of 1D cluster states, a way to overcome the inefficient
caling is through the divide-and-conquer protocol28,29

also known as the quantum repeater protocol in Ref. 95).
ith this approach, short 1D clusters of length n are cre-

ted, and their end qubits are entangled through the
robabilistic gate [Fig. 13(a)]. If the entanglement at-
empt between the end qubits is successful, then a 1D
luster of 2n qubits is made. If the attempt is unsuccess-
ul, then only the end qubits and their nearest neighbors
eed to be removed from the cluster rather than the en-
ire system losing its entanglement. The process is then
epeated with the two clusters now each of a different
ength. Because this approach connects two cluster chains
f almost equal lengths with the probabilistic gates, the
umber of connections grows logarithmically with the
ize of the chain, which is critical for efficient scaling.

Since 1D cluster states are not sufficient for universal
omputation, 2D clusters need to be built from the 1D
hains. A straightforward extension of the divide-and-
onquer method will not work as 2D and 1D geometries
ave very different characters,28 in particular, for the
umber of the boundary qubits. To create 2D cluster
tates, these 1D clusters are first combined into a special
ype of state, called the cross state, as shown in [Fig.
3(b)], where 1D chains are first linked in their middles
reating a cross-shaped cluster after a single-bit measure-
ent. These cross states with four sufficiently long tails

an be used as the basic building blocks for the 2D

ig. 13. Illustration of the necessary steps for the construction
f cluster states. (a) Controlled phase flip (CPF) entangling gate
s used to extend the length of a 1D cluster. (b) Construction of a
ross-shaped cluster from two 1D cluster chains. A Hadamard
ate (H) is applied on the middle qubit of one chain, and a CPF
ate connects the two middle qubits. Finally, an X measurement
n one middle qubit removes the extra atom. (c), (d) Construction
f a square lattice cluster state from the cross-shaped cluster
tates. CPF gates combine the shapes along ends of the crosses
nd X measurements are used to remove the remaining redun-
ant qubits.
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eometry.28 Once a cross is created, two such crosses are
inked together via their long 1D tails. If the tail is suffi-
iently long, the two clusters can be connected almost de-
erministically before running out of qubits along the tail.
nce connected, the remaining tail qubits separating the

ross sections can be removed via single-bit X measure-
ents finally creating the joined cluster [Fig. 13(c)].
hese steps can be repeated to create a 2D cluster of any
ize. The fidelity of the cluster-state approach is not af-
ected by the probabilistic nature of linking the atoms to-
ether, since the unsuccessful atoms are removed from
he system. The scaling of the computational resources
ith this approach was demonstrated in Ref. 28. Suppos-

ng the success probability of the entangling gate is Pa–a,
t has been proven there that the computational overhead
o prepare a large-scale 2D cluster-state scales nearly
olynominally with 1/Pa–a and n, where n is the total
umber of qubits in the cluster.
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