Quantum Networking with Photons and Trapped Atoms

Abstract

Distributed quantum information processing requires a reliable quantum memory and a faithful carrier of quantum information. Atomic qubits have very long coherence times and are thus excellent candidates for quantum information storage, whereas photons are ideal for the transport of quantum information as they can travel long distances with a minimum of decoherence. We discuss the theoretical and experimental combination of these two systems and their use for not only quantum information transfer but also scalable quantum computation architectures

    Similar works