269 research outputs found

    Suitability of current side impact test dummies in far-side impacts

    Get PDF
    This study set out to compare the suitability of five current side impact test dummies to simulate that of a 50th percentile Post Mortem Human Subject (PMHS) in a far side impact crash configuration. A number of comparative crash tests were undertaken, involving a 50% PMILS and four current side impact crash test dummies (BioSIO, a BioSID with a lumbar spine modification, EuroSID, and WorldSIU) using the ECE95 test procedure at 65km/h. Crash test data were collected from full -scale crash tests conducted using a Holden Commodore: fitted with a 50% Post Mortem Human Subject (PMHS) and a BioSID and WorldSID test dummy in the driver seat. Additional crash test data were obtained using a similar full-scale validated sled test setup. The results demonstrate that the current WorldSID prototype and a BioSID dummy with a modified lumbar spine unit can provide reasonable simulations of occupant kinematics and injuries to help advance vehicle countermeasures. Further work is required to test the robustness and generality of these findings for improved far-side impact protection

    Occupant Dynamics in Rollover Crashes: Influence of Roof Deformation and Seat Belt Performance on Probable Spinal Column Injury

    Get PDF
    Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads

    A kinematic analysis of the spine during rugby scrummaging on natural and synthetic turfs

    Get PDF
    Artificial surfaces are now an established alternative to grass (natural) surfaces in rugby union. Little is known, however, about their potential to reduce injury. This study characterises the spinal kinematics of rugby union hookers during scrummaging on third-generation synthetic (3G) and natural pitches. The spine was sectioned into five segments, with inertial sensors providing three-dimensional kinematic data sampled at 40 Hz/sensor. Twenty-two adult, male community club and university-level hookers were recruited. An equal number were analysed whilst scrummaging on natural or synthetic turf. Players scrummaging on synthetic turf demonstrated less angular velocity in the lower thoracic spine for right and left lateral bending and right rotation. The general reduction in the range of motion and velocities, extrapolated over a prolonged playing career, may mean that the synthetic turf could result in fewer degenerative injuries. It should be noted, however, that this conclusion considers only the scrummaging scenario

    Comparative anatomical dimensions of the complete human and porcine spine

    Get PDF
    New spinal implants and surgical procedures are often tested pre-clinically on human cadaver spines. However, the availability of fresh frozen human cadaver material is very limited and alternative animal spines are more easily available in all desired age groups, and have more uniform geometrical and biomechanical properties. The porcine spine is said to be the most representative model for the human spine but a complete anatomical comparison is lacking. The goal of this descriptive study was to compare the anatomical dimensions of the cervical, thoracic, and lumbar vertebrae of the human and porcine spine in order to determine whether the porcine spine can be a representative model for the human spine. CT scans were made of 6 human and 6 porcine spines, and 16 anatomical dimensions were measured per individual vertebrae. Comparisons were made for the absolute values of the dimensions, for the patterns of the dimensions within four spinal regions, and normalised values of the dimensions within each individual vertebra. Similarities were found in vertebral body height, shape of the end-plates, shape of the spinal canal, and pedicle size. Furthermore, regional trends were comparable for all dimensions, except for spinal canal depth and spinous processus angle. The size of the end-plates increased more caudally in the human spine. Relating the dimensions to the size of the vertebral body, similarities were found in the size of the spinal canal, the transverse processus length, and size of the pedicles. Taking scaling differences into account, it is believed that the porcine spine can be a representative anatomical model for the human spine in specific research questions

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    A new model for the characterization of infection risk in gunshot injuries:Technology, principal consideration and clinical implementation

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The extent of wound contamination in gunshot injuries is still a topic of controversial debate. The purpose of the present study is to develop a model that illustrates the contamination of wounds with exogenous particles along the bullet path.</p> <p>Material and methods</p> <p>To simulate bacteria, radio-opaque barium titanate (3-6 Îźm in diameter) was atomized in a dust chamber. Full metal jacket or soft point bullets caliber .222 (n = 12, v<sub>0 </sub>= 1096 m/s) were fired through the chamber into a gelatin block directly behind it. After that, the gelatin block underwent multi-slice CT in order to analyze the permanent and temporary wound cavity.</p> <p>Results</p> <p>The permanent cavity caused by both types of projectiles showed deposits of barium titanate distributed over the entire bullet path. Full metal jacket bullets left only few traces of barium titanate in the temporary cavity. In contrast, the soft point bullets disintegrated completely, and barium titanate covered the entire wound cavity.</p> <p>Discussion</p> <p>Deep penetration of potential exogenous bacteria can be simulated easily and reproducibly with barium titanate particles shot into a gelatin block. Additionally, this procedure permits conclusions to be drawn about the distribution of possible contaminants and thus can yield essential findings in terms of necessary therapeutic procedures.</p

    Segment-specific association between cervical pillar hyperplasia (CPH) and degenerative joint disease (DJD)

    Get PDF
    BACKGROUND: Cervical pillar hyperplasia (CPH) is a recently described phenomenon of unknown etiology and clinical significance. Global assessment of pillar hyperplasia of the cervical spine as a unit has not shown a relationship with degenerative joint disease, but a more sensible explanation of the architectural influence of CPH on cervical spine biomechanics may be segment-specific. OBJECTIVE: The objective of this study was to determine the level of association between degenerative joint disease (DJD) and cervical pillar hyperplasia (CPH) in an age- and gender-matched sample on a [cervical spine] by-level basis. RESEARCH METHODS: Two-hundred and forty radiographs were collected from subjects ranging in age between 40 and 69 years. The two primary outcome measures used in the study were the segmental presence/absence of cervical pillar hyperplasia from C3 to C6, and segment-specific presence/absence of degenerative joint disease from C1 to C7. Contingency Coefficients, at the 5% level of significance, at each level, were used to determine the strength of the association between CPH and DJD. Odds Ratios (OR) with their 95% Confidence Intervals (95% CI) were also calculated at each level to assess the strength of the association. RESULTS: Our study suggests that an approximately two-to-one odds, or a weak-to-moderate correlation, exists at C4 and C5 CPH and adjacent level degenerative disc disease (DDD); with the strongest (overall) associations demonstrated between C4 CPH and C4–5 DDD and between C5 CPH and C5–6 DDD. Age-stratified results demonstrated a similar pattern of association, even reaching the initially hypothesized OR ≥ 5.0 (95% CI > 1.0) or "moderately-strong correlation of C ≥ .4 (p ≤ .05)" in some age categories, including the 40–44, 50–59, and 60–64 years of age subgroups; these ORs were as follows: OR = 5.5 (95% CI 1.39–21.59); OR = 6.7 (95% CI 1.65–27.34); and OR = 5.3 (95% CI 1.35–21.14), respectively. CONCLUSION: Our results suggest that CPH has around two-to-one odds, that is, only a weak-to-moderate association with the presence of DJD (DDD component) at specific cervical spine levels; therefore, CPH may be but one of several factors that contributes (to a clinically important degree) to the development of DJD at specific levels in the cervical spine

    Designing the ideal model for assessment of wound contamination after gunshot injuries: a comparative experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern high-velocity projectiles produce temporary cavities and can thus cause extensive tissue destruction along the bullet path. It is still unclear whether gelatin blocks, which are used as a well-accepted tissue simulant, allow the effects of projectiles to be adequately investigated and how these effects are influenced by caliber size.</p> <p>Method</p> <p>Barium titanate particles were distributed throughout a test chamber for an assessment of wound contamination. We fired .22-caliber Magnum bullets first into gelatin blocks and then into porcine hind limbs placed behind the chamber. Two other types of bullets (.222-caliber bullets and 6.5 × 57 mm cartridges) were then shot into porcine hind limbs. Permanent and temporary wound cavities as well as the spatial distribution of barium titanate particles in relation to the bullet path were evaluated radiologically.</p> <p>Results</p> <p>A comparison of the gelatin blocks and hind limbs showed significant differences (<it>p </it>< 0.05) in the mean results for all parameters. There were significant differences between the bullets of different calibers in the depth to which barium titanate particles penetrated the porcine hind limbs. Almost no particles, however, were found at a penetration depth of 10 cm or more. By contrast, gas cavities were detected along the entire bullet path.</p> <p>Conclusion</p> <p>Gelatin is only of limited value for evaluating the path of high-velocity projectiles and the contamination of wounds by exogenous particles. There is a direct relationship between the presence of gas cavities in the tissue along the bullet path and caliber size. These cavities, however, are only mildly contaminated by exogenous particles.</p
    • …
    corecore