17,241 research outputs found
Integer quantum Hall effect and topological phase transitions in silicene
We numerically investigate the effects of disorder on the quantum Hall effect
(QHE) and the quantum phase transitions in silicene based on a lattice model.
It is shown that for a clean sample, silicene exhibits an unconventional QHE
near the band center, with plateaus developing at and
a conventional QHE near the band edges. In the presence of disorder, the Hall
plateaus can be destroyed through the float-up of extended levels toward the
band center, in which higher plateaus disappear first. However, the center
Hall plateau is more sensitive to disorder and disappears at a
relatively weak disorder strength. Moreover, the combination of an electric
field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase
transitions from a topological insulator to a band insulator at the charge
neutrality point (CNP), accompanied by additional quantum Hall conductivity
plateaus.Comment: 7 pages, 4 figure
The K\"ahler-Ricci flow with positive bisectional curvature
We show that the K\"ahler-Ricci flow on a manifold with positive first Chern
class converges to a K\"ahler-Einstein metric assuming positive bisectional
curvature and certain stability conditions.Comment: 15 page
Quantum Phase Diffusion in a Small Underdamped Josephson Junction
Quantum phase diffusion in a small underdamped Nb/AlO/Nb junction (
0.4 m) is demonstrated in a wide temperature range of 25-140 mK where
macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We
propose a two-step transition model to describe the switching process in which
the escape rate out of the potential well and the transition rate from phase
diffusion to the running state are considered. The transition rate extracted
from the experimental switching current distribution follows the predicted
Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes
dominant.Comment: 4 pages, 4 figures, 1 tabl
Raman Spectroscopy Study of alpha-, beta-, gamma-NaxCoO2 and gamma-(Ca,Sr)xCoO2
Raman spectroscopy measurements have been performed on alpha-, beta-,
gamma-NaxCoO2 phases differing in their stacking of CoO6 octahedra along the
c-axis direction. The results demonstrate that, in general, there are five
active phonons for gamma-Na0.75CoO2, two Raman active phonons for alpha-NaCoO2,
and four Raman active phonons for beta-NaCoO2. We have also performed Raman
scattering measurements on several gamma-(Ca,Sr)xCoO2 (0.15 <= x <= 0.35)
samples which show well-defined intercalated Ca/Sr-ordering. The experimental
data show that the intercalated cation ordering could result in visible
alterations on Raman spectral structures. The observations of the spectral
changes along with the variation of the CoO6 stacking, as well as the
intercalated Sr/Ca ordering suggest that the interlayer interaction plays an
important role for understanding the lattice dynamics in this layered system.Comment: 23 pages, 5 figures, Physical Review B, in pres
Charge-stripe order in the electronic ferroelectric LuFe2O4
The structural features of the charge ordering states in LuFe2O4 are
characterized by in-situ cooling TEM observations from 300K down to 20K. Two
distinctive structural modulations, a major q1= (1/3, 1/3, 2) and a weak
q2=q1/10 + (0, 0, 3/2), have been well determined at the temperature of 20K.
Systematic analysis demonstrates that the charges at low temperatures are well
crystallized in a charge stripe phase, in which the charge density wave
behaviors in a non-sinusoidal fashion resulting in elemental electric dipoles
for ferroelectricity. It is also noted that the charge ordering and
ferroelectric domains often change markedly with lowering temperatures and
yields a rich variety of structural phenomena.Comment: 15 pages, 4 figure
Stroke-Based Stylization Learning and Rendering with Inverse Reinforcement Learning
Among various traditional art forms, brush stroke drawing is one of the widely used styles in modern computer graphic tools such as GIMP, Photoshop and Painter. In this paper, we develop an AI-aided art authoring (A4) system of non-
photorealistic rendering that allows users to automatically generate brush stroke paintings in a specific artist’s style. Within the reinforcement learning framework of brush stroke generation proposed by Xie et al.[Xie et al., 2012], our contribution in this paper is to learn artists’ drawing styles from video-captured stroke data by inverse reinforcement learning. Through experiments, we demonstrate that our system can successfully learn artists’ styles and render pictures with consistent and smooth brush strokes
Quantum and classical resonant escapes of a strongly-driven Josephson junction
The properties of phase escape in a dc SQUID at 25 mK, which is well below
quantum-to-classical crossover temperature , in the presence of strong
resonant ac driving have been investigated. The SQUID contains two
Nb/Al-AlO/Nb tunnel junctions with Josephson inductance much larger than
the loop inductance so it can be viewed as a single junction having adjustable
critical current. We find that with increasing microwave power and at
certain frequencies and /2, the single primary peak in the
switching current distribution, \textrm{which is the result of macroscopic
quantum tunneling of the phase across the junction}, first shifts toward lower
bias current and then a resonant peak develops. These results are explained
by quantum resonant phase escape involving single and two photons with
microwave-suppressed potential barrier. As further increases, the primary
peak gradually disappears and the resonant peak grows into a single one while
shifting further to lower . At certain , a second resonant peak appears,
which can locate at very low depending on the value of . Analysis
based on the classical equation of motion shows that such resonant peak can
arise from the resonant escape of the phase particle with extremely large
oscillation amplitude resulting from bifurcation of the nonlinear system. Our
experimental result and theoretical analysis demonstrate that at ,
escape of the phase particle could be dominated by classical process, such as
dynamical bifurcation of nonlinear systems under strong ac driving.Comment: 10 pages, 9 figures, 1 tabl
Rotational Symmetry of Classical Orbits, Arbitrary Quantization of Angular Momentum and the Role of Gauge Field in Two-Dimensional Space
We study the quantum-classical correspondence in terms of coherent wave
functions of a charged particle in two-dimensional central-scalar-potentials as
well as the gauge field of a magnetic flux in the sense that the probability
clouds of wave functions are well localized on classical orbits. For both
closed and open classical orbits, the non-integer angular-momentum quantization
with the level-space of angular momentum being greater or less than is
determined uniquely by the same rotational symmetry of classical orbits and
probability clouds of coherent wave functions, which is not necessarily
-periodic. The gauge potential of a magnetic flux impenetrable to the
particle cannot change the quantization rule but is able to shift the spectrum
of canonical angular momentum by a flux-dependent value, which results in a
common topological phase for all wave functions in the given model. The quantum
mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144)
becomes a special case of the arbitrary-quantization.Comment: 6 pages, 5 figure
Interaction of Individual Skyrmions in Nanostructured Cubic Chiral Magnet
We report the direct evidence of field-dependent character of the interaction
between individual magnetic skyrmions as well as between skyrmions and edges in
B20-type FeGe nanostripes observed by means of high resolution Lorentz
transmission electron microscopy. It is shown that above certain critical
values of external magnetic field the character of such long-range skyrmion
interactions change from attraction to repulsion. Experimentally measured
equilibrium inter-skyrmion and skrymion-edge distances as function of applied
magnetic field shows quantitative agreement with the results of micromagnetic
simulations. Important role of demagnetizing fields and internal symmetry of
three-dimensional magnetic skyrmions are discussed in details.Comment: accepted in PR
Robust on-line diagnosis tool for the early accident detection in nuclear power plants
© 2019 Any loss of coolant accident mitigation strategy is necessarily bound by the promptness of the break detection as well as the accuracy of its diagnosis. The availability of on-line monitoring tools is then crucial for enhancing safety of nuclear facilities. The requirements of robustness and short latency implied by the necessity for fast and effective actions are undermined by the challenges associated with break prediction during transients. This study presents a novel approach to tackle the challenges associated with the on-line diagnostics of loss of coolant accidents and the limitations of the current state of the art. Based on the combination of a set of artificial neural network architectures through the use of Bayesian statistics, it allows to robustly absorb different sources of uncertainty without requiring their explicit characterization in input. It provides the quantification of the output confidence bounds but also enhances of the model response accuracy. The implemented methodology allows to relax the need for model selection as well as to limit the demand for user-defined analysis parameters. A numerical case-study entailing a 220 MWe heavy-water reactor is analysed in order to test the efficiency of the developed computational tool
- …