312 research outputs found

    Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    Get PDF
    Following the recent report of the first identification of methyl acetate (CH3COOCH3) in the interstellar medium (ISM) we have carried out Vacuum UltraViolet (VUV) and InfraRed (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum (UHV) chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to be between 110 K and 120 K

    Importance of access to epilepsy monitoring units during the COVID-19 pandemic: Consensus statement of the International League against epilepsy and the International Federation of Clinical Neurophysiology

    Get PDF
    Restructuring of healthcare services during the COVID-19 pandemic has led to lockdown of Epilepsy Monitoring Units (EMUs) in many hospitals. The ad-hoc taskforce of the International League Against Epilepsy (ILAE) and the International Federation of Clinical Neurophysiology (IFCN) highlights the detrimental effect of postponing video-EEG monitoring of patients with epilepsy and other paroxysmal events. The taskforce calls for action to continue functioning of Epilepsy Monitoring Units during emergency situations, such as the COVID-19 pandemic. Long-term video-EEG monitoring is an essential diagnostic service. Access to video-EEG monitoring of the patients in the EMUs must be given high priority. Patients should be screened for COVID-19, before admission, according to the local regulations. Local policies for COVID-19 infection control should be adhered to during the video-EEG monitoring. In cases of differential diagnosis where reduction of antiseizure medication is not required, consider home video-EEG monitoring as an alternative in selected patients

    Predicted Impact of Barriers to Migration on the Serengeti Wildebeest Population

    Get PDF
    The Serengeti wildebeest migration is a rare and spectacular example of a once-common biological phenomenon. A proposed road project threatens to bisect the Serengeti ecosystem and its integrity. The precautionary principle dictates that we consider the possible consequences of a road completely disrupting the migration. We used an existing spatially-explicit simulation model of wildebeest movement and population dynamics to explore how placing a barrier to migration across the proposed route (thus creating two disjoint but mobile subpopulations) might affect the long-term size of the wildebeest population. Our simulation results suggest that a barrier to migration—even without causing habitat loss—could cause the wildebeest population to decline by about a third. The driver of this decline is the effect of habitat fragmentation (even without habitat loss) on the ability of wildebeest to effectively track temporal shifts in high-quality forage resources across the landscape. Given the important role of the wildebeest migration for a number of key ecological processes, these findings have potentially important ramifications for ecosystem biodiversity, structure, and function in the Serengeti

    The practices of apartheid as a war crime: a critical analysis

    Get PDF
    The human suffering caused by the political ideology of apartheid in South Africa during the Apartheid era (1948-1994) prompted worldwide condemnation and a variety of diplomatic and legal responses. Amongst these responses was the attempt to have apartheid recognised both as a crime against humanity in the 1973 Apartheid Convention as well as a war crime in Article 85(4)(c) of Additional Protocol I. This article examines the origins, nature and current status of the practices of apartheid as a war crime and its possible application to the Israeli-Palestinian conflict

    Tipping elements and amplified polar warming during the Last Interglacial

    Get PDF
    Irreversible shifts of large-scale components of the Earth system (so-called ‘tipping elements’) on policy-relevant timescales are a major source of uncertainty for projecting the impacts of future climate change. The high latitudes are particularly vulnerable to positive feedbacks that amplify change through atmosphere-ocean-ice interactions. Unfortunately, the short instrumental record does not capture the full range of past or projected climate scenarios (a situation particularly acute in the high latitudes). Natural archives from past periods warmer than present day, however, can be used to explore drivers and responses to forcing, and provide data against which to test models, thereby offering insights into the future. The Last Interglacial (129–116,000 years before present) — the warmest interglacial of the last 800,000 years — was the most recent period during which global temperatures were comparable with low-end 21st Century projections (up to 2 °C warmer, with temperature increase amplified over polar latitudes), providing a potentially useful analogue for future change. Substantial environmental changes happened during this time. Here we synthesise the nature and timing of potential high-latitude tipping elements during the Last Interglacial, including sea ice, extent of the boreal forest, permafrost, ocean circulation, and ice sheets/sea level. We also review the thresholds and feedbacks that likely operated through this period. Notably, substantial ice mass loss from Greenland, the West Antarctic, and possibly sectors of the East Antarctic drove a 6–9 m rise in global sea level. This was accompanied by reduced summer sea-ice extent, poleward-extended boreal forest, and reduced areas of permafrost. Despite current chronological uncertainties, we find that tipping elements in the high latitudes all experienced rapid and abrupt change (within 1–2 millennia of each other) across both hemispheres, while recovery to prior conditions took place over multi-millennia. Our synthesis demonstrates important feedback loops between tipping elements, amplifying polar and global change during the Last Interglacial. The high sensitivity and tight interconnections between polar tipping elements suggests that they could exhibit similar thresholds of vulnerability in the future, particularly if the aspirations of the Paris Agreement are not met

    Exploring the Ecological History of a Tropical Agroforestry Landscape Using Fossil Pollen and Charcoal Analysis from Four Sites in Western Ghats, India

    Get PDF
    Contrary to expectations, some human-modified landscapes are considered to sustain both human activities and biodiversity over the long-term. Agroforestry systems are among these landscapes where crops are planted under native shade trees. In this context, ancient agroforestry systems can provide insight into how farmers managed the landscape over time. Such insight can help to quantify the extent to which tropical forests (especially habitat-specialist trees) are responding to local and landscape-level management. Here, we extracted fossil pollen (indicator of past vegetation changes) and macroscopic charcoal (indicator of biomass burning) from four forest hollows’ sedimentary sequences in an ancient agroforestry system in Western Ghats, India. We used a mixed-modelling approach and a principal components analysis (PCA) to determine past trajectories of forest change and species composition dynamics for the last 900 years. In addition, we reconstructed the long-term forest canopy dynamics and examined the persistence of habitat-specialist trees over time. Our results show that the four sites diverged to a surprising degree in both taxa composition and dynamics. However, despite these differences, forest has persisted over 900 years under agricultural activities within agroforestry systems. This long-term analysis highlights the importance of different land-use legacies as a framework to increase the effectiveness of management across tropical agricultural lands

    Venous gas embolism as a predictive tool for improving CNS decompression safety

    Get PDF
    A key process in the pathophysiological steps leading to decompression sickness (DCS) is the formation of inert gas bubbles. The adverse effects of decompression are still not fully understood, but it seems reasonable to suggest that the formation of venous gas emboli (VGE) and their effects on the endothelium may be the central mechanism leading to central nervous system (CNS) damage. Hence, VGE might also have impact on the long-term health effects of diving. In the present review, we highlight the findings from our laboratory related to the hypothesis that VGE formation is the main mechanism behind serious decompression injuries. In recent studies, we have determined the impact of VGE on endothelial function in both laboratory animals and in humans. We observed that the damage to the endothelium due to VGE was dose dependent, and that the amount of VGE can be affected both by aerobic exercise and exogenous nitric oxide (NO) intervention prior to a dive. We observed that NO reduced VGE during decompression, and pharmacological blocking of NO production increased VGE formation following a dive. The importance of micro-nuclei for the formation of VGE and how it can be possible to manipulate the formation of VGE are discussed together with the effects of VGE on the organism. In the last part of the review we introduce our thoughts for the future, and how the enigma of DCS should be approached

    Pleistocene glacial history of the New Zealand subantarctic islands

    Get PDF
    The New Zealand subantarctic islands of Auckland and Campbell, situated between the Subtropical Front and the Antarctic Convergence in the Pacific sector of the Southern Ocean, provide valuable terrestrial records from a globally-important climatic region. Whilst the islands show clear evidence of past glaciation, the timing and mechanisms behind Pleistocene environmental and climate changes remain uncertain. Here we present a multidisciplinary study of the islands – including marine and terrestrial geomorphological surveys, extensive analyses of sedimentary sequences, a comprehensive dating program, and glacier flowline modelling – to investigate multiple phases of glaciation across the islands. We find evidence that the Auckland Islands hosted a small ice cap at 384,000 ± 26,000 years ago (384±26 ka), most likely during Marine Isotope Stage 10, a period when the Subtropical Front was pushed northwards by seven degrees, and consistent with hemispheric-wide glacial expansion. Despite previous interpretations that suggest the maximum glacial extent occurred in the form of valley glaciation at the Last Glacial Maximum (LGM; ~21 ka) age, our combined approach suggests minimal LGM glaciation across the New Zealand Subantarctic Islands, and that no glaciers were present during the Antarctic Cold Reversal (ACR; ~15-13 ka). Instead, our flowline modelling, constrained by field evidence, implies that despite a regional mean annual air temperature depression of ~5°C during the LGM, a combination of high seasonality and low precipitation left the islands incapable of sustaining significant glaciation. We suggest that northwards expansion of winter sea ice during the LGM and subsequent ACR led to precipitation starvation across the mid to high latitudes of the Southern Ocean, resulting in restricted glaciation of the subantarctic islands
    corecore