4,189 research outputs found
Entropy Distance: New Quantum Phenomena
We study a curve of Gibbsian families of complex 3x3-matrices and point out
new features, absent in commutative finite-dimensional algebras: a
discontinuous maximum-entropy inference, a discontinuous entropy distance and
non-exposed faces of the mean value set. We analyze these problems from various
aspects including convex geometry, topology and information geometry. This
research is motivated by a theory of info-max principles, where we contribute
by computing first order optimality conditions of the entropy distance.Comment: 34 pages, 5 figure
Generalized Drude model: Unification of ballistic and diffusive electron transport
For electron transport in parallel-plane semiconducting structures, a model
is developed that unifies ballistic and diffusive transport and thus
generalizes the Drude model. The unified model is valid for arbitrary magnitude
of the mean free path and arbitrary shape of the conduction band edge profile.
Universal formulas are obtained for the current-voltage characteristic in the
nondegenerate case and for the zero-bias conductance in the degenerate case,
which describe in a transparent manner the interplay of ballistic and diffusive
transport. The semiclassical approach is adopted, but quantum corrections
allowing for tunneling are included. Examples are considered, in particular the
case of chains of grains in polycrystalline or microcrystalline semiconductors
with grain size comparable to, or smaller than, the mean free path. Substantial
deviations of the results of the unified model from those of the ballistic
thermionic-emission model and of the drift-diffusion model are found. The
formulation of the model is one-dimensional, but it is argued that its results
should not differ substantially from those of a fully three-dimensional
treatment.Comment: 14 pages, 5 figures, REVTEX file, to appear in J. Phys.: Condens.
Matte
Theory of double resonance magnetometers based on atomic alignment
We present a theoretical study of the spectra produced by
optical-radio-frequency double resonance devices, in which resonant linearly
polarized light is used in the optical pumping and detection processes. We
extend previous work by presenting algebraic results which are valid for atomic
states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary
geometries. The only restriction made is the assumption of low light intensity.
The results are discussed in view of their use in optical magnetometers
Self-Organization in Multimode Microwave Phonon Laser (Phaser): Experimental Observation of Spin-Phonon Cooperative Motions
An unusual nonlinear resonance was experimentally observed in a ruby phonon
laser (phaser) operating at 9 GHz with an electromagnetic pumping at 23 GHz.
The resonance is manifested by very slow cooperative self-detunings in the
microwave spectra of stimulated phonon emission when pumping is modulated at a
superlow frequency (less than 10 Hz). During the self-detuning cycle new and
new narrow phonon modes are sequentially ``fired'' on one side of the spectrum
and approximately the same number of modes are ``extinguished'' on the other
side, up to a complete generation breakdown in a certain final portion of the
frequency axis. This is usually followed by a short-time refractority, after
which the generation is fired again in the opposite (starting) portion of the
frequency axis. The entire process of such cooperative spectral motions is
repeated with high degree of regularity. The self-detuning period strongly
depends on difference between the modulation frequency and the resonance
frequency. This period is incommensurable with period of modulation. It
increases to very large values (more than 100 s) when pointed difference is
less than 0.05 Hz. The revealed phenomenon is a kind of global spin-phonon
self- organization. All microwave modes of phonon laser oscillate with the same
period, but with different, strongly determined phase shifts - as in optical
lasers with antiphase motions.Comment: LaTeX2e file (REVTeX4), 5 pages, 5 Postscript figures. Extended and
revised version of journal publication. More convenient terminology is used.
Many new bibliographic references are added, including main early theoretical
and experimental papers on microwave phonon lasers (in English and in
Russian
A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells
We have manufactured more than 250 nominally identical paraffin-coated Cs
vapor cells (30 mm diameter bulbs) for multi-channel atomic magnetometer
applications. We describe our dedicated cell characterization apparatus. For
each cell we have determined the intrinsic longitudinal, \sGamma{01}, and
transverse, \sGamma{02}, relaxation rates. Our best cell shows
\sGamma{01}/2\pi\approx 0.5 Hz, and \sGamma{02}/2\pi\approx 2 Hz. We find a
strong correlation of both relaxation rates which we explain in terms of
reservoir and spin exchange relaxation. For each cell we have determined the
optimal combination of rf and laser powers which yield the highest sensitivity
to magnetic field changes. Out of all produced cells, 90% are found to have
magnetometric sensitivities in the range of 9 to 30 fTHz. Noise analysis shows
that the magnetometers operated with such cells have a sensitivity close to the
fundamental photon shot noise limit
Galactic Twins of the Ring Nebula Around SN1987A and a Possible LBV-like Phase for Sk-69 202
Some core-collapse supernovae show clear signs of interaction with dense
circumstellar material that often appears to be non-spherical. Circumstellar
nebulae around supernova progenitors provide clues to the origin of that
asymmetry in immediate pre-supernova evolution. Here I discuss outstanding
questions about the formation of the ring nebula around SN1987A and some
implications of similar ring nebulae around Galactic B supergiants. Several
clues hint that SN1987A's nebula may have been ejected in an LBV-like event,
rather than through interacting winds in a transition from a red supergiant to
a blue supergiant.Comment: 2 pages, to appear in procedings of "Massive stars: fundamental
parameters and circumstellar interactions", conference in honor of Virpi
Niemela's 70th birthda
A room temperature 19-channel magnetic field mapping device for cardiac signals
We present a multichannel cardiac magnetic field imaging system built in
Fribourg from optical double-resonance Cs vapor magnetometers. It consists of
25 individual sensors designed to record magnetic field maps of the beating
human heart by simultaneous measurements on a grid of 19 points over the chest.
The system is operated as an array of second order gradiometers using
sophisticated digitally controlled feedback loops.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter
Ewald methods for inverse power-law interactions in tridimensional and quasi-two dimensional systems
In this paper, we derive the Ewald method for inverse power-law interactions
in quasi-two dimensional systems. The derivation is done by using two different
analytical methods. The first uses the Parry's limit, that considers the Ewald
methods for quasi-two dimensional systems as a limit of the Ewald methods for
tridimensional systems, the second uses Poisson-Jacobi identities for lattice
sums. Taking into account the equivalence of both derivations, we obtain a new
analytical Fourier transform intregral involving incomplete gamma function.
Energies of the generalized restrictive primitive model of electrolytes
(-RPM) and of the generalized one component plasma model (-OCP) are
given for the tridimensional, quasi-two dimensional and monolayers systems. Few
numerical results, using Monte-Carlo simulations, for -RPM and -OCP
monolayers systems are reported.Comment: to be published in Journal of Physics A: Mathematical and Theoretical
(19 pages, 2 figures and 3 tables
- …
