170 research outputs found

    Fuzzy Nambu-Goldstone Physics

    Get PDF
    In spacetime dimensions larger than 2, whenever a global symmetry G is spontaneously broken to a subgroup H, and G and H are Lie groups, there are Nambu-Goldstone modes described by fields with values in G/H. In two-dimensional spacetimes as well, models where fields take values in G/H are of considerable interest even though in that case there is no spontaneous breaking of continuous symmetries. We consider such models when the world sheet is a two-sphere and describe their fuzzy analogues for G=SU(N+1), H=S(U(N-1)xU(1)) ~ U(N) and G/H=CP^N. More generally our methods give fuzzy versions of continuum models on S^2 when the target spaces are Grassmannians and flag manifolds described by (N+1)x(N+1) projectors of rank =< (N+1)/2. These fuzzy models are finite-dimensional matrix models which nevertheless retain all the essential continuum topological features like solitonic sectors. They seem well-suited for numerical work.Comment: Latex, 18 pages; references added, typos correcte

    Noncommutative geometry, topology and the standard model vacuum

    Get PDF
    As a ramification of a motivational discussion for previous joint work, in which equations of motion for the finite spectral action of the Standard Model were derived, we provide a new analysis of the results of the calculations herein, switching from the perspective of Spectral triple to that of Fredholm module and thus from the analogy with Riemannian geometry to the pre-metrical structure of the Noncommutative geometry. Using a suggested Noncommutative version of Morse theory together with algebraic KK-theory to analyse the vacuum solutions, the first two summands of the algebra for the finite triple of the Standard Model arise up to Morita equivalence. We also demonstrate a new vacuum solution whose features are compatible with the physical mass matrix.Comment: 24 page

    On the structure of the space of generalized connections

    Full text link
    We give a modern account of the construction and structure of the space of generalized connections, an extension of the space of connections that plays a central role in loop quantum gravity.Comment: 30 pages, added references, minor changes. To appear in International Journal of Geometric Methods in Modern Physic

    A separability criterion for density operators

    Full text link
    We give a necessary and sufficient condition for a mixed quantum mechanical state to be separable. The criterion is formulated as a boundedness condition in terms of the greatest cross norm on the tensor product of trace class operators.Comment: REVTeX, 5 page

    Full regularity for a C*-algebra of the Canonical Commutation Relations. (Erratum added)

    Full text link
    The Weyl algebra,- the usual C*-algebra employed to model the canonical commutation relations (CCRs), has a well-known defect in that it has a large number of representations which are not regular and these cannot model physical fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs of a countably dimensional symplectic space (S,B) and such that its representation set is exactly the full set of regular representations of the CCRs. This construction uses Blackadar's version of infinite tensor products of nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalised group algebra, explained below) for the \sigma-representation theory of the abelian group S where \sigma(.,.):=e^{iB(.,.)/2}. As an easy application, it then follows that for every regular representation of the Weyl algebra of (S,B) on a separable Hilbert space, there is a direct integral decomposition of it into irreducible regular representations (a known result). An Erratum for this paper is added at the end.Comment: An erratum was added to the original pape

    Quantum line bundles on noncommutative sphere

    Full text link
    Noncommutative (NC) sphere is introduced as a quotient of the enveloping algebra of the Lie algebra su(2). Using the Cayley-Hamilton identities we introduce projective modules which are analogues of line bundles on the usual sphere (we call them quantum line bundles) and define a multiplicative structure in their family. Also, we compute a pairing between certain quantum line bundles and finite dimensional representations of the NC sphere in the spirit of the NC index theorem. A new approach to constructing the differential calculus on a NC sphere is suggested. The approach makes use of the projective modules in question and gives rise to a NC de Rham complex being a deformation of the classical one.Comment: LaTeX file, 15 pp, no figures. Some clarifying remarks are added at the beginning of section 2 and into section

    Barycentric decomposition of quantum measurements in finite dimensions

    Full text link
    We analyze the convex structure of the set of positive operator valued measures (POVMs) representing quantum measurements on a given finite dimensional quantum system, with outcomes in a given locally compact Hausdorff space. The extreme points of the convex set are operator valued measures concentrated on a finite set of k \le d^2 points of the outcome space, d< \infty being the dimension of the Hilbert space. We prove that for second countable outcome spaces any POVM admits a Choquet representation as the barycenter of the set of extreme points with respect to a suitable probability measure. In the general case, Krein-Milman theorem is invoked to represent POVMs as barycenters of a certain set of POVMs concentrated on k \le d^2 points of the outcome space.Comment: !5 pages, no figure

    Metagenomics: A viable tool for reconstructing herbivore diet

    Get PDF
    Metagenomics can generate data on the diet of herbivores, without the need for primer selection and PCR enrichment steps as is necessary in metabarcoding. Metagenomic approaches to diet analysis have remained relatively unexplored, requiring validation of bioinformatic steps. Currently, no metagenomic herbivore diet studies have utilized both chloroplast and nuclear markers as reference sequences for plant identification, which would increase the number of reads that could be taxonomically informative. Here, we explore how in silico simulation of metagenomic data sets resembling sequences obtained from faecal samples can be used to validate taxonomic assignment. Using a known list of sequences to create simulated data sets, we derived reliable identification parameters for taxonomic assignments of sequences. We applied these parameters to characterize the diet of western capercaillies (Tetrao urogallus) located in Norway, and compared the results with metabarcoding trnL P6 loop data generated from the same samples. Both methods performed similarly in the number of plant taxa identified (metagenomics 42 taxa, metabarcoding 43 taxa), with no significant difference in species resolution (metagenomics 24%, metabarcoding 23%). We further observed that while metagenomics was strongly affected by the age of faecal samples, with fresh samples outperforming old samples, metabarcoding was not affected by sample age. On the other hand, metagenomics allowed us to simultaneously obtain the mitochondrial genome of the western capercaillies, thereby providing additional ecological information. Our study demonstrates the potential of utilizing metagenomics for diet reconstruction but also highlights key considerations as compared to metabarcoding for future utilization of this technique

    Homology and K--Theory Methods for Classes of Branes Wrapping Nontrivial Cycles

    Full text link
    We apply some methods of homology and K-theory to special classes of branes wrapping homologically nontrivial cycles. We treat the classification of four-geometries in terms of compact stabilizers (by analogy with Thurston's classification of three-geometries) and derive the K-amenability of Lie groups associated with locally symmetric spaces listed in this case. More complicated examples of T-duality and topology change from fluxes are also considered. We analyse D-branes and fluxes in type II string theory on CP3×Σg×T2{\mathbb C}P^3\times \Sigma_g \times {\mathbb T}^2 with torsion HH-flux and demonstrate in details the conjectured T-duality to RP7×X3{\mathbb R}P^7\times X^3 with no flux. In the simple case of X3=T3X^3 = {\mathbb T}^3, T-dualizing the circles reduces to duality between CP3×T2×T2{\mathbb C}P^3\times {\mathbb T}^2 \times {\mathbb T}^2 with HH-flux and RP7×T3{\mathbb R}P^7\times {\mathbb T}^3 with no flux.Comment: 27 pages, tex file, no figure

    Fluxes, Brane Charges and Chern Morphisms of Hyperbolic Geometry

    Full text link
    The purpose of this paper is to provide the reader with a collection of results which can be found in the mathematical literature and to apply them to hyperbolic spaces that may have a role in physical theories. Specifically we apply K-theory methods for the calculation of brane charges and RR-fields on hyperbolic spaces (and orbifolds thereof). It is known that by tensoring K-groups with the rationals, K-theory can be mapped to rational cohomology by means of the Chern character isomorphisms. The Chern character allows one to relate the analytic Dirac index with a topological index, which can be expressed in terms of cohomological characteristic classes. We obtain explicit formulas for Chern character, spectral invariants, and the index of a twisted Dirac operator associated with real hyperbolic spaces. Some notes for a bivariant version of topological K-theory (KK-theory) with its connection to the index of the twisted Dirac operator and twisted cohomology of hyperbolic spaces are given. Finally we concentrate on lower K-groups useful for description of torsion charges.Comment: 26 pages, no figures, LATEX. To appear in the Classical and Quantum Gravit
    corecore