411 research outputs found
Recommended from our members
Photoreversible interconversion of a phytochrome photosensory module in the crystalline state.
A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Ã… resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion
Million Migrants study of healthcare and mortality outcomes in non-EU migrants and refugees to England: Analysis protocol for a linked population-based cohort study of 1.5 million migrants.
Background: In 2017, 15.6% of the people living in England were born abroad, yet we have a limited understanding of their use of health services and subsequent health conditions. This linked population-based cohort study aims to describe the hospital-based healthcare and mortality outcomes of 1.5 million non-European Union (EU) migrants and refugees in England. Methods and analysis: We will link four data sources: first, non-EU migrant tuberculosis pre-entry screening data; second, refugee pre-entry health assessment data; third, national hospital episode statistics; and fourth, Office of National Statistics death records. Using this linked dataset, we will then generate a population-based cohort to examine hospital-based events and mortality outcomes in England between Jan 1, 2006, and Dec 31, 2017. We will compare outcomes across three groups in our analyses: 1) non-EU international migrants, 2) refugees, and 3) general population of England. Ethics and dissemination: We will obtain approval to use unconsented patient identifiable data from the Secretary of State for Health through the Confidentiality Advisory Group and the National Health Service Research Ethics Committee. After data linkage, we will destroy identifying data and undertake all analyses using the pseudonymised dataset. The results will provide policy makers and civil society with detailed information about the health needs of non-EU international migrants and refugees in England
Imaging of Nitric Oxide in Nitrergic Neuromuscular Neurotransmission in the Gut
Background: Numerous functional studies have shown that nitrergic neurotransmission plays a central role in peristalsis and sphincter relaxation throughout the gut and impaired nitrergic neurotransmission has been implicated in clinical disorders of all parts of the gut. However, the role of nitric oxide (NO) as a neurotransmitter continues to be controversial because: 1) the cellular site of production during neurotransmission is not well established; 2) NO may interacts with other inhibitory neurotransmitter candidates, making it difficult to understand its precise role. Methodology/Principal Findings: Imaging NO can help resolve many of the controversies regarding the role of NO in nitrergic neurotransmission. Imaging of NO and its cellular site of production is now possible. NO forms quantifiable fluorescent compound with diaminofluorescein (DAF) and allows imaging of NO with good specificity and sensitivity in living cells. In this report we describe visualization and regulation of NO and calcium () in the myenteric nerve varicosities during neurotransmission using multiphoton microscopy. Our results in mice gastric muscle strips provide visual proof that NO is produced de novo in the nitrergic nerve varicosities upon nonadrenergic noncholinergic (NANC) nerve stimulation. These studies show that NO is a neurotransmitter rather than a mediator. Changes in NO production in response to various pharmacological treatments correlated well with changes in slow inhibitory junction potential of smooth muscles. Conclusions/Significance: Dual imaging and electrophysiologic studies provide visual proof that during nitrergic neurotransmission NO is produced in the nerve terminals. Such studies may help define whether NO production or its signaling pathway is responsible for impaired nitrergic neurotransmission in pathological states
Changes in the gastric enteric nervous system and muscle: A case report on two patients with diabetic gastroparesis
<p>Abstract</p> <p>Background</p> <p>The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular components. The aim of this study was to use modern analytical methods to determine morphological and molecular changes in the gastric wall in patients with diabetic gastroparesis.</p> <p>Methods</p> <p>Full thickness gastric biopsies were obtained laparoscopically from two gastroparetic patients undergoing surgical intervention and from disease-free areas of control subjects undergoing other forms of gastric surgery. Samples were processed for histological and immunohistochemical examination.</p> <p>Results</p> <p>Although both patients had severe refractory symptoms with malnutrition, requiring the placement of a gastric stimulator, one of them had no significant abnormalities as compared with controls. This patient had an abrupt onset of symptoms with a relatively short duration of diabetes that was well controlled. By contrast, the other patient had long standing brittle and poorly controlled diabetes with numerous episodes of diabetic ketoacidosis and frequent hypoglycemic episodes. Histological examination in this patient revealed increased fibrosis in the muscle layers as well as significantly fewer nerve fibers and myenteric neurons as assessed by PGP9.5 staining. Further, significant reduction was seen in staining for neuronal nitric oxide synthase, heme oxygenase-2, tyrosine hydroxylase as well as for c-KIT.</p> <p>Conclusion</p> <p>We conclude that poor metabolic control is associated with significant pathological changes in the gastric wall that affect all major components including muscle, neurons and ICC. Severe symptoms can occur in the absence of these changes, however and may reflect vagal, central or hormonal influences. Gastroparesis is therefore likely to be a heterogeneous disorder. Careful molecular and pathological analysis may allow more precise phenotypic differentiation and shed insight into the underlying mechanisms as well as identify novel therapeutic targets.</p
Current status of the Spectrograph System for the SuMIRe/PFS
The Prime Focus Spectrograph (PFS) is a new facility instrument for Subaru
Telescope which will be installed in around 2017. It is a multi-object
spectrograph fed by about 2400 fibers placed at the prime focus covering a
hexagonal field-of-view with 1.35 deg diagonals and capable of simultaneously
obtaining data of spectra with wavelengths ranging from 0.38 um to 1.26 um. The
spectrograph system is composed of four identical modules each receiving the
light from 600 fibers. Each module incorporates three channels covering the
wavelength ranges 0.38-0.65 mu ("Blue"), 0.63-0.97 mu ("Red"), and 0.94-1.26 mu
("NIR") respectively; with resolving power which progresses fairly smoothly
from about 2000 in the blue to about 4000 in the infrared. An additional
spectral mode allows reaching a spectral resolution of 5000 at 0.8mu (red). The
proposed optical design is based on a Schmidt collimator facing three Schmidt
cameras (one per spectral channel). This architecture is very robust, well
known and documented. It allows for high image quality with only few simple
elements (high throughput) at the expense of the central obscuration, which
leads to larger optics. Each module has to be modular in its design to allow
for integration and tests and for its safe transport up to the telescope: this
is the main driver for the mechanical design. In particular, each module will
be firstly fully integrated and validated at LAM (France) before it is shipped
to Hawaii. All sub-assemblies will be indexed on the bench to allow for their
accurate repositioning. This paper will give an overview of the spectrograph
system which has successfully passed the Critical Design Review (CDR) in 2014
March and which is now in the construction phase.Comment: 9 pages, 7 figures, submitted to "Ground-based and Airborne
Instrumentation for Astronomy V, Suzanne K. Ramsay, Ian S. McLean, Hideki
Takami, Editors, Proc. SPIE 9147 (2014)
Generation of Intense Phase-Stable Femtosecond Hard X-ray Pulse Pairs
Coherent nonlinear spectroscopies and imaging in the X-ray domain provide
direct insight into the coupled motions of electrons and nuclei with resolution
on the electronic length and time scale. The experimental realization of such
techniques will strongly benefit from access to intense, coherent pairs of
femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs
containing more thank 3 x 10e7 photons at 5.9 keV (2.1 Angstrom) with about 1
fs duration and 2-5 fs separation. The highly directional pulse pairs are
manifested by interference fringes in the superfluorescent and seeded
stimulated manganese K-alpha emission induced by an X-ray free-electron laser.
The fringes constitute the time-frequency X-ray analogue of the Young
double-slit interference allowing for frequency-domain X-ray measurements with
attosecond time resolution.Comment: 39 pages, 13 figures, to be publishe
Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage
SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways
Definition and classification of power system stability - revisited & extended
Since the publication of the original paper on power system stability definitions in 2004, the dynamic behavior of power systems has gradually changed due to the increasing penetration of converter interfaced generation technologies, loads, and transmission devices. In recognition of this change, a Task Force was established in 2016 to re-examine and extend, where appropriate, the classic definitions and classifications of the basic stability terms to incorporate the effects of fast-response power electronic devices. This paper based on an IEEE PES report summarizes the major results of the work of the Task Force and presents extended definitions and classification of power system stability
- …