892 research outputs found

    Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory

    Full text link
    The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's sensitivity improves with the gamma-ray energy. Above \sim1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form ϕ(E)=ϕ0(E/E0)αβln(E/E0)\phi(E) = \phi_0 (E/E_{0})^{-\alpha -\beta\cdot{\rm{ln}}(E/E_{0})}. The data is well-fit with values of α=2.63±0.03\alpha=2.63\pm0.03, β=0.15±0.03\beta=0.15\pm0.03, and log10(ϕ0 cm2 s TeV)=12.60±0.02_{10}(\phi_0~{\rm{cm}^2}~{\rm{s}}~{\rm{TeV}})=-12.60\pm0.02 when E0E_{0} is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be ±\pm50\% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument's sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of current-generation observatories and open a new view of 2/3 of the sky above 10 TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa

    Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC

    Full text link
    We present results from daily monitoring of gamma rays in the energy range 0.5\sim0.5 to 100\sim100 TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of >95>95% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to 6\sim6 hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index Γ=2.21±0.14stat±0.20sys\Gamma=2.21 \pm0.14_{\mathrm{stat}}\pm0.20_{\mathrm{sys}} and an exponential cut-off E0=5.4±1.1stat±1.0sysE_0=5.4 \pm 1.1_{\mathrm{stat}}\pm 1.0_{\mathrm{sys}} TeV. For Mrk 501, we find an index Γ=1.60±0.30stat±0.20sys\Gamma=1.60\pm 0.30_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}} and exponential cut-off E0=5.7±1.6stat±1.0sysE_0=5.7\pm 1.6_{\mathrm{stat}} \pm 1.0_{\mathrm{sys}} TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical Journa

    The 2HWC HAWC Observatory Gamma Ray Catalog

    Full text link
    We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa

    Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory

    Full text link
    The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an extensive air shower detector operating in central Mexico, which has recently completed its first two years of full operations. If for a burst like GRB 130427A at a redshift of 0.34 and a high-energy component following a power law with index -1.66, the high-energy component is extended to higher energies with no cut-off other than from extragalactic background light attenuation, HAWC would observe gamma rays with a peak energy of \sim300 GeV. This paper reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected by Swift\mathit{Swift} and Fermi\mathit{Fermi}, including three GRBs that were also detected by the Large Area Telescope (Fermi\mathit{Fermi}-LAT). An ON/OFF analysis method is employed, searching on the time scale given by the observed light curve at keV-MeV energies and also on extended time scales. For all GRBs and time scales, no statistically significant excess of counts is found and upper limits on the number of gamma rays and the gamma-ray flux are calculated. GRB 170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor on board the Fermi\mathit{Fermi} satellite (Fermi\mathit{Fermi}-GBM) and also detected by the LAT, occurred very close to zenith. The LAT measurements can neither exclude the presence of a synchrotron self-Compton (SSC) component nor constrain its spectrum. Instead, the HAWC upper limits constrain the expected cut-off in an additional high-energy component to be less than 100 GeV100~\rm{GeV} for reasonable assumptions about the energetics and redshift of the burst.Comment: 19 pages, 6 figures, published in Ap

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review

    Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

    Full text link
    The unexpectedly high flux of cosmic ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the HighAltitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera-electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin.Comment: 16 pages (including supplementary material), 5 figure

    Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins

    Get PDF
    Background: Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings: cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory b-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the a-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the b-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both a and b NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance: This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed
    corecore