1,241 research outputs found

    Self-tuning Personalized Information Retrieval in an Ontology-Based Framework

    Get PDF
    Reliability is a well-known concern in the field of personalization technologies. We propose the extension of an ontology-based retrieval system with semantic-based personalization techniques, upon which automatic mechanisms are devised that dynamically gauge the degree of personalization, so as to benefit from adaptivity but yet reduce the risk of obtrusiveness and loss of user control. On the basis of a common domain ontology KB, the personalization framework represents, captures and exploits user preferences to bias search results towards personal user interests. Upon this, the intensity of personalization is automatically increased or decreased according to an assessment of the imprecision contained in user requests and system responses before personalization is applied

    On-line learning of non-monotonic rules by simple perceptron

    Full text link
    We study the generalization ability of a simple perceptron which learns unlearnable rules. The rules are presented by a teacher perceptron with a non-monotonic transfer function. The student is trained in the on-line mode. The asymptotic behaviour of the generalization error is estimated under various conditions. Several learning strategies are proposed and improved to obtain the theoretical lower bound of the generalization error.Comment: LaTeX 20 pages using IOP LaTeX preprint style file, 14 figure

    Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    Get PDF
    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interact in complex networks to balance the response to developmental and environmental cues and thus limiting defense-associated fitness costs. The molecular mechanisms that govern these hormonal networks are largely unknown. Moreover, hormone signaling pathways are targeted by pathogens to disturb and evade plant defense responses. In this review, we address novel insights on the regulatory roles of the ABA, SA, and auxin in plant resistance to pathogens and we describe the complex interactions among their signal transduction pathways. The strategies developed by pathogens to evade hormone-mediated defensive responses are also described. Based on these data we discuss how hormone signaling could be manipulated to improve the resistance of crops to pathogens

    Monalysin, a Novel ß-Pore-Forming Toxin from the Drosophila Pathogen Pseudomonas entomophila, Contributes to Host Intestinal Damage and Lethality

    Get PDF
    Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis

    Neonatal lactocrine deficiency affects the adult porcine endometrial transcriptome at pregnancy day 13

    Get PDF
    Reproductive performance of female pigs that do not receive sufficient colostrum from birth is permanently impaired. Whether lactocrine deficiency, reflected by low serum immunoglobulin immunocrit (iCrit), affects patterns of endometrial gene expression during the periattachment period of early pregnancy is unknown. Here, objectives were to determine effects of low iCrit at birth on the adult endometrial transcriptome on pregnancy day (PxD) 13. On the first day of postnatal life, gilts were assigned to high or low iCrit groups. Adult high (n = 8) and low (n = 7) iCrit gilts were bred (PxD 0), and humanely slaughtered on PxD 13 when tissues and fluids were collected. The endometrial transcriptome was defined for each group using mRNAseq and microRNAseq. Reads were mapped to the Sus scrofa 11.1 genome build. Mature microRNAs were annotated using miRBase 21. Differential expression was defined based on fold change (≥ ±1.5). Lactocrine deficiency did not affect corpora lutea number, uterine horn length, uterine wet weight, conceptus recovery, or uterine luminal fluid estrogen content on PxD 13. However, mRNAseq revealed 1157 differentially expressed endometrial mRNAs in high versus low iCrit gilts. Differentially expressed genes had functions related to solute transport, endometrial receptivity, and immune response. Six differentially expressed endometrial microRNAs included five predicted to target 62 differentially expressed mRNAs, affecting similar biological processes. Thus, lactocrine deficiency on the first day of postnatal life can alter uterine developmental trajectory with lasting effects on endometrial responses to pregnancy as reflected at the level of the transcriptome on PxD 13

    Neonatal lactocrine deficiency affects the adult porcine endometrial transcriptome at pregnancy day 13

    Get PDF
    Reproductive performance of female pigs that do not receive sufficient colostrum from birth is permanently impaired. Whether lactocrine deficiency, reflected by low serum immunoglobulin immunocrit (iCrit), affects patterns of endometrial gene expression during the periattachment period of early pregnancy is unknown. Here, objectives were to determine effects of low iCrit at birth on the adult endometrial transcriptome on pregnancy day (PxD) 13. On the first day of postnatal life, gilts were assigned to high or low iCrit groups. Adult high (n = 8) and low (n = 7) iCrit gilts were bred (PxD 0), and humanely slaughtered on PxD 13 when tissues and fluids were collected. The endometrial transcriptome was defined for each group using mRNAseq and microRNAseq. Reads were mapped to the Sus scrofa 11.1 genome build. Mature microRNAs were annotated using miRBase 21. Differential expression was defined based on fold change (≥ ±1.5). Lactocrine deficiency did not affect corpora lutea number, uterine horn length, uterine wet weight, conceptus recovery, or uterine luminal fluid estrogen content on PxD 13. However, mRNAseq revealed 1157 differentially expressed endometrial mRNAs in high versus low iCrit gilts. Differentially expressed genes had functions related to solute transport, endometrial receptivity, and immune response. Six differentially expressed endometrial microRNAs included five predicted to target 62 differentially expressed mRNAs, affecting similar biological processes. Thus, lactocrine deficiency on the first day of postnatal life can alter uterine developmental trajectory with lasting effects on endometrial responses to pregnancy as reflected at the level of the transcriptome on PxD 13
    corecore