13 research outputs found

    FEATURES OF THE CLINICAL SIGNIFICANCE OF POLYMORPHIC VARIANTS OF ENOS AND AGTR2 GENES IN PATIENTS WITH CAD

    Get PDF
    Coronary heart disease (CHD) is a major cause of mortality. Morphological substrate of CHD in most cases is atherosclerosis, which is based on structural genes polymorphism eNOS and AGTR2. The aim of the study was to study the prevalence of eNOS and AGTR2 genes in patients with coronary artery disease and the association of these genes with coronary heart disease. The study involved 187 patients aged 36 to 86 years (62,2Β±11,2) with different forms of CHD: stable and unstable angina, myocardial infarction and 45 people without CHD. Determination of gene polymorphisms was performed by real-time PCR analyzer of nucleic acids IQ 5 Bio-Rad. Statistical analysis was performed using Statistica 10.0. The study revealed a significant difference between the incidence of homozygous AA allelic variant gene AGTR2 group of patients with myocardial infarction and the comparison group; polymorphic variant AA AGTR2 gene is associated with earlier onset of coronary artery disease; It found that carriers of the polymorphic variant gene GA AGTR2 beginning statistically CHD occurred significantly later than in carriers of alleles GG and AA; age CHD debut TT allele carriers of the eNOS gene is associated with an earlier onset of the disease and statistically significantly different from the age of first CHD in carriers of alleles of polymorphic variants of GG and GT; revealed a positive correlation between the polymorphic allele AGTR2 geneΒ with the presence of arterial hypertension in patients with coronary artery disease; It determined that the T allele carriers of the polymorphic gene eNOS is associated more early onset of hypertension, found the association of the polymorphic allele gene AGTR2 the need to use higher doses of ACE inhibitor β€” perindopril

    MSMEG_2731, an Uncharacterized Nucleic Acid Binding Protein from Mycobacterium smegmatis, Physically Interacts with RPS1

    Get PDF
    While the M. smegmatis genome has been sequenced, only a small portion of the genes have been characterized experimentally. Here, we purify and characterize MSMEG_2731, a conserved hypothetical alanine and arginine rich M. smegmatis protein. Using ultracentrifugation, we show that MSMEG_2731 is a monomer in vitro. MSMEG_2731 exists at a steady level throughout the M. smegmatis life-cycle. Combining results from pull-down techniques and LS-MS/MS, we show that MSMEG_2731 interacts with ribosomal protein S1. The existence of this interaction was confirmed by co-immunoprecipitation. We also show that MSMEG_2731 can bind ssDNA, dsDNA and RNA in vitro. Based on the interactions of MSMEG_2731 with RPS1 and RNA, we propose that MSMEG_2731 is involved in the transcription-translation process in vivo

    Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid.

    Get PDF
    Pyrazinamide (PZA) is an antibiotic used in first- and second-line tuberculosis treatment regimens. Approximately 50% of multidrug-resistant tuberculosis and over 90% of extensively drug-resistant tuberculosis strains are also PZA resistant. Despite the key role played by PZA, its mechanisms of action are not yet fully understood. It has been postulated that pyrazinoic acid (POA), the hydrolyzed product of PZA, could inhibit trans-translation by binding to Ribosomal protein S1 (RpsA) and competing with tmRNA, the natural cofactor of RpsA. Subsequent data, however, indicate that these early findings resulted from experimental artifact. Hence, in this study we assess the capacity of POA to compete with tmRNA for RpsA. We evaluated RpsA wild type (WT), RpsA βˆ†A438, and RpsA βˆ†A438 variants with truncations towards the carboxy terminal end. Interactions were measured using Nuclear Magnetic Resonance spectroscopy (NMR), Isothermal Titration Calorimetry (ITC), Microscale Thermophoresis (MST), and Electrophoretic Mobility Shift Assay (EMSA). We found no measurable binding between POA and RpsA (WT or variants). This suggests that RpsA may not be involved in the mechanism of action of PZA in Mycobacterium tuberculosis, as previously thought. Interactions observed between tmRNA and RpsA WT, RpsA βˆ†A438, and each of the truncated variants of RpsA βˆ†A438, are reported

    [Positional cloning of chromosomal regions controlling QTLs in chickens] ΠŸΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² хромосом, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… количСствСнныС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Ρƒ ΠΊΡƒΡ€

    No full text
    Π‘Π°Π·Π°Π½ΠΎΠ² А.А.; Π¦Π°Ρ€Π΅Π²Π° Π’.А.; Π‘ΠΌΠΈΡ€Π½ΠΎΠ² А.Π€.; Π’Π°Ρ€Π΄Π΅Ρ†ΠΊΠ° Π‘.; ΠšΠΎΡ€Ρ‡Π°ΠΊ М.; Π―Ρ‰Π°ΠΊ К.; Π ΠΎΠΌΠ°Π½ΠΎΠ² M.Н. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ хозяйствСнно Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄ΠΎΠΌΠ°ΡˆΠ½ΠΈΡ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈΠΌΠ΅ΡŽΡ‚ слоТный ΠΏΠΎΠ»ΠΈΠ³Π΅Π½Π½Ρ‹ΠΉ Ρ‚ΠΈΠΏ наслСдования ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ Π³Π΅Π½Π°ΠΌΠΈ, располоТСнными Π² локусах QTL (quantitative trait loci). Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ комплСксной молСкулярной Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ QTL прСдставляСт интСрСс с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΎΠ±Ρ‰Π΅ΠΉ Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡΡ… ΠΈΠ· Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² QTL ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² практичСском ТивотноводствС для сСлСкции с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ молСкулярных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² (marker assisted selection, MAS). Π’ настоящСС врСмя Π½Π°ΠΌΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ряд экспСримСнтов ΠΏΠΎ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π΄Π²ΡƒΡ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² хромосомы 4 домашнСй ΠΊΡƒΡ€ΠΈΡ†Ρ‹, содСрТащиС QTL Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ скорлупы Π½Π° 53 Π½Π΅Π΄Π΅Π»ΠΈ ΠΆΠΈΠ·Π½ΠΈ (ST53) ΠΈ массы Π±Π΅Π»ΠΊΠ° Π² яйцС Π½Π° 33 Π½Π΅Π΄Π΅Π»Π΅ (AW33). Π£ΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Ρƒ Π΄Π²ΡƒΡ… Π»ΠΈΠ½ΠΈΠΉ ΠΊΡƒΡ€ (польская зСлСноногая ΠΈ Ρ€ΠΎΠ΄-Π°ΠΉΠ»Π΅Π½Π΄) Π½Π° 3,3% ΠΈ 7,5%, соотвСтствСнно. Показано сцСплСниС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° AW33 с микросатСллитным ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠΌ MCW170 (гСнСтичСскоС расстояниС 1сМ) ΠΈ практичСски ΠΏΠΎΠ»Π½ΠΎΠ΅ сцСплСниС QTL ST53 с микросатСллитным ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠΌ MCW114. Π‘ использованиСм Π±Π°Π· Π΄Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ сСти Π˜Π½Ρ‚Π΅Ρ€Π½Π΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° локализация количСствСнного ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° AW33 Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ микросатСллитными локусами MCW0170 ΠΈ LEI0081, ΠΈ QTL ST53 Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ€Π°ΠΉΠΎΠ½Π° с Π³Ρ€Π°Π½ΠΈΡ†Π°ΠΌΠΈ MCW0114 ΠΈ ADL0241. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ скрининг Π³Ρ€ΠΈΠ΄ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π³Π΅Π½ΠΎΠΌΠ½ΠΎΠΉ BAC-Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ ΠΊΡƒΡ€ΠΈΡ†Ρ‹ 031-JF256-BI (http://hbz.tamu.edu) с использованиСм Π² качСствС Π”ΠΠš-Π·ΠΎΠ½Π΄ΠΎΠ² ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… -32P-dCTP ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ микросатСллитов MCW0170, LEI0081, MCW0114 ΠΈ ADL0241. ГрафичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² скрининга ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ сканСра FX-scan ΠΈ ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ Quantity One. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΠΈ ΠΊΠ»ΠΎΠ½ΠΎΠ², ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… гомологию ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš вставки с микросатСллитными локусами MCW0170, LEI0081, MCW0114 ΠΈ ADL0241. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ позволят Β«Π·Π°ΡΠΊΠΎΡ€ΠΈΡ‚ΡŒΒ» Ρ€Π°ΠΉΠΎΠ½Ρ‹ QTL Π½Π° Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… гСнСтичСских ΠΊΠ°Ρ€Ρ‚Π°Ρ… Β«Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ-ΠΌΡ‹ΡˆΡŒΒ» Π½Π° основС Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π³Π΅Π½Ρ‹, отвСтствСнныС Π·Π° QTL Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ скорлупы ΠΈ массы Π±Π΅Π»ΠΊΠ° Π² яйцС. ( ΠšΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ΡΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Ρ‹.

    [Positional cloning of quantitative trait loci in the domestic fowl] ΠŸΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ локусов количСствСнных ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Ρƒ домашнСй ΠΊΡƒΡ€ΠΈΡ†Ρ‹

    No full text
    Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ хозяйствСнно Ρ†Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄ΠΎΠΌΠ°ΡˆΠ½ΠΈΡ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈΠΌΠ΅ΡŽΡ‚ слоТный ΠΏΠΎΠ»ΠΈΠ³Π΅Π½Π½Ρ‹ΠΉ Ρ‚ΠΈΠΏ наслСдования ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ Π³Π΅Π½Π°ΠΌΠΈ, располоТСнными Π² локусах QTL (quantitative trait loci). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ряд экспСримСнтов ΠΏΠΎ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π΄Π²ΡƒΡ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² хромосомы 4 домашнСй ΠΊΡƒΡ€ΠΈΡ†Ρ‹, содСрТащиС QTL Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ скорлупы Π½Π° 53 Π½Π΅Π΄Π΅Π»ΠΈ ΠΆΠΈΠ·Π½ΠΈ (ST53) ΠΈ массы Π±Π΅Π»ΠΊΠ° Π² яйцС Π½Π° 33 Π½Π΅Π΄Π΅Π»Π΅ (AW33). Π£ΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Ρƒ Π΄Π²ΡƒΡ… Π»ΠΈΠ½ΠΈΠΉ ΠΊΡƒΡ€ (польская зСлСноногая ΠΈ Ρ€ΠΎΠ΄-Π°ΠΉΠ»Π΅Π½Π΄) Π½Π° 3,3% ΠΈ 7,5%, соотвСтствСнно. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ гибридологичСского Π°Π½Π°Π»ΠΈΠ·Π° косСгрСгации микросатСллитных Π”ΠΠš-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΈ количСствСнных ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ² гСнСтичСской ΠΊΠ°Ρ€Ρ‚Ρ‹ (Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² хромосом), ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… QTL AW33 ΠΈ ST53. Π‘ использованиСм Π±Π°Π· Π΄Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ сСти Π˜Π½Ρ‚Π΅Ρ€Π½Π΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° локализация количСствСнного ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° AW33 Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ микросатСллитными локусами MCW0170 ΠΈ LEI0081, ΠΈ QTL ST53 Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ€Π°ΠΉΠΎΠ½Π° с Π³Ρ€Π°Π½ΠΈΡ†Π°ΠΌΠΈ MCW0114 ΠΈ ADL0241. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΄Π²Π°Π΄Ρ†Π°Ρ‚ΠΈ ΠΊΠ»ΠΎΠ½ΠΎΠ², ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… гомологию ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš вставки с микросатСллитными локусами MCW0170, LEI0081, MCW0114 ΠΈ ADL0241. ВСрификация аутСнтичности ΠΊΠ»ΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ПЦР с использованиСм ΠΏΡ€Π°ΠΉΠΌΠ΅Ρ€ΠΎΠ² для Ρ‚Ρ€Π΅Ρ… микросатСллитных локусов (MCW0170, MCW0114 ΠΈ ADL0241) ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ соотвСтствиС Π΄Π²ΡƒΡ… BAC-ΠΊΠ»ΠΎΠ½ΠΎΠ² локусу MCW0170 (QTL AW33), дСвяти β€” локусу MCW0114 (QTL ST53) ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… BAC-ΠΊΠ»ΠΎΠ½ΠΎΠ² локусу ADL0241 (QTL ST53). ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ флуорСсцСнтной Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ Π”ΠΠš-Π”ΠΠš in situ (FISH) установлСна внутрихромосомная локализация 15-Ρ‚ΠΈ BAC-ΠΊΠ»ΠΎΠ½ΠΎΠ², содСрТащих микросатСллитныС локусы. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· срСднСго Ρ€Π°Π·ΠΌΠ΅Ρ€Π° вставки β€” 150 Ρ‚.ΠΏ.Π½. β€” ΠΌΠΎΠΆΠ½ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ ΠΎ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΌ ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π²ΡƒΡ… участков хромосомы 4 домашнСй ΠΊΡƒΡ€ΠΈΡ†Ρ‹ суммарной Π΄Π»ΠΈΠ½ΠΎΠΉ 300 Ρ‚.ΠΏ.Π½. для QTL AW33 ΠΈ 1950 Ρ‚.ΠΏ.Π½. для QTL ST53

    Chromosomal localization of large insert clones of the chicken genome: expanding the comparative map

    No full text
    Fluorescent in situ hybridization (FISH) mapping provides a convenient method for aligning clone-based physical maps with the cytogenetic map of the chicken. This also provides framework marker locations for future cytogenetic mapping using dual label techniques. In the course of screening chicken BAC libraries with linkage map markers, several BACs were selected for FISH mapping. These clones derived from filter hybridization using conventional probes for chicken genes on chromosomes 1 (MGP, MGF, TYR), 4 (ALB, ANXA5, ENDRA) and Z (CTSL, NTRK2, TPM2, and UBAP2). Cytogenetic assignments were first done for seven genes (MGP, MGF, ANXA5, ENDRA, CTSL, TPM2, and UBAP2), and chromosome location was defined more precisely for three other genes (TYR, ALB, and NTRK2). These data provide new information for comparative mapping of conserved segments of orthologous genes between chicken and human chromosomes, including GGA1-HSA12, GGA1-HSA11, GGA4-HSA4 and GGAZ-HSA9. Acknowledgements: This work was supported by grants from the Russian Foundation for Basic Researches 03-04-48060-a, Russian Ministry of Education PD02-1.4-175 and INTAS 04-2163 and by the USDA/CSREES (Project numbers: 99-35205-8566 and 2001-52100-11225)

    Chromosomal localization of three GGA4 genes using BAC-based FISH mapping: a region of conserved synteny between the chicken and human genomes

    Get PDF
    The chicken homologues of three genes spaced widely on HSA4q, ANXA5 (annexin A5), ALB (albumin) and EDNRA (endothelin receptor type-A) have been mapped to the GGA4 linkage map but with some uncertainty as to their relative location (SCHMID et al. 2000; SUCHYTA et al. 2001). A cytogenetic map assignment has been made only for the ALB gene (SUZUKI et al. 1999). Here we report the chromosomal localization of all three genes on GGA4 by fluorescence in situ hybridization (FISH) using BAC clones as probes..

    [Chromosomal localization of continuous genomic clones in the chicken with a view of comparative mapping] Локализация Π½Π° хромосомах протяТСнных Π³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… ΠΊΠ»ΠΎΠ½ΠΎΠ² домашнСй ΠΊΡƒΡ€ΠΈΡ†Ρ‹ Π² цСлях ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ картирования

    No full text
    ЀлуорСсцСнтная гибридизация in situ (FISH) являСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ совмСщСния физичСских ΠΊΠ°Ρ€Ρ‚ ΠΊΠΎΠ½Ρ‚ΠΈΠ³ΠΎΠ² протяТСнных Π³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… ΠΊΠ»ΠΎΠ½ΠΎΠ² ΠΈ цитогСнСтичСский ΠΊΠ°Ρ€Ρ‚ хромосом. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π΄Π²ΡƒΡ†Π²Π΅Ρ‚Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π²Π·Π°ΠΈΠΌΠ½ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ ΠΊΠ»ΠΎΠ½ΠΎΠ² Π΄Ρ€ΡƒΠ³ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³Π°. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… исслСдования ΠΏΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π°Π½Π°Π»ΠΈΠ·Ρƒ BAC-ΠΊΠ»ΠΎΠ½ΠΎΠ², содСрТащих извСстныС ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ Π³Ρ€ΡƒΠΏΠΏ сцСплСния, нСсколько Ρ‚Π°ΠΊΠΈΡ… протяТСнных Π³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… ΠΊΠ»ΠΎΠ½ΠΎΠ² Π±Ρ‹Π»ΠΈ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ для картирования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ FISH. BAC-ΠΊΠ»ΠΎΠ½Ρ‹ Π±Ρ‹Π»ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ… Π³Π΅Π½ΠΎΠΌΠ½ΠΎΠΉ Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ Π”ΠΠš-Π·ΠΎΠ½Π΄ΠΎΠ², ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Π³Π΅Π½Ρ‹ хромосомы 1 (MGP, MGF, TYR), хромосомы 4 (ALB, ANXA5, ENDRA) ΠΈ Z-хромосомы (CTSL, NTRK2, TPM2 ΠΈ UBAP2). ЦитогСнСтичСская локализация Π±Ρ‹Π»Π° Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для сСми Π³Π΅Π½ΠΎΠ² (MGP, MGF, ANXA5, ENDRA, CTSL, TPM2 ΠΈ UBAP2). Π˜Π·Π²Π΅ΡΡ‚Π½Π°Ρ ΠΈΠ· Ρ€Π°Π±ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² локализация Ρ‚Ρ€Π΅Ρ… Π³Π΅Π½ΠΎΠ² (TYR, ALB ΠΈ NTRK2) Π±Ρ‹Π»Π° установлСна Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ сущСствСнно ΡƒΠ³Π»ΡƒΠ±ΠΈΡ‚ΡŒ прСдставлСния ΠΎΠ± ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠΌ консСрватизмС хромосом Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ домашнСй ΠΊΡƒΡ€ΠΈΡ†Ρ‹ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΠΎΡ€Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠ°Ρ€ GGA1β€”HSA12, GGA1β€”HSA11, GGA4β€”HSA4 ΠΈ GGAZβ€”HSA9. Данная Ρ€Π°Π±ΠΎΡ‚Π° частично Ρ„ΠΈΠ½Π°Π½ΡΠΈΡ€ΠΎΠ²Π°Π»Π°ΡΡŒ Π³Ρ€Π°Π½Ρ‚Π°ΠΌΠΈ Российского Π€ΠΎΠ½Π΄Π° Π€ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ИсслСдований (03-04-48060-a), ΠœΠΈΠ½ΠΈΡΡ‚Π΅Ρ€ΡΡ‚Π²Π° ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡ Π Π€ (PD02-1.4-175), INTAS (04-2163) ΠΈ USDA/CSREES (99-35205-8566 ΠΈ 2001-52100-11225). АдрСс для пСрСписки: Ѐакс: +7 812 428 77 33; E.mail: [email protected]

    GTP-independent tRNA Delivery to the Ribosomal P-site by a Novel Eukaryotic Translation Factor*

    No full text
    During translation, aminoacyl-tRNAs are delivered to the ribosome by specialized GTPases called translation factors. Here, we report the tRNA binding to the P-site of 40 S ribosomes by a novel GTP-independent factor eIF2D isolated from mammalian cells. The binding of tRNAiMet occurs after the AUG codon finds its position in the P-site of 40 S ribosomes, the situation that takes place during initiation complex formation on the hepatitis C virus internal ribosome entry site or on some other specific RNAs (leaderless mRNA and A-rich mRNAs with relaxed scanning dependence). Its activity in tRNA binding with 40 S subunits does not require the presence of the aminoacyl moiety. Moreover, the factor possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40 S subunit. The corresponding gene is found in all eukaryotes and includes an SUI1 domain present also in translation initiation factor eIF1. The versatility of translation initiation strategies in eukaryotes is discussed
    corecore