39 research outputs found

    Fast Modal Sounds with Scalable Frequency-Domain Synthesis

    Get PDF
    International audienceAudio rendering of impact sounds, such as those caused by falling objects or explosion debris, adds realism to interactive 3D audiovisual applications, and can be convincingly achieved using modal sound synthesis. Unfortunately, mode-based computations can become prohibitively expensive when many objects, each with many modes, are impacted simultaneously. We introduce a fast sound synthesis approach, based on short-time Fourier Tranforms, that exploits the inherent sparsity of modal sounds in the frequency domain. For our test scenes, this "fast mode summation" can give speedups of 5-8 times compared to a time-domain solution, with slight degradation in quality. We discuss different reconstruction windows, affecting the quality of impact sound "attacks". Our Fourier-domain processing method allows us to introduce a scalable, real-time, audio processing pipeline for both recorded and modal sounds, with auditory masking and sound source clustering. To avoid abrupt computation peaks, such as during the simultaneous impacts of an explosion, we use crossmodal perception results on audiovisual synchrony to effect temporal scheduling. We also conducted a pilot perceptual user evaluation of our method. Our implementation results show that we can treat complex audiovisual scenes in real time with high quality

    Instruments to measure the ability to self-reflect:A systematic review of evidence from workplace and educational settings including health care

    Get PDF
    Introduction: Self-reflection has become recognised as a core skill in dental education, although the ability to self-reflect is valued and measured within several professions. This review appraises the evidence for instruments available to measure the self-reflective ability of adults studying or working within any setting, not just health care. Materials and Methods: A systematic review was conducted of 20 electronic databases (including Medline, ERIC, CINAHL and Business Source Complete) from 1975 to 2017, supplemented by citation searches. Data were extracted from each study and the studies graded against quality indicators by at least two independent reviewers, using a coding sheet. Reviewers completed a utility analysis of the assessment instruments described within included studies, appraising their reported reliability, validity, educational impact, acceptability and cost. Results: A total of 131 studies met the inclusion criteria. Eighteen were judged to provide higher quality evidence for the review and three broad types of instrument were identified, namely: rubrics (or scoring guides), self-reported scales and observed behaviour. Conclusions: Three types of instrument were identified to assess the ability to self-reflect. It was not possible to recommend a single most effective instrument due to under reporting of the criteria necessary for a full utility analysis of each. The use of more than one instrument may therefore be appropriate dependent on the acceptability to the faculty, assessor, student and cost. Future research should report on the utility of assessment instruments and provide guidance on what constitutes thresholds of acceptable or unacceptable ability to self-reflect, and how this should be managed

    The Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel

    Get PDF
    Unraveling the relationship between genetic variation and phenotypic traits remains a fundamental challenge in biology. Mapping variants underlying complex traits while controlling for confounding environmental factors is often problematic. To address this, we establish a vertebrate genetic resource specifically to allow for robust genotype-to-phenotype investigations. The teleost medaka (Oryzias latipes) is an established genetic model system with a long history of genetic research and a high tolerance to inbreeding from the wild

    Genomic variations and epigenomic landscape of the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel

    Get PDF
    The teleost medaka (Oryzias latipes) is a well-established vertebrate model system, with a long history of genetic research, and multiple high-quality reference genomes available for several inbred strains (HdrR, HNI and HSOK). Medaka has a high tolerance to inbreeding from the wild, thus allowing one to establish inbred lines from wild founder individuals. We have exploited this feature to create an inbred panel resource: the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. This panel of 80 near-isogenic inbred lines contains a large amount of genetic variation inherited from the original wild population. We used Oxford Nanopore Technologies (ONT) long read data to further investigate the genomic and epigenomic landscapes of a subset of the MIKK panel. Nanopore sequencing allowed us to identify a much greater variety of high-quality structural variants compared with Illumina sequencing. We also present results and methods using a pan-genome graph representation of 12 individual medaka lines from the MIKK panel. This graph-based reference MIKK panel genome revealed novel differences between the MIKK panel lines compared to standard linear reference genomes. We found additional MIKK panel-specific genomic content that would be missing from linear reference alignment approaches. We were also able to identify and quantify the presence of repeat elements in each of the lines. Finally, we investigated line-specific CpG methylation and performed differential DNA methylation analysis across the 12 lines. We thus present a detailed analysis of the MIKK panel genomes using long and short read sequence technologies, creating a MIKK panel specific pan genome reference dataset allowing for the investigation of novel variation types that would be elusive using standard approaches

    Audio texture synthesis for complex contact interactions

    Get PDF
    This paper presents a new synthesis approach for generating contact sounds for interactive simulations. To address complex contact sounds, surface texturing is introduced. Visual textures of objects in the environment are reused as a discontinuity map to create audible position-dependent variations during continuous contacts. The resulting synthetic profiles are then used in real time to provide an excitation force to a modal resonance model of the sounding objects. Compared to previous sound synthesis for virtual environments, our approach has three major advantages: (1) complex contact interactions are addressed and a large variety of sounding events can be rendered, (2) it is fast due to the compact form of the solution which allows for synthesizing at interactive rates, (3) it provides several levels of detail which can be used depending on the desired precision
    corecore