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The accuracy of a phased beam tracing method in predicting transfer functions is investigated with

a special focus on the positions of the source and receiver. Simulated transfer functions for various

source-receiver pairs using the phased beam tracing method were compared with analytical Green’s

functions and boundary element solutions up to the Schroeder frequency in simple rectangular

rooms with different aspect ratios and absorptions. Only specular reflections were assumed and dif-

fraction was neglected. Three types of error definitions were used: average error level over a narrow

band spectrum, average error level over a 1/3 octave band spectrum, and dissimilarity measure. The

narrow band error and dissimilarity increased with the source-to-receiver distance but converged to

a certain value as the reverberant field became dominant. The 1/3 octave band error was found to

be less dependent on the source-receiver distance. The errors are increased as the aspect ratio

becomes more disproportionate. By changing the wall absorption from 0.2 to 0.8 for a rectangular

room, the average narrow and 1/3 octave band error are deviated by around 1.5 dB. A realistic non-

uniform distribution of the absorption increases the error, which might be ascribed to wave phe-

nomena evoked by the impedance-discontinuous boundary. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.3699268]

PACS number(s): 43.55.Ka [NX] Pages: 3864–3875

I. INTRODUCTION

Phased geometrical acoustics methods are known to

have obvious advantages over the other methods at medium

frequencies as they are faster than wave-based methods and

more accurate than energy-based methods.1–3 At low fre-

quencies, wave based methods are, with no doubt, the most

reliable and appropriate tools in calculating transfer func-

tions. At frequencies well above the Schroeder frequency,

room modes are highly overlapped, and therefore individual

modal characters do not need to be taken into account. At

such high frequencies, the geometrical acoustics methods are

approximate but reliable and fast prediction schemes. How-

ever, at around the Schroeder frequency both wave based

and geometrical acoustics methods cannot tackle acoustic

problems properly: The wave based methods require a lot of

computational expenditure due to a huge number of ele-

ments, whereas lack of phase information and modal charac-

teristics leads the geometrical acoustics methods to

inaccurate outcomes. Therefore the geometrical acoustics

methods retaining phase have been suggested as alternatives

with a relatively short calculation time; these methods can

account for interference that is still important at medium fre-

quencies. However, the phased geometrical acoustics is still

an approximate model based on the geometrical tracing,

therefore certain systematic errors can happen in predicting

room acoustics. This paper aims to investigate such system-

atic errors of a phased beam tracing method at low frequen-

cies with a special focus on the source-to-receiver distance.

The accuracy of the phased geometrical acoustics meth-

ods over the conventional geometrical acoustics methods is

well documented. Suh and Nelson proved that a phased

image source method can account for wave interference

well, whereas conventional geometrical simulations cannot

model interference.1 Significantly reduced errors in simu-

lated impulse responses were observed for the phased image

source method. Lam discussed the accuracy of a phased

image source method employing plane and spherical wave

reflection coefficients in comparisons with boundary element

simulations and energy based geometrical method simula-

tions in the time and frequency domain.2 The plane wave

reflection model was found to have noticeable errors at

higher admittance values and at longer delay time, but the

accuracy improves as the frequency increases. Jeong et al.
examined another reflection modeling that takes into account

finite boundary surfaces and angle dependence in a phased

beam tracing method (PBTM), resulting in a notable

improvement in the early parts of impulse responses.3

The main focus of this study is to investigate how the sim-

ulation error changes with the source-to-receiver distance in

simple rectangular enclosures and to eventually quantify the

upper limit of the PBTM error in such rooms. Because the

simulation error is amplified near off-resonance frequencies

a)Author to whom correspondence should be addressed. Electronic mail:

chj@elektro.dtu.dk
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that change with the source and receiver locations, the simula-

tion error is related to the position of the source and receiver.

In general, the error is small for a short source-to-receiver dis-

tance, whereas the error is likely to be amplified for a long dis-

tance. The simulation error is also ascribed to the scanning

error because the phased beam tracing used does not incorpo-

rate a beam-splitting algorithm. The longer the travel distance,

the larger the scanning error due to the non-splitting algorithm.

Therefore the main concerns are how large the simulation

error becomes with the non-splitting algorithm, and how the

simulation error changes with the source-to-receiver distance

(dSR), when simulating rectangular rooms where diffraction

and diffuse reflections are negligible.

The total transfer function predicted by PBTM consists

of the direct field and reverberant field. The reverberant

energy is mainly determined by the absorption of the system,

e.g., the equivalent absorption area of the room and air

absorption. In a diffuse sound field, the reverberant energy is

constant regardless of the distance between the source and

receiver, whereas the direct energy decreases with increasing

dSR. Their energy ratio is defined as the direct-to-reverberant

(D-R) energy ratio.

The D-R energy ratio is mainly associated with two fac-

tors: room absorption and dSR. If dSR is short enough, the

D-R energy ratio tends to be high because the direct field

will dominate near the point of excitation. If the room boun-

daries are acoustically absorptive, there are substantial

attenuations of the reflections from the boundaries, produc-

ing a high D-R energy ratio. All in all, in moderately damped

large rooms, the direct sound and early reflections are domi-

nant contributers to the steady-state pressure,4,5 resulting in

more accurate results because PBTM results are accurate

particularly in the early parts of impulse responses.3,4 Such a

D-R energy ratio is also related to one of the important

underlying assumptions of the statistical energy analysis,

that is, high modal overlap. The modal overlap factor of a

room is 27:6 V � f 2=ðT60c3
oÞ,

6 where V is the volume, f is the

frequency, T60 is the reverberation time, and co is the speed

of sound. The modal overlap factor is proportional to the

volume and absorption of the three-dimensional (3D) sys-

tem. Therefore reasonably large rooms and/or highly

damped rooms are also good application examples of all the

high frequency energy methods.

Transfer functions in a room have numerous poles and

zeros. The poles that are determined by the eigenvalues are

independent of the source and observation point. The zeros,

however, are dependent on their locations. Therefore

changes in either the source or receiver position inevitably

lead to changes in the locations and magnitudes of the zeros

as well as the D-R energy ratio. Because PBTM and any ge-

ometrical acoustics methods become less accurate in calcu-

lating late reflections, a favorable condition for PBTM to

calculate transfer functions is a high D-R ratio or high early-

to-late energy ratio. Inherent simulation errors arise mostly

in late reflections due to incorrect scanning, spatial aliasing

problems, and limited reflection numbers. Lam discussed

such a simulation error and named it as �30 dB cutoff limit

for the geometrical contributions because the minima of pre-

dicted transfer functions are unlikely to reach below �30 dB

from the maxima.2 A brief introduction to the simulation

error will be given in Sec. II B.

This study is mainly concerned with effects of dSR on

the accuracy of PBTM. First, a reasonably low absorption

coefficient of 0.1 is assumed as a boundary condition of

three rectangular parallelepiped rooms with different aspect

ratios, and PBTM results are compared with acoustic

Green’s functions. Second, only a proportionate rectangular

room is chosen as a scaled lecture room for which PBTM

simulations are compared with boundary element simula-

tions for various absorption cases. Six uniform absorptions

and one non-uniform distribution of the wall absorption are

simulated and compared. Three error measures are defined

to examine the PBTM error in terms of dSR.

II. PHASED BEAM TRACING AND ITS SIMULATION
ERROR

A. Phased beam tracing

The basic idea of the phased geometrical acoustics is to

retain phase information to account for wave phenomena, par-

ticularly interference. As a pioneering attempt, phase was

introduced into a ray-tracing model so that it could be applied

to low to medium frequencies.7 Phased image source models

have been developed later and validated with measure-

ments.1,2 Wareing and Hodgson developed a transfer-matrix

model integrated into a beam tracing method for multi-

layered surfaces for accurate boundary modeling.8 An adapt-

ive beam tracing method incorporating the uniform theory of

dfractinon9 was tested in Bell labs by Tsingos et al., yielding

a remarkable agreement with measurements.10

Inclusion of phase is twofold: phase on reflections from

surfaces and propagation phase. The former phase requires

complex reflection coefficients at the boundary surfaces; this

is practically not always the case. The latter, however, is

quite simply implemented by knowing the traveling distance

from the source to receiver (dtavel) and taking into account a

term, exp(�jkdtavel), in calculation of sound pressures. In

this study, the propagation phase is always included, but the

reflection phase is omitted due to the use of real-valued

absorption coefficients and real-valued surface impedances

as input data. No matter the reflection coefficient is

complex-valued, PBTM can estimate the sound pressures at

receiver locations with help of the propagation phase.

PBTM used in this study is based on the triangular beam

tracing algorithm by Lewers,11 but extended to include

phase. The tracing algorithm consists of source generation,

surface-geometry definition, traces of beams, and receiver

detection. Source division is based on an icosahedron, which

makes the beam cross section an equilateral triangle. Then

all edges of the equilateral triangles of the icosahedron are

divided into p equal lengths, resulting in a polygon with

20�p2 triangular faces. For each receiver, the source is

rotated so that a triangle faces toward the receiver in

order not to miss the direct sound. Room boundary surfaces

should be planar; they are mathematically modeled as

AixþBiyþCizþDi¼ 0. A trajectory of a beam is scanned

by a combined process of determining the nearest plane,

finding the new image source, and calculating the reflected
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vector. A beam is defined by a central axis and three bound-

ary planes, each plane forming a side of the beam. Beams do

not fragment on reflection, and the direction after reflection

is determined entirely by its central axis. Once the trajectory

of the beam is identified, the possibility that a point receiver

is surrounded by the beam boundary planes is tested using

the normal vectors of the boundary walls. Following a posi-

tive receiver point test, the complex pressure for the beam

undergoing the reflection path is calculated and finally the

transfer function is constructed.

Therefore a PBTM result is a summation of the contri-

butions of the emitted beams from a source, which hit a

receiver in a room. Assuming a simple source emitting

spherical waves, the free-space Green’s function,12

A�exp(�jkr)/r, is a basis to calculate the transfer function at

an observation point, where k is the wavenumber, j is the

imaginary unit, r is the distance from the corresponding

source to the observation point, and A is an arbitrary con-

stant. For each reflection, a reflection coefficient is multi-

plied to the free-space Green’s function. For example, if the

boundary condition is given in terms of an absorption coeffi-

cient (ai), the simplest reflection coefficient is calculated toffiffiffiffiffiffiffiffiffiffiffiffi
1� ai

p
, assuming an acoustically hard wall with zero phase

shift. If a specific surface impedance (f) is known, the plane

wave reflection coefficients for an infinitely large panel of

ðf cos h� 1Þ=ðf cos hþ 1Þ can be used. Complex reflection

coefficients can improve its accuracy, particularly when the

phase shifts at walls are quite severe. For most reflective

surfaces, the use of real-valued reflection coefficients are

proved to be quite acceptable,1,2 because the phase shift on

reflection is quite negligible.

However, challenges still remain, particularly in consid-

ering diffraction and diffuse reflection. In a simply shaped

room, one can ignore diffraction, according to Pierce,

“amplitudes of the diffracted field usually much weaker than

direct and even reflected contributions.”13 Diffraction was

only considered in shadow regions in several previous

works, assuming its contribution is relatively small in illumi-

nated regions where direct and reflected contributions from a

source also reach a listener.10,14 On the other hand, Torres et
al. claimed that diffraction can be perceived in illuminated

regions.15 It is still controversial if diffraction should be

included for the entire enclosed sound field. As can be seen

in Sec. IV, diffraction is not crucial, at least, at low frequen-

cies in the rectangular rooms tested.

Another main problem of PBTM occurs when beams

intersect more than one surface.8,11,16–18 If an intersecting

polygon is detected, there are two solutions: The original

beam is followed by its central axis ray3,8,11 or the original

beam can be split.16,17 Beam-splitting algorithms make sim-

ulations more accurate, but they become computationally vo-

racious. The phased beam tracing model used incorporates

neither splitting algorithms nor diffraction schemes.

B. Simulation errors

As Lam pointed out, phased geometrical acoustics meth-

ods suffer from prediction errors near zeros.2 To demonstrate

such errors, a unit cube with a source and receiver position

at (0.5, 0.5, 0.5) and (1, 1, 0), respectively, [all in m in what

follows] is chosen. Three uniform absorption cases of 1%,

5%, and 10% are simulated by PBTM using 8000 beams up

to the 200th reflection orders. To demonstrate how the

PBTM simulation changes with the wall absorption, a finite

element simulation under a perfectly rigid boundary condi-

tion19 is also shown in Fig. 1. Note that the inclusion of the

rigid boundary condition is not intended to compare the two

different simulation models but to illustrate how the peak

levels are attenuated and the peaks and troughs are shifted

toward low frequency as a natural consequence of the addi-

tional absorption.

For the very low absorption case in Fig. 1(a), the simu-

lated pressures at the off-resonance frequencies are quite

noisy and inaccurate, e.g., overestimations at frequencies

from 20 to 300 Hz, whereas the 10% absorption case shows

more stable results in the same frequency range. As the

absorption increases, the responses become less influenced

by the simulation noise. The level differences between the

pressure maxima and minima in the PBTM predictions for

the 1% and 10% absorption are 31 and 22 dB, respectively,

which concurs with Lam’s observation. However, the trans-

fer function for the 1% absorption case is unacceptably noisy

for levels below �10 dB from the maximum peak level,

whereas the result for the 10% absorption is not even below

�20 dB from the peak level.

The absolute level of the simulation error due to the

incorrect geometrical tracing is likely to be independent of

the frequency. However, the signal to noise ratio is impor-

tant. When the true level of the response is much higher than

the simulation error, the error is not noticeable, e.g., at reso-

nance frequencies. When the true sound pressure becomes

smaller than the simulation noise, they start to be noticeable,

which happens mostly near off-resonance frequencies. The

simulation noise originates from the incorrect beam paths

(the sampling error due to the non-splitting algorithm) and

incorrect detection for the late reflections, which are mostly

related to uncertainties in the late reverberant energy. An

increase in the wall absorption leads to an increase in the

D-R energy ratio by decreasing the uncertainty in the late

reverberant energy.

The amount of absorption in the room also affects the

convergence of the cumulative pressure. The convergence

becomes slow for low absorption cases. In Fig. 2, cumulative

pressures as a function of the number of the beams hitting

the receiver are shown at two frequencies of 119 Hz (an off-

resonance frequency) and 968 Hz (a resonance frequency)

for the two absorption coefficients of 1% and 5%. The con-

vergence is slowest at the off-resonance frequency for the

1% absorption in Fig. 2(a), whereas the sound pressure con-

verges faster for the 5% absorption at the same frequency.

The inaccurate responses at the off resonances in Fig. 1(a)

probably result from the unconverged pressures. At the reso-

nance frequency of 968 Hz, constructive interference occurs

by adding up reflected components from the walls in

Figs. 2(b) and 2(d), and their convergence is faster. In gen-

eral, as the frequency increases, the D-R energy ratio is

likely to increase due to increased boundary absorption, for

example, classroom ceilings, upholstered chairs, curtains,
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and human bodies can absorb sound more effectively at high

frequencies. Consequently the convergence is likely to be

faster at higher frequencies.

III. METHOD

To quantify the sole influence of the source-to-receiver

distance on PBTM simulations, the boundary absorption

coefficient is fixed to 0.1. For this purpose, PBTM simula-

tions are compared with the corresponding Green’s functions

for three rectangular rooms with different aspect ratios.

Absorption coefficients lower than 0.1 are not practical in

many actual cases (except for very reverberant sound fields)

and may yield quite noisy responses. Absorption coefficients

higher than 0.1 may also be problematic in such comparisons

because acoustic Green’s functions can approximate lightly

damped sound fields by a damping term but still using three

cosine terms. High absorption cases are actually unrealistic

at low frequencies, say below the Schroeder frequency.

To investigate the combined effects of the source-to-re-

ceiver distance and boundary absorption, a proportionate

room is chosen to be simulated with different absorption

cases. For validating PBTM predictions with changing

absorption coefficients, boundary element solutions are com-

pared. A realistic non-uniform absorption condition is also

included in the comparison.

A. PBTM and acoustic Green’s function

In the PBTM used in this study, a source is assumed to

produce a sound pressure of 1 Pa at 1 m from a point source

in a free field. Therefore the free space Green’s function for

a harmonic wave is given by

Gfree rð Þ ¼ 1

r
expð�jkrÞ: (1)

To compare transfer functions calculated by PBTM with

acoustic Green’s functions, one should find a proper volume

velocity that produces 1 Pa at 1 m from the source. The

sound pressure by a monopole at a distance r is given by

pmono rð Þ ¼ jqcoua
a

r
ka expð�jkrÞ; (2)

where q is the density of air, ua is the velocity at r¼ a, and a
is the radius of the monopole. To have an absolute sound

pressure of 1 Pa at 1 m, the source velocity, ua, should be

ua ¼ 1=ðqxa2Þ: (3)

The acoustic Green’s function is the solution to the inhomo-

geneous wave equation with a mass injection source term

and given boundary condition as follows:12

FIG. 1. Comparisons of transfer functions between

FEM and PBTM for three absorption cases when a

source and receiver are at (0.5, 0.5, 0.5) and (1, 1,

0), respectively, in a unit cube. The symbol ~ indi-

cates the Schroder frequency of the room, 1033 Hz.

(a) a¼ 0.01, (b) a¼ 0.05, (c) a¼ 0.1.
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G f ; rrjrsð Þ ¼ p rrð Þ
jxqQ

� � 1

V

X
m

wmðrrÞwmðrsÞ
k2 � k2

m � jk smcð Þ; (4)

where p(rr) is the sound pressure at rr, Q (¼4pa2ua) is

the volume velocity of the monopole at rs, x is the angular

frequency, q is the density of air, sm is the time constant, and

c is the speed of sound. For each mode N representing three

integers (nx, ny, nz),

wNðrrÞ ¼ KN cos
nxpx

lx

� �
cos

nypy

ly

� �
cos

nzpz

lz

� �
; (5)

where KN denotes the normalization factor,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffienx

eny
enz

p
, in

which e0¼ 1, and e1¼ e2¼ e3¼ ��� ¼ 2. Note that this specific

formulation of Green’s function is an approximation for

small absorption and is valid only for uniform boundary con-

ditions. The imaginary term in the denominator accounts for

the room absorption, which is related to T60 by T60¼ 13.8

sm. Therefore the pressure predicted by Green’s function is

given by

pGreen fð Þ ¼ jxqQ � G f ; rrjrsð Þ ¼ 4pG f ; rrjrsð Þ: (6)

Once a transfer function by PBTM and pGreen in Eq. (6) are

calculated for a source-receiver pair, they are converted to

sound pressure levels re 1 Pa, viz., SPLPBTM and SPLGreen,

respectively, and compared to each other to quantify simula-

tion errors.

B. Boundary element method

The boundary element method can solve acoustic prob-

lems numerically based on the discretized Helmholtz–

Kirchhoff integral equation on a surface mesh.5 For thorough

investigations of the effect of various uniform and non-

uniform absorption distributions on the PBTM accuracy, an

in-house boundary element model was used for a proportion-

ate rectangular room (see Sec. III C 4). The room model has

3912 elements and 1958 nodes, therefore its upper frequency

is about 700 Hz. The linear shape function and seven Gaus-

sian points were used.

C. Test rooms and simulation conditions

1. Validation with Green’s functions

Narrow band spectra at 1 Hz intervals are mainly inves-

tigated for three rooms that are different in shape and vol-

ume: a unit cubic room, a well proportionate room with

dimensions of 1.9� 1.4� 1 m, a disproportionate room of

dimensions of 5� 1� 1 m as shown in Fig. 3. The second

room ratio is based on Louden’s work, which concluded that

this room ratio is optimum for achieving evenly spaced

modes.20 Therefore the first two rooms are the extremes in

FIG. 2. Convergence of cumulative sound pressures: (a) and (c) 119 Hz, (b)

and (d) 968 Hz. (a) and (b) a¼ 0.01, (c) and (d) a¼ 0.05.

FIG. 3. Three tested rooms. (a) Unit cube, (b) proportionate room (1.9� 1.4� 1 m), (c) disproportionate (5� 1� 1 m).
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terms of the modal distribution because the unit cubic room

has a large number of degenerate modes, whereas the room

ratio of 1.9:1.4:1 assures an even distribution of the room

modes. When the absorption coefficients of the boundary

walls were assumed as 0.1, the Schroeder frequencies of the

three rooms were 1033, 732, and 540 Hz, respectively. For

all three rooms, nine sources and 20 receivers are chosen in

each room for comparisons with Green’s functions. Sound

pressures are calculated in a frequency range from 20 Hz to

the Schroeder frequency with steps of 1 Hz, and simulated

transfer functions are compared with the acoustic Green’s

functions for the same source and receiver. Additionally a

larger cubic room with an edge length of 10 m is simulated

to show that the simulation error is independent of the size

of the room. For all the PBTM simulations, 8000 beams are

emitted from the source, and they are traced up to the 100th

reflection order. For example, in the cubic room where the

mean free path is 0.67 m, the mean propagation distance for

the 100th reflection order is 67 m, corresponding to a decay

range of 46 dB. In calculating Green’s functions, acoustic

modes up to (100,100,100) are included using three cosine

functions as the orthogonal modal shapes, wm.

2. Validation with BEM simulations

The proportionate room (1.9� 1.4� 1 m) is further

investigated with more realistic boundary conditions. First,

various uniform boundary conditions were simulated. Spe-

cific surface impedances (f) of 40, 30, 20, 10, 7, and 4 are

used both for the boundary element model and for the

PBTM simulations with the reflection modeling given by

r hð Þ ¼ ðf cos h� 1Þ=ðf cos hþ 1Þ. The corresponding

random incidence absorption coefficients are 0.17, 0.20,

0.30, 0.49, 0.60, 0.79, respectively. Note that the reflection

coefficients used in the PBTM simulations are not complex-

valued, but angle-dependent.

A realistic non-uniform absorption distribution was

finally simulated to represent a typical lecture room condi-

tion up to the Schroeder frequency. The surface impedances

for the ceiling, floor, and the side walls were 5.9, 18, and

38, respectively, therefore the corresponding random

absorption coefficients for the ceiling, floor, and side walls

are 0.66, 0.32, and 0.17, respectively. Note also that the

surface impedances were used for PBTM and BEM

simulations.

3. Sources and receivers in the unit cube

For the unit cube, nine source positions are defined.

For each source, 20 receivers are located at the same height

with increasing dSR at constant intervals. For example,

receivers for the worst source located at (0.5, 0.5, 0.5) are

distributed along a diagonal line at (x, x, 0.5), where x
ranges from 0.52 to 0.9 with steps of 0.02. It is the worst

source position because it coincides with nodal points,

lines, and surfaces. One may then expect an extremely slow

pressure convergence because only 12% of non-zero pres-

sure amplitudes contribute to the total pressure. The other

eight source positions are chosen so that they are not

located close to either the boundary walls or the well-

known nodes: Their locations are (0.1, 0.1, 0.5), (0.3, 0.3,

0.5), (0.1, 0.1, 0.2), (0.3, 0.3, 0.2), (0.15, 0.25, 0.1), (0.15,

0.25, 0.4), (0.35, 0.45, 0.4), and (0.35, 0.45, 0.4). For each

source of (x0, y0, 0), observation points are distributed along

a diagonal line at (x, y, z0), where x ranges from x0þ 0.02

to x0þ 0.4 with steps of 0.02, and y ranges from y0þ 0.02

to y0þ 0.4 with steps of 0.02.

4. Sources and receivers in the proportionate room

For the proportionate room, nine source positions are

defined. For each source, 20 receivers are located at the

same height as the source with increasing dSR at uniform

intervals. The source positions are (0.1, 0.05, 0.1), (0.5, 0.25,

0.1), (1, 0.5, 0.1), (0.1, 0.05, 0.2), (0.5, 0.25, 0.2), (1, 0.5,

0.2), (0.1, 0.05, 0.35), (0.5, 0.25, 0.35), and (1, 0.5, 0.35).

Receivers for each source at (x0, x0/2, z0) are distributed

along a diagonal line at (x, y, z0), where x ranges from

x0þ 0.04 to x0þ 0.8 with steps of 0.04, and y ranges from

y0þ 0.02 to y0þ 0.4 with steps of 0.02.

This room is also used for realistic absorption boundary

conditions because it can be regarded as a 1/4 scale model of

a lecture room. A teacher is assumed to stand at (0.1, 0.1,

0.4), and students are distributed over a virtual surface of

z¼ 0.3. A total of 54 receivers are positioned with x chang-

ing from 0.15 to 1.75 with steps of 0.2 and y changing from

0.2 to 1.2 with steps of 0.2.

5. Sources and receivers in the disproportionate room

For the disproportionate room, nine source positions are

defined at (0.7, 0.14, 0.1), (1.4, 0.28, 0.1), (2.1, 0.42, 0.1),

(0.7, 0.14, 0.2), (1.4, 0.28, 0.2), (2.1, 0.42, 0.2), (0.7, 0.14,

0.35), (1.4, 0.28, 0.35), and (2.1, 0.42, 0.35). For each

source, 20 receivers are distributed at the same height as the

source with increasing dSR. Receivers for each source at (x0,

x0/5, z0) are placed along a diagonal line at (x, y, z0), where x
ranges from x0þ 0.1 to x0þ 2 with steps of 0.1, and y ranges

from y0þ 0.02 to y0þ 0.04 with steps of 0.02.

D. Error measures

Three errors are estimated: an average error level over a

narrow band spectrum from 20 Hz to the Schroeder fre-

quency as e1 in Eq. (7), an average error level over an 1/3

octave band spectrum as e2 in Eq. (8), and a dissimilarity

measure, e3, using the modal assurance criterion (MAC) in

Eq. (9). MAC implies a shape correlation of the calculated

transfer functions by PBTM and Green’s functions but note

that e3 is defined as 1-MAC, quantifying how dissimilar the

two transfer functions are21

e1 dBð Þ ¼ 1

Nline

Xfschb c

i¼20Hz

SPLPBTM ið Þ � SPLGreen ið Þj j; (7)

e2 dBð Þ¼ 1

Nob

XNob

nob¼1

SPLPBTM;oct nobð Þ�SPLGreen;oct nobð Þ
�� ��;

(8)
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e3 ¼ 1�
SPLPBTMðf ÞTSPLGreenðf Þ
h i2

SPLPBTMðf ÞTSPLPBTMðf Þ
h i

� SPLGreenðf ÞTSPLGreenðf Þ
h i ; (9)

where fsch is the Schroeder frequency of the room, Nline is

the number of frequency lines, that is, fschb c-19, the symbol

xb c means the floor function, and Nob is the number of the

1/3 octave bands below the Schroeder frequency. The same

datasets are used for the narrow band error and dissimilarity

of which the upper frequency is set to the Schroeder

frequency.

If the two transfer functions are exactly the same, all

errors should vanish. Because PBTM suffers from simulation

noise mainly at off-resonance frequencies, e1 is influenced

by the simulation errors at off-resonance frequencies. A

spectral shift may lead to a large e1. The absorption of 10%

assigned to the boundary surfaces naturally leads to shifts of

the peaks and troughs toward lower frequency in the PBTM

results, which can also affect e1, in particular at the high end

of the frequency range of interest.

The 1/3 octave band error, e2, is based on the sound pres-

sure levels summed in 1/3 octave bands. The lowest center

frequency of the 1/3 octave band is fixed to 31.5 Hz, but the

highest center frequency changes with the room: 800 Hz for

the cube, 630 Hz for the proportionate room, and 400 Hz for

the disproportionate room. The main causes of e2 are differen-

ces in the sound pressures predicted near resonance frequen-

cies, not the sound pressures at off-resonance frequencies.

Therefore e2 quantifies the accuracy of the PBTM simulations

primarily at the resonance frequencies. Slight shifts of the

peaks and troughs are not expected to affect e2 significantly.

The dissimilarity measure, e3, basically compares the

shapes of the two spectra. The more similar the shapes are,

the lower the dissimilarity. Note that the dissimilarity is most

sensitive to the largest differences between the predicted

transfer function by PBTM and acoustic Green’s function and

insensitive to small changes and/or small magnitudes. Shifts

of the peaks and troughs may affect e3 because it is affected

by the sound pressures not only at the resonance frequencies

but also at the off-resonance frequencies.

The errors are expected to change with the locations of

source-receiver pairs. The main parameter might be dSR

because the direct field is likely to overpower the reverberant

field if they are very closely located, e.g., inside the room ra-

dius.22 As mentioned, the sources and receivers are chosen

not too close to the boundary walls, e.g., less than 0.05 m to

avoid additional simulation uncertainties.

E. Analysis of variance

Analysis of variance (ANOVA) tests have been applied

to test if there are significant differences between the

errors.23 For ANOVA tests, the commands “anova1” and

“anova2” in MATLAB were used. A p value from an ANOVA

test is the chance of rejecting the null hypothesis when the

null hypothesis is true. For smaller p values than a signifi-

cance level (normally 0.05 for * significance, 0.01 for ** sig-

nificance, or 0.001 for *** significance), the null hypothesis

is rejected, meaning there is a significant difference among

the tested groups.

IV. RESULTS AND DISCUSSIONS

A. Changes in the aspect ratio with a uniform
absorption of 0.1

Figure 4 shows two example transfer functions for the

first and fifth receiver in the cubic room between the PBTM

results and Green’s functions, when the source is placed at

(0.1, 0.1, 0.2). The smallest e1 of 0.7 dB for the first receiver

in Fig. 4(a) and the largest e1 of 2.0 dB for the fifth receiver

in Fig. 4(b) are found. The main causes of the smallest e1 in

Fig. 4(a) are the small deviations in the peak levels as well

as the shifts of the peaks and troughs. However, the latter is

actually not a PBTM error, but an inevitable consequence of

the use of the three cosine terms in calculating the Green’s

functions, being an error in the Green’s function. The largest

error in Fig. 4(b) results mainly from noise contamination at

the off-resonance frequencies, particularly in a frequency

range from 600 to 800 Hz. The PBTM simulations seem to

be accurate when the predicted SPLs are higher than 10 dB,

which is approximately 30 dB below the maximum level.

One may notice that the difference between the maximum

and minimum SPL is only around 20 dB for the smallest

error case, whereas the difference is much larger as 60 dB

for the largest error case. Therefore Lam’s �30 dB cutoff

level does not strictly hold for all phased geometrical acous-

tics simulations.2 Inaccurate predictions modify the sharp-

ness of the troughs, leading to a large e1. However, e2 values

FIG. 4. Examples of predicted transfer function for a source (0.1, 0.1, 0.2) in

the cubic room. (a) Receiver at (0.12, 0.12, 0.2), (b) receiver at (0.2, 0.2, 0.2).
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are quite similar and low as 0.2 and 0.4 dB, respectively,

which are not strongly influenced by the simulation errors at

the off-resonance frequencies. The dissimilarity indices for

the two receivers are found to be 0.001 and 0.03, which are

again significantly influenced by the simulation noise

because the spectral shape of the transfer function changes

near the off-resonance frequencies.

Figure 5 illustrates the errors as a function of dSR for the

unit cube. The hollow triangles represent errors for the worst

source at (0.5, 0.5, 0.5), whereas the hollow square symbols

are data points for the other eight sources. All the errors tend

to be larger for the worst source. The means and 95% confi-

dence intervals are plotted for the eight sources, indicating

an increased error for a longer distance. For e1, the error

trend resembles the second-half of a logistic function in

which the error increases linearly with the distance and satu-

rated to a certain value. In this room, the mean value of e1 is

bounded to 2 dB, indicating acceptable predictions. The 1/3

octave band error e2 is relatively independent of dSR and low

enough to ensure accurately predicted SPLs in octave bands.

The dissimilarity e3 increases constantly as the distance

increases, but the mean e3 for the longest distance is still lim-

ited to 5%. A two-way ANOVA shows that the p values of

e1 are smaller than 0.001 for the receiver and source to con-

clude that they are significantly different in a statistical

sense. However, the p values of e2 are high as 0.09 and 0.16

for the receiver and source, respectively; therefore one can

conclude that e2 does not change significantly with the

source and receiver position. The dissimilarity e3 is again

statistically different because the p values from a two-way

ANOVA test are smaller than 0.001 for the receiver and

source position, indicating *** significance (p< 0.001).

Note that these ANOVA analyses do not include the worst

source case.

The errors for the proportionate room are shown in

Fig. 6, in which the trends are similar to the cubic room. The

narrow band error e1 is increased for longer distances but

converged to around 2 dB. The 1/3 octave band error is not

strongly affected by the distance, ranging from 0.2 to 0.5 dB.

The dissimilarity error e3 is limited to 0.05. Using an

ANOVA test, p values of e1 are smaller than 0.001 for the

receivers and sources, indicating *** significance. However,

the p value of e2 is relatively high as 0.01 (** significance,

p< 0.01) for the receiver, while the p value of e2 for the

source is small enough to confirm *** significance. The dis-

similarity error e3 is obviously statistically different because

the p values from a two-way ANOVA test are smaller than

0.001 for the receiver and source position.

The errors for the disproportionate room are shown in

Fig. 7. The errors are larger than those for the other rooms.

The narrow band error e1 is bounded to 3 dB. The 1/3 octave

band error e2 increases with the distance, and its mean value

for the longest distance becomes 1.8 dB. The dissimilarity

error e3 is also increased up to 0.1. ANOVA tests show that

all p values of e1, e2, and e3 are smaller than 0.001 for the

receivers and sources, indicating *** significance. The errors

investigated with changing the source and receiver positions

are consistent for all the tested rooms. The narrow band error

and dissimilarity increase and become constant after a cer-

tain distance. As expected, the 1/3 octave band error is not

strongly influenced by the simulation noise at the off-

resonance frequencies, making e2 less dependent on dSR.

Among the error measures, e1 is correlated with e3. For

the unit cube, the coefficient of determination (R2) of a linear

regression between e1 and e3 is 0.74, whereas R2 is only 0.29

FIG. 5. Errors as a function of dSR for the unit cube. ~: Worst source case;

h: The other eight sources; the line and error bars show the mean and 95%

confidence intervals. (a) e1, (b) e2, (c) e3. The dotted line indicates the room

radius.

FIG. 6. Errors as a function of dSR for the proportionate room. h: Errors for

the nine sources; the line and error bars show the mean and 95% confidence

intervals. (a) e1, (b) e2, (c) e3. The dotted line indicates the room radius.
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between e1 and e2. For the proportionate room, R2 values are

0.74 and 0.08, respectively. Because e2 is relatively inde-

pendent of dSR, whereas e1 increases with increasing dSR, the

correlation between the two errors should be low. For the

disproportionate, the coefficient of determination between e1

and e2 is somewhat higher as 0.44, and the coefficient of

determination between e1 and e3 is 0.86. Because e3 is

strongly correlated with e1, it can be regarded as a redundant

error index.

It is assumed that the D-R energy ratio would change

with dSR. There is a well known concept of the room radius,

at which the direct and reverberant energy are equal. For a

diffuse sound field, it is calculated as 0:14
ffiffiffi
A
p

,22 where A is

the equivalent absorption area. For the three rooms, the

room radius are 0.11, 0.15, 0.21, respectively, indicated as

the vertical dotted lines in Figs. 5–7. At least inside the room

radius, both e1 and e3 increase linearly with dSR.

The unit cube and proportionate room have similar error

trends. Recalling that they are the extreme cases in terms of

the modal distribution, the accuracy of PBTM simulations is

consistent regardless of the distribution of the room mode.

However, the errors are indeed affected by the aspect ratio

of the room. The more disproportionate the room, the larger

the errors. An increase in e2 by about 1 dB for the dispropor-

tionate room implies that the predicted levels at the reso-

nance frequencies are not as precise as in the other two

rooms; this is associated with another simulation error due to

different mean free paths. In the disproportionate room, there

are a large variety of mean free paths: Beams traveling along

the longest dimension of the enclosure have a longer mean

free path than beams traveling across the space. Therefore

the beams traveling along the longest dimension tend to

diverge more and have a greater risk of the sampling error

because no splitting algorithm is employed in the current

PBTM simulation. For example, the longest and shortest

dimension of the disproportionate room correspond to the

axial modes of 34 and 171 Hz, respectively. The average

level differences between PBTM result and acoustic Green’s

function at the two frequencies are 2.6 and 1 dB, respec-

tively, for the shortest dSR, indicating that the beams along

the longest dimension obviously suffer from a rather severe

simulation noise. However, the level differences at the two

axial modes gradually increase with increasing dSR, ending

up with similar values of 3.2 and 2.7 dB, respectively, for

the longest dSR.

To test whether or not the room volume affect the

PBTM simulation error, another cube with dimensions of

10� 10� 10 m was simulated and compared with the mean

value of the unit cube in Fig. 8. In the larger cube, a source

is located at (1.5, 2.5, 1), and receivers are placed at (x, y, 1)

with x changing from 1.7 to 5.5 at intervals of 0.2 and y
changing from 2.7 to 6.5 at intervals of 0.2. For a fair com-

parison, the abscissa is a normalized distance, dN, which is

dSR divided by the maximum diagonal length of the room

(Lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

x þ L2
y þ L2

z

q
). Although the room volume is

increased by a factor of 1000, the errors in Fig. 8 are not sig-

nificantly increased, therefore the room volume does not

change the simulation error significantly when the room ge-

ometry is the same.

An attempt to make an error model was carried out for

e1. In Fig. 9(a), one can observe the deviations in the mean

e1 values for the three rooms, which are mainly attributed to

the aspect ratio. The errors for the disproportionate room

are, on average, 0.5 dB higher than those for the unit cube,

being equivalent to 1.12 times on the linear scale, whereas

the errors for the proportionate room are virtually the same

as those for the unit cube. Therefore one may assume a

power-law function of y¼ xb, as a simple correction, where y
is the incremental factor of e1 compared with the cube (being

1.12 for the disproportionate room), and x being the largest

room dimension ratio (5 for the disproportionate room).

FIG. 7. Errors as a function of dSR for the disproportionate. h: Errors for

the nine sources; the line and error bars show the mean and 95% confidence

intervals. (a) e1, (b) e2, (c) e3. The dotted line indicates the room radius.

FIG. 8. Comparison of the errors between the unit cube and a cube with an

edge of 10 m. (a) e1, (b) e2.
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Then the exponent b is found to be 0.0715. Applying this

correction to the proportionate room, where the largest room

dimension ratio of 1.9, ends up with an incremental factor of

1.011, converting to 0.05 dB on the log scale. The corrected

errors for the proportionate room and disproportionate are

plotted in Fig. 9(b) as the solid symbols. A logistic function

is used for fitting the error as follows:

e1 dBð Þ ¼ �A1 þ
A2

1þ exp � dN � A3ð Þ=A4ð Þð Þ : (10)

The coefficients (A1, A2, A3, and A4) for the regression

line in Fig. 9(b) and its R2 are listed in Table I. For e2, it is

not worth developing such a model because it is weakly de-

pendent on dSR.

One may ask a question if there is a significant difference

in the errors among the rooms. A one-way ANOVA using the

mean error values for the three test rooms, p values are low as

2� 10�6, 2� 10�35, 1� 10�7 for e1, e2, and e3, respectively,

meaning that the errors are statistically significantly different

depending on the room. However, the differences between the

cubic and proportionate room are relatively small for which p
values are high as 0.6, 0.003, and 0.07 for e1, e2, and e3,

respectively. Only e2 shows ** significance, whereas the

others are not significantly different between the two rooms.

However, note that dN is not exactly the same for the three

rooms as can be seen in Fig. 9, therefore this analysis may not

be strictly correct although it is likely.

B. Various uniform absorption cases

The simulation errors, e1 and e2, due to different but uni-

formly distributed absorption are shown in Fig. 10. From the

54 source-receiver pairs having irregular dSR, a new set of

dSR is computed at intervals of 0.3 m from 0 m to 2 m, and

the errors within each interval are averaged. The narrow

band error seems to increase with dSR but converged to a cer-

tain value as can be seen in Fig. 10(a). For the first four cases

having absorptions lower than 0.5, the narrow band errors

are similar with a small deviation, whereas the largest e1 is

found for the highest absorption case as also can be seen in

Table II. The smallest and largest e1 are 1.0 and 1.7 dB for

the cases 3 and 6, respectively, therefore the maximum devi-

ation in e1 is 0.7 dB.

The 1/3 octave band errors are shown in Fig. 10(b). The

1/3 octave band errors differ by 1.7 dB by changing the

absorption condition in Table II, which is larger than the devi-

ation in e1. The maximum e2 is 2.2 dB for case 6, whereas the

minimum error is 0.5 dB for a low absorption. For the first

four cases, e2 is constant over dSR, but e2 increases with

increasing dSR for the last two absorption cases.

For the first four cases, e1 is larger than e2, while the op-

posite is true for the highest absorption case. When the simu-

lation error near the off-resonance frequencies is

predominant, e2 is naturally smaller than e1, as can be seen

in Sec. IV A. A larger e2 than e1 implies two possibilities:

The predicted peak levels are imprecise and/or the errors at

low frequencies are larger because e2 is based on 1/3 octave

TABLE I. Coefficients for regressions and corresponding coefficients of

determination (R2).

A1 A2 A3 A4 R2

Regression 1 for the fixed absorption �508.81 510.87 �0.52 0.09 0.91

Regression 2 for various absorption cases 0.32 0.92 0.10 0.13 0.66

FIG. 10. Simulation errors as a function of the normalized distance for the

proportionate room with uniform absorption distribution. (a) e1, (b) e2.

FIG. 9. Mean e1 as a function of the normalized distance. (a) Uncorrected

errors, (b) corrected errors.

TABLE II. Errors for six uniform absorption conditions in the proportionate

room. The surface impedance, corresponding normal and random incidence

coefficients, and Schroeder frequencies are indicated.

f anor arand fSch Mean e1 Mean e2 Mean e3

Case 1 40 0.10 0.17 566 1.2 0.8 0.02

Case 2 30 0.13 0.20 520 1.2 0.5 0.02

Case 3 20 0.18 0.30 423 1.0 0.9 0.01

Case 4 10 0.33 0.49 331 1.1 1.0 0.01

Case 5 7 0.43 0.60 299 1.3 1.3 0.02

Case 6 4 0.64 0.79 260 1.7 2.2 0.04

Non-uniform 0.21 0.31 414 2.2 1.5 0.04
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band levels, therefore has larger weightings at lower fre-

quencies. Table III shows e1 as a function of frequency,

where the case 6 has large errors at frequencies lower than

125 Hz. It is due mainly to the spherical error, which is also

briefly discussed in Ref. 2, for highly absorbing walls at low

frequencies, say, below 100 Hz, because the PBTM simula-

tions employed the plane wave reflection coefficient. As fre-

quency increases, the sphericity error is reduced as shown in

Table III. For high absorptions, the troughs are not as sharp

as for the low absorptions, therefore the simulation error

near off-resonance frequencies are unlikely to dominate,

resulting in smaller errors except at very low frequencies.

Note that the error for the case 6 in the 250 Hz band is 0.7,

which is actually smaller than that for the case 1.

Because the highest absorption case shows a large devi-

ation with the others in Fig. 10(a), case 6 was excluded when

developing a regression model. The coefficients for the

regression model of e1 for the various absorption cases and

its R2 are listed in Table I. Note that this regression model is

valid for a random incidence absorption coefficient from 0.2

to 0.6. Compared to the regression model for the fixed

absorption of 0.1, one can observe lower errors with the

boundary element validations, because the Green’s functions

inherently include certain errors as mentioned in the first

paragraph in Sec. IV A. The narrow band error is limited to

1.3 dB for absorption coefficients lower than 0.6, which are

reasonable scenarios at low frequencies.

C. Non-uniform absorption case

Because the proportionate room is regarded as a scaled

classroom, a realistic non-uniform distribution has been

tested. The random incidence absorption coefficients of the

ceiling, floor, and side walls are 0.66, 0.32, and 0.17, respec-

tively, leading the mean absorption coefficient to 0.31, which

is similar to the uniform absorption case 3. e1 and e2 for the

non-uniform absorption case are shown in Fig. 11: e1

changes with the source-to-receiver distance, whereas e2 is

relatively constant over dSR. The room radius of 0.27 m is

indicated as the dotted line.

The mean e1, e2, and e3 are 2.2 dB, 1.5 dB, and 0.05 dB,

respectively. Compared to the uniform absorption case 3, e1

and e2 are increased by 1.2 and 0.6 dB, respectively, due

entirely to the non-uniform distribution of absorption. In

Table III, noticeable increases in the error are observed at

the higher frequencies close to the Schroder frequency. The

reason might be that the phased beam tracing used cannot

account for wave phenomena due to the discontinuity in the

boundary condition, i.e., wave diffraction and scattering

evoked by the discontinuity. Lam speculated that the boun-

daries between the absorption changes will diffract sound,

therefore the simulation accuracy might be reduced for a

non-uniform distribution of absorption.2 A relevant theory

for such discontinuities of the surface impedance (or admit-

tance) has been derived by Morse and Ingard for a 2D case12

and later used by Thomasson.24 They assumed a finite

absorber located on an acoustically hard plane and examined

the sound pressure distribution over the absorber by a varia-

tional approach. In their derivations, the sound pressure over

the absorber is assumed to be a summation of the incident

wave, its specularly reflected component, and an unknown

scattered component due to the impedance-discontinuous

boundary. Thomasson used this formulation to account for

overestimated statistical absorption coefficients measured in

a reverberation chamber.23 Similar investigations can be

attempted for non-uniform distributions of absorption in

rooms, particularly how the pressure distribution changes

near impedance-discontinuous 3D boundaries. From such

investigations, an advanced reflection modeling can be

developed and used to enhance the simulation accuracy.

All the errors are limited to 3 dB for all the tested geo-

metries and absorption cases; this implies that PBTM is ca-

pable of predicting the sound pressures except for absorption

cases lower than 0.1 at low frequencies. Therefore PBTM

can be a viable acoustic simulation method for calculating

narrow or 1/3 octave band levels at frequencies even below

the Schroeder frequency in rectangular rooms. The simula-

tion error is reduced for well proportionate and/or moder-

ately damped rooms with short source-to-receiver distances

but increased for higher absorption, long distances, and non-

uniform distributions of wall absorption.

V. OUTLOOK

The phased beam tracing method has potential applica-

tions such as small-to-medium sized lecture/conference

rooms and studios where wave-related problems occur

mainly at frequencies lower than the Schroeder frequency.

Simulations using the phased beam tracing are much faster

than finite/boundary element simulations. For example, a

TABLE III. e1 as a function of the center frequency in the proportionate

room.

fc (Hz) 31.5 40 50 63 80 100 125 160 200 250

Case 1 0.4 0.5 0.6 0.7 1.2 1.3 1.2 1.1 1.1 1.2

Case 2 0.3 0.4 0.5 0.5 0.6 0.5 0.6 0.6 1.0 1.0

Case 3 0.6 0.6 0.7 0.8 1.6 1.5 1.3 1.1 1.0 1.1

Case 4 1.3 1.1 1.0 1.1 1.9 1.8 1.3 1.2 1.0 1.0

Case 5 2.1 1.6 1.4 1.5 2.1 1.9 1.4 1.2 1.0 1.0

Case 6 4.4 3.4 2.9 2.7 2.5 1.9 1.5 1.0 0.8 0.7

Non-uniform 0.7 0.7 0.9 1.0 1.0 1.9 1.8 1.8 2.3 2.4

FIG. 11. Simulation errors as a function of the source-to-receiver distance

for the rectangular room with non-uniform absorption distribution. The dot-

ted line represents the room radius of 0.27 m.
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narrow band spectrum calculation at 2 Hz intervals from 20

to 1000 Hz using 8000 beams up to the 100th order of the

1000 m3 cubic room on a 2.4 GHz Core2 Duo CPU with a 4

GB RAM, it takes only 1.5 h while a boundary element cal-

culation takes 56.5 h. Note, however, that both simulation

codes are not particularly optimized for speeding up calcula-

tions. For PBTM to be used in practice, advanced algorithms

for diffraction and diffuse reflection should be incorporated.

The simulation accuracy using different types of boundary

conditions, namely, absorption coefficients and surface

impedances still needs to be more investigated. The

advanced reflection modeling discussed in Sec. IV C for

absorption/impedance-discontinues boundaries will further

enhance the simulation accuracy.

VI. CONCLUSIONS

The accuracy of a phased beam tracing method has

been investigated by changing the locations of sources and

receivers in three rectangular rooms with different absorp-

tion and aspect ratios. The narrow band error averaged

from 20 Hz to the Schroeder frequency increases with the

source-receiver distance but limited to a certain value. For

a uniform absorption of 0.1 with various aspect ratios of

rectangular rooms, the maximum narrow band errors are

around 2 dB for the unit cube and proportionate room and 3

dB for the disproportionate room, which reveals that the

error is affected by the aspect ratio of the room. The 1/3

octave band error does not depend strongly on the dSR,

being less than 1 dB for the cubic and proportionate room

and 2 dB for the disproportionate room. The dissimilarity

index does vary with the source-receiver distance in a simi-

lar way with the narrow band error. The PBTM simulation

error is influenced by the room absorption in the propor-

tionate room within a maximum deviation of around 1.7

dB. Interestingly, the minimum error is found for a random

incidence absorption coefficient of between 0.3 and

0.5. For absorptions lower than 0.3, the errors near the

off-resonance frequencies dominate, therefore yielding

larger narrow band errors. On the other hand, the sphericity

error becomes severe for absorptions higher than 0.6 at the

very low frequencies below 100 Hz. For all the investigated

absorption conditions, the simulation error does not exceed

2.2 dB. For a realistic non-uniform distribution of wall

absorption, the errors are increased by approximately 1 dB

due to the wave phenomena evoked by the discontinuity in

the boundary conditions, requiring more advanced reflec-

tion modeling methods for accurate predictions. All in all,

the accuracy of PBTM for the well proportionate rectangu-

lar room is found to be quite acceptable, resulting in the

maximum 1/3 octave band error of 2.2 dB in the low fre-

quency range below the Schroeder frequency. Therefore it

is concluded that PBTM is suitable for calculating sound

pressure spectra in rectangular rooms even below the

Schroeder frequency, and its accuracy is enhanced for

shorter source-receiver distances in more proportionate and

moderately damped rooms.
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