792 research outputs found

    Molecular Discreteness in Reaction-Diffusion Systems Yields Steady States Not Seen in the Continuum Limit

    Full text link
    We investigate the effects of spatial discreteness of molecules in reaction-diffusion systems. It is found that discreteness within the so called Kuramoto length can lead to a localization of molecules, resulting in novel steady states that do not exist in the continuous case. These novel states are analyzed theoretically as the fixed points of accelerated localized reactions, an approach that was verified to be in good agreement with stochastic particle simulations. The relevance of this discreteness-induced state to biological intracellular processes is discussed.Comment: 5 pages, 3 figures, revtex

    Transition Phenomena Induced by Internal Noise and Quasi-absorbing State

    Full text link
    We study a simple chemical reaction system and effects of the internal noise. The chemical reaction system causes the same transition phenomenon discussed by Togashi and Kaneko [Phys. Rev. Lett. 86 (2001) 2459; J. Phys. Soc. Jpn. 72 (2003) 62]. By using the simpler model than Togashi-Kaneko's one, we discuss the transition phenomenon by means of a random walk model and an effective model. The discussion makes it clear that quasi-absorbing states, which are produced by the change of the strength of the internal noise, play an important role in the transition phenomenon. Stabilizing the quasi-absorbing states causes bifurcation of the peaks in the stationary probability distribution discontinuously.Comment: 6 pages, 5 figure

    Neutron-star radii based on realistic nuclear interactions

    Get PDF
    The existence of neutron stars with 2M2M_\odot requires the strong stiffness of the equation of state (EoS) of neutron-star matter. We introduce a multi-pomeron exchange potential (MPP) working universally among 3- and 4-baryons to stiffen the EoS. Its strength is restricted by analyzing the nucleus-nucleus scattering with the G-matrix folding model. The EoSs are derived using the Brueckner-Hartree-Fock (BHF) and the cluster variational method (CVM) with the nuclear interactions ESC and AV18. The mass-radius relations are derived by solving the Tolmann-Oppenheimer-Volkoff (TOV) equation, where the maximum masses over 2M2M_\odot are obtained on the basis of the terrestrial data. Neutron-star radii RR at a typical mass 1.5M1.5M_\odot are predicted to be 12.3 ⁣ ⁣13.012.3\!\sim\!13.0 km. The uncertainty of calculated radii is mainly from the ratio of 3- and 4-pomeron coupling constants, which cannot be fixed by any terrestrial experiment. Though values of R(1.5M)R(1.5M_\odot) are not influenced by hyperon-mixing effects, finely-observed values for them indicate degrees of EoS softening by hyperon mixing in the region of M ⁣ ⁣2MM\!\sim\!2M_\odot. If R(1.5M)R(1.5M_\odot) is less than about 12.4 km, the softening of EoS by hyperon mixing has to be weak. Useful information can be expected by the space mission NICER offering precise measurements for neutron-star radii within ±5%\pm 5\%.Comment: 8 pages, 7 figure

    Switching Dynamics in Reaction Networks Induced by Molecular Discreteness

    Get PDF
    To study the fluctuations and dynamics in chemical reaction processes, stochastic differential equations based on the rate equation involving chemical concentrations are often adopted. When the number of molecules is very small, however, the discreteness in the number of molecules cannot be neglected since the number of molecules must be an integer. This discreteness can be important in biochemical reactions, where the total number of molecules is not significantly larger than the number of chemical species. To elucidate the effects of such discreteness, we study autocatalytic reaction systems comprising several chemical species through stochastic particle simulations. The generation of novel states is observed; it is caused by the extinction of some molecular species due to the discreteness in their number. We demonstrate that the reaction dynamics are switched by a single molecule, which leads to the reconstruction of the acting network structure. We also show the strong dependence of the chemical concentrations on the system size, which is caused by transitions to discreteness-induced novel states.Comment: 11 pages, 5 figure

    Growth monitoring of horticulture crops using unmanned aerial vehicle (Part 1) - field monitoring of potatoes

    Get PDF
    Background: Precision agricultural techniques using information such as precise crop growth conditions in fields have attracted attention recently. One technique uses remote sensing methods for field monitoring. Remote sensing for agriculture using satellites and aircraft has been used widely. Actually pilotless remote sensing is anticipated for use with test fields. Therefore, we investigated field monitoring techniques using unmanned aerial vehicles (UAVs) to obtain horticulture crop information. Methods: In 2016, aerial images were taken on July 12, 24, and 31. For sensing tests, potato plants were set on 11 test blocks on July 31. Image analysis was done using a composite photograph of an Ortho image comprising about 150 aerial photographic images. Results and conclusion: Composite aerial photographs of the Ortho image showed potato leaf etiolation and differences of vegetation. The G/R ratio of aerial images decreased as the plant stage advanced. This monitoring system can elucidate potato field plant conditions from aerial photographic images that include information about test blocks

    Image Analysis of Intractable Epilepsy:18F-FDG PET Scan of the Cortical Dysplasia

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    First Measurement of Collectivity of Coexisting Shapes based on Type II Shell Evolution: The Case of 96^{96}Zr

    Full text link
    Background: Type II shell evolution has recently been identified as a microscopic cause for nuclear shape coexistence. Purpose: Establish a low-lying rotational band in 96-Zr. Methods: High-resolution inelastic electron scattering and a relative analysis of transition strengths are used. Results: The B(E2; 0_1^+ -> 2_2^+) value is measured and electromagnetic decay strengths of the secdond 2^+ state are deduced. Conclusions: Shape coexistence is established for 96-Zr. Type II shell evolution provides a systematic and quantitative mechanism to understand deformation at low excitation energies.Comment: 5 pages, 4 figure

    Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2

    Full text link
    Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surface (FS) shape across TN is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at kz ~ pi in the low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading to the two-fold electronic structure. These results indicate that magneto-structural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter

    Nonlinearity of Mechanochemical Motions in Motor Proteins

    Get PDF
    The assumption of linear response of protein molecules to thermal noise or structural perturbations, such as ligand binding or detachment, is broadly used in the studies of protein dynamics. Conformational motions in proteins are traditionally analyzed in terms of normal modes and experimental data on thermal fluctuations in such macromolecules is also usually interpreted in terms of the excitation of normal modes. We have chosen two important protein motors - myosin V and kinesin KIF1A - and performed numerical investigations of their conformational relaxation properties within the coarse-grained elastic network approximation. We have found that the linearity assumption is deficient for ligand-induced conformational motions and can even be violated for characteristic thermal fluctuations. The deficiency is particularly pronounced in KIF1A where the normal mode description fails completely in describing functional mechanochemical motions. These results indicate that important assumptions of the theory of protein dynamics may need to be reconsidered. Neither a single normal mode, nor a superposition of such modes yield an approximation of strongly nonlinear dynamics.Comment: 10 pages, 6 figure
    corecore