76 research outputs found

    Probing diffusion of water and metabolites to assess white matter microstructure in Duchenne muscular dystrophy

    Get PDF
    \ua9 2024 The Author(s). NMR in Biomedicine published by John Wiley & Sons Ltd.Duchenne muscular dystrophy (DMD) is a progressive X-linked neuromuscular disorder caused by the absence of functional dystrophin protein. In addition to muscle, dystrophin is expressed in the brain in both neurons and glial cells. Previous studies have shown altered white matter microstructure in patients with DMD using diffusion tensor imaging (DTI). However, DTI measures the diffusion properties of water, a ubiquitous molecule, making it difficult to unravel the underlying pathology. Diffusion-weighted spectroscopy (DWS) is a complementary technique which measures diffusion properties of cell-specific intracellular metabolites. Here we performed both DWS and DTI measurements to disentangle intra- and extracellular contributions to white matter changes in patients with DMD. Scans were conducted in patients with DMD (15.5 \ub1 4.6 y/o) and age- and sex-matched healthy controls (16.3 \ub1 3.3 y/o). DWS measurements were obtained in a volume of interest (VOI) positioned in the left parietal white matter. Apparent diffusion coefficients (ADCs) were calculated for total N-acetylaspartate (tNAA), choline compounds (tCho), and total creatine (tCr). The tNAA/tCr and tCho/tCr ratios were calculated from the non-diffusion-weighted spectrum. Mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and fractional anisotropy of water within the VOI were extracted from DTI measurements. DWS and DTI data from patients with DMD (respectively n = 20 and n = 18) and n = 10 healthy controls were included. No differences in metabolite ADC or in concentration ratios were found between patients with DMD and controls. In contrast, water diffusion (MD, t = −2.727, p = 0.011; RD, t = −2.720, p = 0.011; AD, t = −2.715, p = 0.012) within the VOI was significantly higher in patients compared with healthy controls. Taken together, our study illustrates the potential of combining DTI and DWS to gain a better understanding of microstructural changes and their association with disease mechanisms in a clinical setting

    Targeting the NAD salvage synthesis pathway as a novel therapeutic strategy for osteosarcomas with low NAPRT expression

    Get PDF
    For osteosarcoma (OS), the most common primary malignant bone tumor, overall survival has hardly improved over the last four decades. Especially for metastatic OS, novel therapeutic targets are urgently needed. A hallmark of cancer is aberrant metabolism, which justifies targeting metabolic pathways as a promising therapeutic strategy. One of these metabolic pathways, the NAD+ synthesis pathway, can be considered as a potential target for OS treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the classical salvage pathway for NAD+ synthesis, and NAMPT is overexpressed in OS. In this study, five OS cell lines were treated with the NAMPT inhibitor FK866, which was shown to decrease nuclei count in a 2D in vitro model without inducing caspase-driven apoptosis. The reduction in cell viability by FK866 was confirmed in a 3D model of OS cell lines (n = 3). Interestingly, only OS cells with low nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1) RNA expression were sensitive to NAMPT inhibition. Using a publicly available (Therapeutically Applicable Research to Generate Effective Treatments (TARGET)) and a previously published dataset, it was shown that in OS cell lines and primary tumors, low NAPRT1 RNA expression correlated with NAPRT1 methylation around the transcription start site. These results suggest that targeting NAMPT in osteosarcoma could be considered as a novel therapeutic strategy, where low NAPRT expression can serve as a biomarker for the selection of eligible patients.Molecular tumour pathology - and tumour geneticsMTG

    10-Year cardiovascular event risks for women who experienced hypertensive disorders in late pregnancy: the HyRAS study

    Get PDF
    ABSTRACT: BACKGROUND: Cardiovascular disease is the cause of death in 32% of women in the Netherlands. Prediction of an individual's risk for cardiovascular disease is difficult, in particular in younger women due to low sensitive and specific tests for these women. 10% to 15% of all pregnancies are complicated by hypertensive disorders, the vast majority of which develop only after 36 weeks of gestation. Preeclampsia and cardiovascular disease in later life show both features of "the metabolic syndrome" and atherosclerosis. Hypertensive disorders in pregnancy and cardiovascular disease may develop by common pathophysiologic pathways initiated by similar vascular risk factors. Vascular damage occurring during preeclampsia or gestational hypertension may contribute to the development of future cardiovascular disease, or is already present before pregnancy. At present clinicians do not systematically aim at the possible cardiovascular consequences in later life after a hypertensive pregnancy disorder at term. However, screening for risk factors after preeclampsia or gestational hypertension at term may give insight into an individual's cardiovascular risk profile. METHODS: Women with a history of preeclampsia or gestational hypertension will be invited to participate in a cohort study 2,5 years after delivery. Participants will be screened for established modifiable cardiovascular risk indicators. The primary outcome is the 10-year cardiovascular event risk. Secondary outcomes include differences in cardiovascular parameters, SNP's in glucose metabolism, and neonatal outcome. DISCUSSION: This study will provide evidence on the potential health gains of a modifiable cardiovascular risk factor screening program for women whose pregnancy was complicated by hypertension or preeclampsia. The calculation of individual 10-year cardiovascular event risks will allow identification of those women who will benefit from primary prevention by tailored interventions, at a relatively young age. Trail registration The HYPITAT trial is registered in the clinical trial register as ISRCTN08132825

    Characterization of anticoagulant heparinoids by immunoprofiling

    Get PDF
    Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and–when additional saccharides are present–inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation. In this study, a novel and fast method for the characterization of heparinoids is introduced based on reactivity with nine unique anti-heparin antibodies. Eight heparinoids were biochemically analyzed by electrophoresis and their reactivity with domain-specific anti-heparin antibodies was established by ELISA. Each heparinoid displayed a distinct immunoprofile matching its structural characteristics. The immunoprofile could also be linked to biological characteristics, such as the anti-Xa/anti-IIa ratio, which was reflected by reactivity of the heparinoids with antibodies HS4C3 (indicative for 3-O-sulfates) and HS4E4 (indicative for domains allowing anti-factor IIa activity). In addition, the immunoprofile could be indicative for heparinoid-induced side-effects, such as heparin-induced thrombocytopenia, as illustrated by reactivity with antibody NS4F5, which defines a very high sulfated domain. In conclusion, immunoprofiling provides a novel, fast, and simple methodology for the characterization of heparinoids, and allows high-throughput screening of (new) heparinoids for defined structural and biological characteristics

    Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus

    Get PDF
    Endothelial glycocalyx perturbation contributes to increased vascular permeability. In the present study we set out to evaluate whether: (1) glycocalyx is perturbed in individuals with type 2 diabetes mellitus, and (2) oral glycocalyx precursor treatment improves glycocalyx properties. Male participants with type 2 diabetes (n = 10) and controls (n = 10) were evaluated before and after 2 months of sulodexide administration (200 mg/day). The glycocalyx dimension was estimated in two different vascular beds using sidestream dark field imaging and combined fluorescein/indocyanine green angiography for sublingual and retinal vessels, respectively. Transcapillary escape rate of albumin (TER(alb)) and hyaluronan catabolism were assessed as measures of vascular permeability. Both sublingual dimensions (0.64 [0.57-0.75] μm vs 0.78 [0.71-0.85] μm, p <0.05, medians [interquartile range]) and retinal glycocalyx dimensions (5.38 [4.88-6.59] μm vs 8.89 [4.74-11.84] μm, p <0.05) were reduced in the type 2 diabetes group compared with the controls whereas TER(alb) was increased (5.6 ± 2.3% vs 3.7 ± 1.7% in the controls, p <0.05). In line with these findings, markers of hyaluronan catabolism were increased with diabetes (hyaluronan 137 ± 29 vs 81 ± 8 ng/ml and hyaluronidase 78 ± 4 vs 67 ± 2 U/ml, both p <0.05). Sulodexide increased both the sublingual and retinal glycocalyx dimensions in participants with diabetes (to 0.93 [0.83-0.99] μm and to 5.88 [5.33-6.26] μm, respectively, p <0.05). In line, a trend towards TER(alb) normalisation (to 4.0 ± 2.3%) and decreases in plasma hyaluronidase (to 72 ± 2 U/ml, p <0.05) were observed in the diabetes group. Type 2 diabetes is associated with glycocalyx perturbation and increased vascular permeability, which are partially restored following sulodexide administration. Further studies are warranted to determine whether long-term treatment with sulodexide has a beneficial effect on cardiovascular risk. www.trialregister.nl NTR780/ http://isrctn.org ISRCTN82695186 An unrestricted Novartis Foundation for Cardiovascular Excellence grant (2006) to M. Nieuwdorp/E. S. G. Stroes, Dutch Heart Foundation (grant number 2005T037

    Non-invasive cardiac imaging techniques and vascular tools for the assessment of cardiovascular disease in type 2 diabetes mellitus

    Get PDF
    Cardiovascular disease is the major cause of mortality in type 2 diabetes mellitus. The criteria for the selection of those asymptomatic patients with type 2 diabetes who should undergo cardiac screening and the therapeutic consequences of screening remain controversial. Non-invasive techniques as markers of atherosclerosis and myocardial ischaemia may aid risk stratification and the implementation of tailored therapy for the patient with type 2 diabetes. In the present article we review the literature on the implementation of non-invasive vascular tools and cardiac imaging techniques in this patient group. The value of these techniques as endpoints in clinical trials and as risk estimators in asymptomatic diabetic patients is discussed. Carotid intima–media thickness, arterial stiffness and flow-mediated dilation are abnormal long before the onset of type 2 diabetes. These vascular tools are therefore most likely to be useful for the identification of ‘at risk’ patients during the early stages of atherosclerotic disease. The additional value of these tools in risk stratification and tailored therapy in type 2 diabetes remains to be proven. Cardiac imaging techniques are more justified in individuals with a strong clinical suspicion of advanced coronary heart disease (CHD). Asymptomatic myocardial ischaemia can be detected by stress echocardiography and myocardial perfusion imaging. The more recently developed non-invasive multi-slice computed tomography angiography is recommended for exclusion of CHD, and can therefore be used to screen asymptomatic patients with type 2 diabetes, but has the associated disadvantages of high radiation exposure and costs. Therefore, we propose an algorithm for the screening of asymptomatic diabetic patients, the first step of which consists of coronary artery calcium score assessment and exercise ECG

    Milk Sterilization, Control of Gelatin in Evaporated Milk

    No full text

    Inflammation increases plasma angiopoietin-like protein 4 in patients with the metabolic syndrome and type 2 diabetes

    Get PDF
    Contains fulltext : 138901.pdf (publisher's version ) (Open Access)BACKGROUND: Angiopoietin-like protein 4 (ANGPTL4) inhibits lipoprotein lipase and associates with dyslipidemia. The expression of ANGPTL4 is regulated by free fatty acids (FFA) that activate lipid-sensing peroxisome proliferator-activated receptors (PPARs), but FFA can also activate pattern recognition receptors including Toll-like receptor 4 (TLR4) in macrophages. OBJECTIVE: To assess whether systemic low-grade inflammation is a determinant for plasma ANGPTL4 levels in patients with the metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM). DESIGN: We studied 335 male participants: healthy controls (Controls), patients with the MetS without inflammation (MetS-I) and with low-grade inflammation (MetS+I), and patients with T2DM. All patients without diabetes included in the present study were initially matched for waist circumference. In plasma, ANGPTL4, C reactive protein (CRP) and metabolic parameters were determined. Underlying mechanisms were examined using human macrophages in vitro. RESULTS: As compared with Controls, plasma ANGPTL4 levels were increased in patients with MetS-I, MetS+I, and T2DM. Furthermore, ANGPTL4 was increased in T2DM compared with MetS-I. In fact, plasma CRP correlated positively with plasma ANGPTL4. In vitro studies showed that TLR 3/4 activation largely increased the expression and release of ANGPTL4 by macrophages. CONCLUSIONS: Plasma ANGPTL4 levels in humans are predicted by CRP, a marker of inflammation, and ANGPTL4 expression by macrophages is increased by inflammatory stimuli
    • …
    corecore