4,516 research outputs found

    Importance of international scientific contacts in Tomsk scientific community as the factor of physics research development in the 1970-1980-ies

    Get PDF
    The article is devoted to historical reconstruction of the international contacts and communications of Tomsk scientific community in the 1970-1980s. Siberian Physical-Technical Institute (SPhTI) was a large center of basic and applied research development in the field of solid state physics, cybernetics, radio electronics and scientific staff training in the USSR. The author analyses the main forms of cooperation between SPhTI and foreign scientific research institutes and higher education institutions, the mechanism of foreign training organization, the forms of the state control on international scientific and educational contacts. The value of SPhTI’s international scientific contacts in developing research on physics is emphasized. SPhTI scientists

    More on integrable structures of superstrings in AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superbackgrounds

    Get PDF
    In this paper we continue the study, initiated in arXiv:1009.3498 and arXiv:1104.1793, of the classical integrability of Green-Schwarz superstrings in AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superbackgrounds whose spectrum contains non-supercoset worldsheet degrees of freedom corresponding to broken supersymmetries in the bulk. We derive an explicit expression, to all orders in the coset fermions and to second order in the non-coset fermions, which extends the supercoset Lax connection in these backgrounds with terms depending on the non-coset fermions. An important property of the obtained form of the Lax connection is that it is invariant under Z_4-transformations of the superisometry generators and the spectral parameter. This demonstrates that the contribution of the non-coset fermions does not spoil the Z_4-symmetry of the super-coset Lax connection which is of crucial importance for the application of Bethe-ansatz techniques. The expressions describing the AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superstring sigma--models and their Lax connections have a very similar form. This is because their amount of target-space supersymmetries complement each other to 32=24+8, the maximal number of 10d type II supersymmetries. As a byproduct, this similarity has allowed us to obtain the form of the geometry of the complete type IIA AdS(2) x S(2) x T(6) superspace to all orders in the coset fermions and to the second order in the non-coset ones.Comment: 28 pages; v2: References adde

    Hyperfine structure of S-states in muonic deuterium

    Full text link
    On the basis of quasipotential method in quantum electrodynamics we calculate corrections of order α5\alpha^5 and α6\alpha^6 to hyperfine structure of S-wave energy levels of muonic deuterium. Relativistic corrections, effects of vacuum polarization in first, second and third orders of perturbation theory, nuclear structure and recoil corrections are taken into account. The obtained numerical values of hyperfine splitting ΔEhfs(1S)=50.2814\Delta E^{hfs}(1S)=50.2814 meV (1S state) and ΔEhfs(2S)=6.2804\Delta E^{hfs}(2S)=6.2804 meV (2S state) represent reliable estimate for a comparison with forthcoming experimental data of CREMA collaboration. The hyperfine structure interval Δ12=8ΔEhfs(2S)ΔEhfs(1S)=0.0379\Delta_{12}=8\Delta E^{hfs}(2S)-\Delta E^{hfs}(1S)=-0.0379 meV can be used for precision check of quantum electrodynamics predictions for muonic deterium.Comment: 18 pages, 7 figure

    Radiative nonrecoil nuclear finite size corrections of order α(Zα)5\alpha(Z \alpha)^5 to the Lamb shift in light muonic atoms

    Full text link
    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα)5\alpha(Z \alpha)^5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.Comment: 8 pages, 1 Figur

    A WKB approximation of elastic waves travelling on a shell of revolution

    Get PDF
    This paper is concerned with the elastic waveguide properties of an infinite pipe with circular cross section whose radius varies slowly along its length. The equations governing the elastodynamics of such shells are derived analytically, approximated asymptotically in the limit of slow axial variation, and solved by means of the WKB-method (Wentzel–Kramers–Brillouin). From the derived solution the dispersion relation, modal coefficients, and wave amplification at each location along the structure are extracted, allowing identification of which types of waves are able to propagate along the structure at a given frequency. A key feature in the formulation of the model and the solution is that the radius and its variation are not specified in advance. Two characteristic examples of shells of revolution are presented to illustrate some general features of the waveguide properties, demonstrating how the evolution of the waves depends on the axial variation of the shell radius. It is explained how local resonances can be excited by the travelling waves and how strong amplifications of displacement can be produced. Specifically, for the axial/breathing wave it is shown that a local resonance is excited at the location where the frequency of the travelling wave and the radius of the shell exactly match the ring-frequency.This research has been founded by The Danish Council for Technology and Innovation, under Grant no. 10-083896, which is gratefully acknowledged

    Spontaneously Broken 3d Hietarinta-Maxwell Chern-Simons Theory and Minimal Massive Gravity

    No full text
    We show that minimal massive 3d gravity (MMG), as well as the topological massive gravity, are particular cases of a more general `minimal massive gravity' theory (with a single massive propagating mode) arising upon spontaneous breaking of a local symmetry in a Chern-Simons gravity based on a Hietarinta or Maxwell algebra. Similar to the MMG case, the requirements that the propagating massive mode is neither tachyon nor ghost and that the central charges of an asymptotic algebra associated with a boundary CFT are positive, impose restrictions on the range of the parameters of the theory
    corecore