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Abstract

This paper is concerned with the elastic waveguide praggedi an infinite pipe with circular cross section whose ra-
dius varies slowly along its length. The equations goverttie elastodynamics of such shells are derived analytjcall
approximated asymptotically in the limit of slow axial vation, and solved by means of tliékKB-methodWentzel-
Kramers-Brillouin). From the derived solution the dispensrelation, modal cd&cients, and wave amplification at
each location along the structure are extracted, allondegtification of which types of waves are able to propagate
along the structure at a given frequency. A key feature inféheulation of the model and the solution is that the
radius and its variation are not specified in advance. Twoaderistic examples of shells of revolution are presented
to illustrate some general features of the waveguide ptigsedemonstrating how the evolution of the waves depends
on the axial variation of the shell radius. It is explaineaviocal resonances can be excited by the travelling waves
and how strong amplifications of displacement can be pratiuggecifically, for the axigbreathing wave it is shown
that a local resonance is excited at the location where #rgiéfncy of the travelling wave and the radius of the shell
exactly match the ring-frequency.

Keywords: WKB, dispersion diagram, waveguide, cylindrical shelkkbf revolution, elastodynamics,
ring-frequency

1. Introduction

Structures containing shells of revolution include jetiarg, wind turbine towers, piping systems, wind instruraent
etc. Obviously structural vibration and noise emissiord Hrerefore also the waveguide properties, are important
topics in relation to many of these systems. The simpleshei@of a shell of revolution is a uniform cylinder. Wave
propagation in and vibration of such shells is a classichjexi covered in hundreds of research papers. Such a state-
of-the-art is explained, on the one hand, by the obviousdiress of technical applications, where cylindrical shells
are conveniently used and, on the other hand, by the rekitiyalicity of the mathematical modelling of the dynamics
of shells of this kind. Specifically, the system offdrential equations of the shell theory for a cylinder hasstamt
codficients, and, therefore, a general solution of these equattoof the simple exponential form. However, any
departure from the geometry of a cylinder entails the spedidability of Lamé parameters and curvatures preventin
the determination of an exact solution. A solution of theljem of elastodynamics of an arbitrarily shaped shell,
therefore, is usually obtained numerically and a varietynethods can be applied. There is one class of shells,
however, for which an exact solution has the exponentiahferbut only in one of the coordinates, namely shells
of revolution. It is conventional to derive equations of moatof such shells in the coordinate measured along the
symmetry axis, that is the axial coordinate, and in the an@rential coordinate. Neither Lamé parameters nor
radii of curvature of a shell of revolution are dependentrugiee circumferential coordinate. Therefore, exponential
functions of purely imaginary arguments in this coordirateused to separate variables and to considentgectra
(with m being the circumferential wavenumber) of vibration indegent of each other. Nevertheless, th@atential
equations of motion of a shell of revolution have variablefioients in the axial coordinate. To make progress
with an analytical solution of these equations, some astomgpmust be adopted regarding the shape of the shell.
The most frequently used approximation is thitial imperfection of shapewhich allows one to consider a shell
of revolution as a perturbed cylindrical or conical shefleq1], [2], and [3]. The common practice is to choose
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the shape of aimperfectionand to introduce a small parameter of its amplitude (witlenefce to the radius of a
perfect shell). To calculate eigenfrequencies, linedrespuations of nonlinear vibrations of a cylindrical shé&lbat
deformed equilibrium configuration are used, [3]. Alteinglly, Lamé parameters and radii of curvature are presente
in the form of power series expansions on the imperfectioamater, and classical perturbation methods are used,
[2]. All these references are concerned with eigenfreqesraf finite shells with various boundary conditions.

Quite surprisingly, very little attention seems to haverbpaid to the elastic wave propagation in shells of revo-
lution. [4] studied waves travelling along a conical shafid predicted how high-order modes successively il
they travel towards the narrow end of the shell. Unfortulyatke membrane shell theory adopted in this reference is
insufficient to capture the global picture of the wave propagaticami elastic shell. Now, in this paper the restriction
on the radius variation is flerent. Here the only initial assumption is that the radiugatian happens slowly. This
means that the slope of the radius as a function of the axaabtawate is small. The slowly varying radius permits the
application of the so-calle&/KB methodWentzel-Kramers-Brillouin)The WKB method has previously been used
to model the properties of curved waveguides, see [5] andNBjreover, ittr-thepastthismethodhas been used
by [7] (though without designating it as the WKB method) t@lgse vibrations in a finite length shell of revolution.
However, by using the WKB method to study the waveguide pitggseof an infinite shell of revolution it is possible
to gain insight into how the dispersion relation, the modadter, and the amplitude aréfected by a given radius
variation. It is exactly this insight which is regarded as ttovelty of this work. In this connection it should though be
emphasised that turning point analysis is outside the sobftes paper. Moreover, it is also fair to mention that the
WKB method in principle is similar to the two-time scale medhwhich is used for problems depending on multiple
time scales. The only majorftierence is the change of coordinates.

2. Problem Formulation and Validation

In what follows a model to determine the waveguide propsuifea shell of revolution will be developed and solved.
The solution will be validated by calculating the corresgiog energy flux from Hamilton’s principle and checking
that it is conserved along the waveguide. In this way it is gisssible to keep track of the kinetic and potential energy
distribution along the waveguide.

2.1. Modelling Scheme

The model takes its origin in classical thin shell theoryorfrthis a set of governing partialftérential equations
(PDESs) is obtained and solved asymptotically by means oMK& method. The applied shell theory was originally
presented by [8], which is a linear theory founded on claddarchhoff-Love kinematics. Apart from omitting a
few terms of higher order of smallness, it is identical to fflezhaps more well-known theory by [9], though, as
pointed out by [8], the contribution of these small termsagdnd the uncertainty caused by the basic Kirdtthove
assumptions, and thus it is more consistent to omit them.

2.1.1. Shell of Revolution
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Figure 1: The geometry of the shell's mid-surface is comgaxfehe shell thicknes$y*, and the radius;*(s), while each point on the shell can be
uniquely identified by §, 6). The displacements, v, andw are: Axial displacement, circumferential displacement aormal displacement.

The general shell theory of [8] establishes three group®lations: The displacement-deformation relations, the
constitutive relations, and the equilibrium equationsiclitwithin the framework of structural dynamics are known
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as the equations of motion. The equations of motion are egprkin terms of force and moment resultants, but
by combining with the constitutive relations and the displaent-deformation relations, the equations of motion
are expressed in terms of displacements instead. Althcugledquations become more complicated in this way, it
makes it possible to formulate a solution which is intuityveasier to relate to, as it gives expressions for the actual
displacements. However, to specialise the general equsatiomotion to the shell of revolution, like the one illusga

in figure 1, the dependency on the circumferential cooréimais removed from the Lamé parameters and from the
radii of curvature. When this has been done the equatiosepted in appendix A are obtained.

The equations in appendix A are expressed in terms of mdasudnensional quantities such as the shell thick-
ness, radius, Young’'s modulus, etc. But to generalise theltseas well as making the equations asymptotically
consistent it is useful to non-dimensionalise the systenpimper scaling. Thus, it is assumed that the shape of
the mid-surface can be formulated in the two non-dimensieaaables,s and#, in a parametrisation of the form
r(s,6) = ry[fi(s 6), f2(s 6), fa(s, 0)]", where quantities marked with "*” are dimensional, ajds some character-
istic radius somewhere along the shell. In this case thedimensional Lamé parameters and radii of curvature will
be scaled agy = riA andR" = rgR;. Likewise the shell thickness is scaled by introducing tiiekness parameter
o= *r‘—o and the frequency and displacements are scaled by assumairté solution take the form

u(s 6,t) s ) | iwct iwe't”
u(s6,t) =| vi(so,t) [=r5| Ws6) |e o =ril(she ", 1)
wi(s, 6,t%) W(s, 6)

wherew is the frequency and* = /E*/p*. In this way the system of PDEs governing the dynamics of tiedl of
revolution can be written as:

(L + (1 - vz) wz) =0, ()

whereL is a 3x 3 partial diferential operator andis Poisson’s ratio.

A general solution to this equation, for any imaginable lsh&frevolution, hardly exists. Instead, to ease the
problem, the focus in the following will be on a sub-set ofs@ehells which is characterised by a slowly varying
radius compared to the length of the waves travelling altregshell. In other words, by assuming that within the
order of one wavelength the change of radius can be neglestidkat the wave will locally see the shell of revolution
as a uniform cylinder with the local properties. Howeverteswave propagates over longer distances ffexts of
the changing radius will be accumulated in the waBeaing wavelength, mode shape, and amplitude. As will be
demonstrated, for such a sub-set of shells the WKB method it to be very useful.

2.1.2. WKB Solution

The WKB method is an asymptotic method which simplifies a ngeneeral problem by exploiting the smallness of
some characterising parameter. In this context, whereatties is assumed to vary slowly, a small parameterould

be defined as the ratio betwegrand some distanc®”, over which the radius varies perceptibly. With this partene
the axial coordinates, can be regarded as a so-called fast coordinate while a slovdinate S, is defined as:

*
To

D- s=es=S whereie < 1 3)

In this connection the small parameter,will be designated as the slow-scale parameter. At thigestaothing

has been assumed about how the radius varies, except theanijes slowly on the scale of the wavelength. The
mid-surface can be parameterised as:

r'(se)=rg

s
r(S) cos() ] 4)
r(S) sin(6)
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wherer(S) is the radius function. It should be remarked that the fiocshponent of the parametrisation is just the
fast coordinate multiplied byg, while the radius function depends on the slow coordinatethérmore, in order to
have physical meaning, the radius function must be reakeglcontinuous, and, and in accordance with [8], not give
rise to a principal radius of curvature violatingax{%} < %) in order to follow the fundamental assumptions of the
thin shell theory. With this parametrisation it may also bersthaty is simply the measurable radius exactly where
r(S) = 1. With this parametrisation, and by means of basffedential geometry, the Lamé parameters and the two
principal radii of curvature are determined as:

As= 1+€r'(S)2 Ay =r1(S)
3

_ (1+ér(s)?)2

RS = ezr’—’(S) R() = —r(S) \Il + Ezr/(s)z.

These parameters may be substituted into the governingiegsaf the general shell of revolution, while remember-
ing that due to equation (3} = .

Taking the complexity of the equations presented in appefdind the functions in (5) into account, thefer-
ential operator,., become rather cumbersome. But fortunately it is possibdgnplify L considerably by asymptotic
approximation. In its non-dimensional forinonly depends on the slow-scale parameter, the thicknessneder,
Poisson’s ratio, and the radius function along with sometoflerivatives. Of course, the thickness parameter is
small, and in principle this make both the slow-scale patarmand the thickness parameter candidates for asymptotic
expansion. One of these small parameters could be elindifgténtroducing some relation between them, and then
expanding the equations in a single small parameter. Onttiex band, the aim here is to keep these parameters
completely independent and to use the slowness of the radiistion as a means to control the accuracy of the
approximation. Thus equation (2) can be expanded as:

(5)

(Lo+eLy+0O(e?) + (1-v?)w?) i = 0. (6)

Within the framework of the standard WKB method it is enouglydo consideiO(1)- andO(e)-terms. The compo-
nents ofL o are found to be:

L — 6_2 + ia_z
0T 52 T 2r(S)2 962
Lo 1+v 8
0127 2r(S) o900
v 0
Lots = — e —
0137 7Sy as
Lo21 = Loa2
1-v  (1-v)6%\ &2 1 52 9?
Loz = — s |zt + —
’ 2 T er(9)2 ) o T\r(s2 T 121(S)*) e
52 3B (2-vs & 1 9
Loz2s

T 1x(SY 06 T 121(S)Z 6596 1(S)2 90

Los1 = —Loas

Los2 = Lozs

L033=6—28—4+ o 6_4+ e + = ,
BT 1268 T 12r(SY2 96F T 6r(S)2 9%62 | 1(S)?

and the components &f; are:



r'(S) o

111 = (S) s
Lo _B=r(ES) a
T S AT
_rS
Liiz= (5)?

Lio1=-L112

L _(@=vrs) _@a-ners)) o

2=\ T2r(S) 6r(S)® | as

(1-2»)6%r'(S) 92
Lioz=— 3
12(S)® 900
Lis1=L113
_ (S &8
L3277 ar(S)? 096
52r'(S) 8°  6%r'(S) o°
133 = a3

6r(S) as®  6r(S)3 9s06?

A closer inspection of these operators reveals that thérlgaxtder operatot, o, is identical to the case of the uniform
cylinder, but properly corrected byS). The next step is to pose the standard WKB expansion:

0S.6) = " ™ (ao(S) + can(S) + O(e?)) ek b o

m=0

o ([ @o(S) a1(S) | s
=Zé“’9[ Bo(S) |+e€| Bi(S) +0(ez>]e€fo Ko, (7)
w0 | %(S) 71(S)

wherem is the circumferential wavenumber, is the modal vector related ©(e'), andk is the axial wavenumber.
This solution is separable Blandd due to the symmetry of the shell of revolution. In the circensftial direction the
solution is no diferent from the corresponding solution of a uniform cyliedtishell. Because the shell is closed in
that direction, it only supports waves having a periodaf&ny such wave can be decomposed into a Fourier series. In
the meantime the cdigcients of the governing fierential equations are independem.ofAgain, as in cylindrical shell
theory, this has the consequence that the waves associiedifierent circumferential wavenumber are completely
uncoupled from each other. Therefore the solution can bdiestufor just a single circumferential wavenumber at
a time, instead of the whole infinite sum at once. In the axi@ation the &ects of the slowly varying radius are
taken into account. Thus the modal vector may be a functidd afd, in order to be asymptotically consistent, it
is expanded in powers @fas in equation (6). Also the axial wavenumber feeted by the changing radius, and
following [10] this is handled by an integral formulation e changing axial wavenumber is accumulated in the
wave as it propagates along the shell.

By substitution of equation (7) into equation (6) and cdileg O(1)-terms andO(¢)-terms, the following two
system of equations are found:

0O(1): Map=0 (8a)

O(): May =T, (8b)
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where the components bf are:

(L-v)m?

M1 = —k(S)? - 2 (S)? +(1-v)w?
Vo, - _ (L )mKS)
12 2r(S)
_k(S)
13 = — r(S)
Ma21 = M12
C(@-wKSR  (L-nek(SE M P o
M= ———— "oz  1eF 1z@pF tW
Moo - 107 i(2-)o?mkS) im
BETIEYE T 1x(S)E (SR
Mz = M13
Mz2 = M23
Maz = §%k(S)*  &°mt 62mPk(S)? 1 (1- )

12 1Y T Ter(se sy
and the components bfare:

i1+ v)mB(S)  vy(S)

KON (S)aolS) _ i3= 1M (S)(S) | "SNAS) | i gpar(sy + _

f1 = ik'(S)ao(S) +

r(S) 2r(S)? TSP 2r(S) r(S)
iB-ME(S)ae(S)  i(1-1) (M(SKS) Gr(SKS) |, 62K(S)
f2 = 2r(S)?2 T ( S aEp KO 3r(S)2)ﬁO(S)+
2 _ ’
e e IO RO
i1 (S 2 _ 2
ST i (k) + S sy - EI S
C P(S)ao(S) ms? . 3r(S)KE) i62 (1'(SK(S)®  mRr/(S)K(S)
TS 1x(S)2 ((Z_V)k(s)" r(S) )ﬁO(S)"7( OO
2% 1(S)  (2- MPK(S)BL(S) 62
) oy o) - 2 - IR EVOO) I s+ T

Starting out with theD(1)-system, the leading order dispersion relation can l@ebed by taking the determinant
and equating it to zero, i.éM| = 0, while the modal vectotyg, except for a special case whene= 0 (this particular
case will be treated in the following subsection), can béetemias:

a’o(S) 1
@ =| Bo(S) |=| V(S) |ao(S), (©)
0(S) W(S)




where the modal cdicientsV(S) andW(S) can be determined from the first and third rows in equatia) &

MZ, — M11Ma3
M12M3z3 — M13M23

V(S) = (10)

M11Ma3 — M12M13
M12M33 — M13Mas’

W(S) = (11)

In this wayao(S) will act as the amplitude of the modal vector. Provided thatdispersion relation is obeyed, any
arbitrary choice ofry(S) will, together with the stated modal cieients, solve (8a). Such a leading order solution
contains information about how the axial wavenumber depamdthe radius function and how the modal vector
changes direction. However, to determine how the amplifinabf the modal vector also depends on the radius
function, and thereby determing(S), the O(¢)-system must be considered. From the two equation syste(8s$ it

can be noticed tha¥l appears in both systems. It can also be noticed that the amenpoof theD(1) modal vector,

i.e. @o(S), Bo(S), yo(S), and their derivatives appearfn This indicates that some relation between the two systems
might exist. Hence, by realising thit is a self-adjoint matrix one way forward is to consider the inner product,
written as(-, -), of ag andf:

(ao,T) = (@0, May)
= (Mo, 1)
=(0,a1) =0,

and becauseo andf are complex vectors the inner product is defined as

0=(ag,f)=ap-f
= ao(S)1 + Bo(S) Tz + 70(S) Fa. (12)
This scalar equation is known as the solvability conditionthe O(e)-system. From the general modal vector in
equation (9) it is seen th@#(S) = V(S)ao(S) = By(S) = V'(S)ao(S) + V(S)ay(S) andyo(S) = W(S)ao(S) =
Y6(S) = W'(S)ao(S) + W(S)ay(S). With these identitiego(S), B,(S), vo(S), andy(S) can be eliminated from the
solvability condition, as it is presented above (rementzpeéilso to eliminate these quantities frdm f,, and f3).

After that, by collecting the cdgcients in front of, respectivelyyo(S) anda(S) the solvability condition can then
be rewritten as

P(S)a(S) + Q(S)ao(S) = 0. (13)

whereP(S) andQ(S) are ordinary scalar functions. This equation has the géselution

ao(S) = Ce | &S, (14)

whereC is some arbitrary constant. Thus, finding(S) becomes a matter of extractif{S) and Q(S) from the
solvability condition and integrating their ratio.

1A self-adjoint, or Hermitian, matrix is equal to the conjteg&ransposed of its owrs = Af



2.1.3. When m= 0— The Axial, Torsional, and Breathing Wave Mode

If the circumferential wavenumben = 0O, the equations become considerably simpler, and in tlse tt&e modal
vector in equation (9) and its cfisients are not needed. This circumferential wavenumbesseaated with wave
modes which have a uniform displacement along the circuenfa in direction of thel-, v-, or w-axis, cf. figure

1. Such wave modes are recognised as the axial mode, thertarsiode, and the breathing mode. In this dsise
simplifies to:

—K(S)? + (1 - v)w? 0 -
M = 0 ~NSE W MEE 4 (1 y2)0? 0 . (15)
2 4
Mis 0 L+ i - (- vA)e?

The fact thatv,, uncouples from the other components indicates that thesponding-displacement can be studied
independently from the other displacements. Thus the wawber of the associated torsional wave mode can be
determined by simply settinlyl,, = 0, giving

k(S) = —VG(]'J"V)M(S) ~ 1/2(1+ Vo, (16)
V62 + 3r(S)?
where the last simplification relies on the fundamentaltition of the applied thin shell theory, namely thatt20
r(S). Furthermore, the equivalent modal vector willdg = [0, 5(S). 0]", and thus the solvability condition in (12)

reduces to the product Bf(S) and f,. This product take the same form as (13), but yiit8) as unknown. The ratio
between:(S) andP;(S) then becomes:

Q(s) _ 9*(K(S)(S) —k(S)r'(S)) + 3(K(S)r(S) + k(S)r(S)r'(S))

P(S) 27K (S (S) + BK(S). 1(5) : 40
which integrates to
QS) e _ 1| VK(S) V82 + 3r(S)?
Pt(S)dS_ In( o) . (18)
In this way the amplitude of the torsion mode becomes
pr(S) = C— T2 (19)

VK V2 + 3152 V3KON(S)

Not only does the expression for the torsional wavenumbeéraamplitude turn out to be rather simple, but they also

show that as long as the thickness parameter is small anddhesrfunction varies slowly, then the wavenumber just

depends on Poisson’s ratio and the frequency, while theiardpldepends on the axial coordinate through the factor
1

VIS
In a similar way, the modal vector and the amplitude for thialaxode and the breathing mode are determined.

But due to Poisson coupling the axial displacement and niatisilacement are linked vill;3, meaning that, except
for the special case where= 0, these waves will inevitably excite each other. Consetijy@&nmay be a question
of definitions whether the combined mode is designated asutie mode or the breathing mode, or just as the
axialbreathing mode. Their common wavenumber is determined lbingahe dispersion relatioriv;; M3z — Mfs =

0, which will be a sixth order polynomial. Because the powarshe wavenumber are all even the roots of the
polynomial can be determined analytically as an implicitdforder polynomial. In the meantime these analytical
roots become very cumbersome, and therefore it may be mactigal to solve it numerically. The modal vector, on
the other hand, can simply be written as



1 1
ao = 0 a’a(S) = 0 aa(S)~ (20)
_ My ir(S) (ka(S)?-(1-v?)w?)
M13 - VKa(S)

Qa(S) andP4(S) of equation (13) then become:

162 (1 - v2)2 w* (1

Qu(S) =5 SIS + FK(S)SI(9)) -

2 ’ ’
(1) 2% ((SPHRUSIS) + K(SPTONS) + {2 - et

k(5?2 k() (S))
2
+ 1 ( ka(S)KAS)N(S)? + = ka(S)Sr(sn (S)) 21)

i62 (1 - v2)2 wt

Pa(S) = 3V2

ka(S)N(S)? ~i (1~ V) w ( 5Ka(S)r(S)? - O ©Prr. (22)

ka(S))

Despite the complexity oQ4(S) andP4(S) their ratio may be integrated analytically. Thus, usingagtpn (14), the
modal vector consists of the following components:

aa(S) = Ca Vea(S) (23)

VAS) {B12(1 — )2 + (6((1 ~ )2 + ka(SPka(S)T(S))?

7(S) (ka(S) - (1 - ¥)?)
Y VIGTS) 612(1 - 1) + (5((1 — 1) + ke SIS (S))

These expressions cannot be simplified further as easily theitorsion case. Even thoughis a small number it is
in the denominator multiplied with aB(ka(S)®)-function. And as it will be demonstrated latkg(S) can indeed take
values of more than 10, meaning tldat k.(S)® can be a significant number.

¥a(S) = Ca

(24)

2.1.4. When m= 0— In Relation to Conventional Beam and Rod Theory

The wave modes associated with= 0 have some noticeable similarities with what can be foumadceinventional
beam and rod theory. The simplest example is the torsiondenma rod with slowly varying radius. The partial
differential equation governing this mode is, see [11],

90
0= s (G J* (S)—)— |O(S)ﬁ, (25)

whereG* is the shear modulud; (S) is the polar moment of inertia, arigl(S) is the polar mass moment of inertia
per unit length. By lettings" = 55, 3°(S) = 2argh*(rr(S))3, 15(S) = 2rp°rsh*(rr(S))*, 6 = 7, and using the

same time dependency as for the shell solutionyifs t*) = rg\”/(s)Exp(i‘“f:t ) while recalling thata— r 63, then
0
the corresponding non-dimensionatdrential equation becomes
v
(S )3 ( )) +2(1+ v)w?r(S)A. (26)
( r(S)
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By substituting the WKB solution(3) = (Bo(S) + e,Bl(S))Exp(i fos k(a)da) and collectingO(1)-terms andO(e)-

terms, the wavenumber can be determined from@E)-system and the amplitude can be determined from the
O(e)-system. Thus, the wavenumber of the torsional wave inddeégk(S) = v2(1+ v)w while the amplitude is

Bi(S) = (\/k(S) \/r(S))_l, i.e. because the wavenumber is independent of the axiallic@de the amplitude variation

is proportional to( \/@)_l —exactly as in the shell of revolution, c.f. equation (19).

The coupling between the axial and breathing mode is reddorethe shell of revolution, and does not occur
for the rod and beam, although in the case’ ef O these two waves uncouple and thus a counterpart in theeimpl
theories can be found. In this case the wavenumber of théraride, in the shell of revolution, may be determined
from My; = O while the amplitude is determined by the solvability cdioti ¢o(S)f; = 0 = f; = 0. Thus the

wavenumber ik, (S) = w while the amplitude isry(S) « (\/@)_l. The same result is found if the governing
equation for the axial wave in a rod with varying cross sectgonon-dimensionalised and solved by means of the
WKB method, again see [11].

Finally, the counterpart of the breathing mode in the beadrad theory might not be as obvious as for the torsion
and axial mode. Nevertheless it is well-known in the cyliodrshell theory that this mode behaves in an analogous
manner to the Euler-Bernoulli beam attached to a Winklenflation, although to take the varying radius into account
a few modifications, which are presented in appendix B, aegle@. Using this model and solving it with a similar

WKB-solution as before, the same results are found Mgif= 0 andf; = 0, i.e. ky(S) = (i—zz (wz - r(S)‘Z))l/4 and
1
7(S) = (K(S)*2VI(S))

2.1.5. When n» 0 - Bending and Higher-order Modes

When the circumferential wavenumbemis> 0 the matrixM remains fully populated. Although the solution algo-
rithm follows what has been described above the funct@(® andP(S) become so complicated that the integration
of equation (14) can hardly be done analytically. Inste&idtep can be done numerically. However, if the integration
is to be done numerically, it also becomes necessary to &ed|(S), see e.g. equation (17) and (18). In this general
case the dispersion relation turns out to be an eight ordgnpmial. But as before it only has even powers of the
wavenumber and can thus be solved as an implicit fourth grolgnomial. Again these analytical roots become very
cumbersome, and therefore also in this case it becomesesinapsolve the dispersion relation numerically instead.
Nevertheles&’(S) can be found explicitly by implicit dferentiation of the eight order dispersion relation, anchthe
isolatek’(S) analytically. Fortunately this method provides a rathersde expression.

2.2. Energy Flux

Because free undamped waves are under consideration peihes, the validation of the derived WKB solution relies
on the statement th#éte time-averaged power, flowing through the shell of retiy is conservedNevertheless it
should be emphasised that because the solution is a leadiagapproximation the conservation of power can only
be expected to hold to leading order. The time-averaged pfiove can be assessed by considering a section of the
shell of revolution like the one bounded byands; in figure 1. For the initial statement to be true, the timeraged
power passing the boundary @it must be equal to the time-averaged power passirg.alhe power passing the
boundaries at; ands; is associated with the shells oscillations along thev-, andw-axis as well as around the
v-axis. In fact the oscillations along theaxis and around the-axis are coupled and can together be considered as
local bending of the shell wall. When a point along one of theraries is displaced or rotated the shell structure
will respond with a reaction force or a reaction moment, kn@s generalised forces. By properly multiplying the
displacements and generalised forces the time-averages passing the boundary may be calculated as, cf. [12],
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11; = SRef0T5) = - %5 Re{ia, o) (272)
S R T S e
I, = 3Re(w;, 4] = -2 Refi;, 7o) @70)
M, = %Re{%@} - —"’T‘fRe{@;w,O%} (27d)
Mpending= Tlw + Iy (27e)
Mot = Il 0 + 110 + Mienging (27f)

where®d; is the generalised force associated vidthotion andx is the complex conjugated &f The generalised forces
for the special case of a uniform cylinder are derived in tapgy by [13], though for the general shell of revolution
they have not been found available in the scientific liteatd hus these will be derived from scratch by means of
Hamilton’s principle. Because the generalised forcesélberived independently and then multiplied by the WKB
solution, in accordance with equations (27), the behawdaine obtained power flow will serve as a demonstration
of the validity of the calculations. Hence the derivatiorttoé generalised forces for the shell of revolution will be
presented in some detail in the following, and will start with the definition of Hamilton’s principle:

tz
5(fq (T —U)dt]:O, (28)

whereT™ is the kinetic energy of the motion of the shell add is the potential energy of deformation of the shell.
This states that the body forces due to the deformation o$lied will over time be balanced by the inertia of the
shell’s own mass. Because the generalised forces are & oédaldy forces then it is possible to extract them from
the first variation of the potential energy. Thus, from [83 {botential energy of the section boundedshynds; is:

U= oM ansz( v e0)? = 20— ) (560 — L)) AcAsdscr
= 207 Jo . gs+ &g v)|eseo 7 Ay
+ _Eh® > f N (kg + )% = 2(1=v) (kK5 — 7)) Ay d st (29)
24(1_ V2) 0 s S 6 S S .

Taking the first variation with respect to deformations give
E*h* 21 S,
6U) = s [ [ @estles) + eudlen) + 2 eudles) + exilen) + (L= y00) A dshs
_ o Js

# k3 21 S
+ L f (2 (k56(kg) + kpo(Ky)) + 2v (kao(kg) + ks6(ky)) + 4(L—v)T°6(1")) AsAdsdh.  (30)
24(1-v?) Jo Js,
Actually, the constitutive relations in (40) are in Novadphis textbook extracted by collecting(es)-terms,6(ey)-
terms,é(ks)-terms, etc. from this expression. Nevertheless, the ailrere to relate the shell reactions to displace-
ments, and not just to deformations. Thus the variationkertaa step further by substituting the displacement-
deformation relations from (39) and taking the first vadativith respect to displacements. For simplicity, in thetnex
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step only the integration of first term will be presented. [IBomeans of integration by parts over the section bounded
by s; ands; the following is obtained:

esS(e) AA S = Lo 1) aands =
(s L el 5 )
=f02”fes(A;a(%“*)+A§A5

Rs
21 S § 2 ALA
:ﬁ ([A;‘,gsé(u*)]zi—j;1 C,)—S(A;;ss)é(u*)ds+fs1 s R;&(V\f“)ds)de. (31)

5(w*)) dsdh =

At this stage the bracket evaluatedsaands, will vanish ass(u®) is zero at the boundaries by definition. However the
quantityAjes, in front of 6(u”), may indeed not necessarily be zero. Becadjzg is multiplied with a displacement

and the product in the end is potential energy, thess multiplied with the constant in front of the integral can be
regarded as a force. By writing out the integration in (30intéy term in this way, and collecting the quantities

multiplied with, respectivelyg(u®), 6(v*), 6(w*), andé( )from the brackets evaluated sitands;, the generalised
forces are obtained:

= 1—3M (SS et o (ks + VKe)) = A (T R ) (32a)

oo EP ) (32b)
V_2(1+V)A6y GRZT _AF? 4
\ Eh3 1 aA; ot .My

V= a6 7 - S 6 v + 200 AT ) < AN + (320)
e Eh A A e

D = _WA* (K + VKH) = —ng, (32d)

where the constitutive relations in (40) are used to wrikedkeneralised forces in their most compact form. These
generalised forces hold for any shell of revolution. Nowpnder to calculate the power flow associated with the
displacements determined by the WKB solution the exprassio(32) are manipulated in the following way: Firstly,
the displacement-deformation relations from equatiof3, tBe Lamé parameters, and the radii of curvature from (5)
are substituted into the expressions. After that, the ggivéKB solution in (1) combined with (7) is substituted and
the generalised forces are expanded after the séfigs d;, + ng>* ... By finally collectingO(1)-terms the
leading order generalised forces for the shell of revommh sIowa varylng radius become:
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52 - B -
Viro = BT 5y gy (VM0 — T(SYK(S) o — v (330)

As can be seef; o are in all four cases a linear combination of the componehig.oT hus the exponential functions
of s andéd can be taken outside of a common bracket which will then vandhen multiplied with its complex
conjugated in (27). This means thigtcan just be replaced hy, when the expressions above are used in (27).

2.2.1. Power Flow when m 0— The Axial and Torsional Wave Mode

In the case of torsional wave motion the power is only carigdircumferential displacement. Thus only equations
(27b) and (33b) are used. By substituting the WKB approxiomatf the torsion amplitude from equation (19) the
associated power flow is

5
I} = C2Ecrg? 2

o 6(1+y)’ (34)

which indeed is independent of the axial coordinate.
Likewise the power due to the axflateathing mode can be calculated. As this mode consistsalfand normal
displacement, as well as rotation aroundvkeis, the total power flow can be determined as

o
H; — CsE* # %2 w

Cryi———5— 35
0 6(1-v2p2’ (35)

which is also independent of the axial coordinate.

2.2.2. Power Flow when m 0

The WKB solution wherm > 0 has, as explained previously, only been found numericdllyis means that the
power flow must be calculated numerically by using a spedtitus variation of some predefined shell of revolution
and then stepping through a sequenc&afalues to check whether the power is conserved. Howevemthi not

be presented here. Moreover the numerical implementafitredVKB solution can be validated by replicating the
analytical WKB-solution fom = 0 for some characteristic predefined shells of revolution.

2.3. Energy Distribution

While it may be claimed that the power flow must be conservedgthe shell this statement says nothing about how
the mechanical energy, which is the sum of kinetic and p@ksnergy, may be distributed along the shell. However,
it can be shown mathematically that at each location aloegatveguide the time-averaged kinetic and potential
energy are identical, see [14]. The time-average is ohddyeintegrating over at least one full wave cycle. Thus,
by introducing the notatioiX = %fot” xdt wheret,, is the time required to complete one cycle, it can be statetl th

T* = U*. However, both the kinetic and potential energies are nbthby integrating their point-wise contribution
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over the shell, i.e.T* = fOZ" f; &dsd andU* = fOZ" f; vidsd, and thus&® = 7*. It can be found that the
time-average of the point-wise kinetic and potential are:

sk

& =50 (008 + %% + Woiko) (36)
7 =2('i*7_h;,) (% (Ref&s + 2 + Im (&5 + 29)°) - (1-) (Re{’gggi} - %Re{ﬁ})) +
k3 — _

+ % (% (Re{,?; riof +Im{d+ ;g}z) —(1-v) (Re{@?;} - Re{??})) . 37)

Thus, despite the fact that the structure of these two egjues is rather dierent, they must still be equal. In
this way the comparison between the time-averaged kinaticpmtential energy is yet another sanity-check of the
calculations.

3. Resultsand Discussions

To demonstrate the capabilities of the derived model, theevgaiide properties of the two shells of revolution illus-
trated in figure 2 will be examined. The radius function isaclke case expressed by:

(@: r(S)=b+atanhsS) (b): r(S)=S+bh, (38)

where the coféicients are given in the figure captions. Shell (a) is inténgdiecause it is composed of two cylindrical
shells which are connected by a smooth transition. The dmtoasition contains sections of double curved surfaces
with, respectively, positive and negative Gaussian cureat Such features are seen in applications like jet engines,
wind instruments, piping systems, etc. Typically a positivaussian curvature has dfstining éfect on the shell as
opposed to the negative Gaussian curvature. Howeversaassumed that the waves locally see the shell as a uniform
cylinder, i.e. with a Gaussian curvature of zero, thiffetiing éfect is expected only to play a minor if any role at all.
Thus the important characteristic of shell (a) is rathet ithgimply represents a fierentiable transition between two
uniform cylinders. To back up this claim shell (b) is conset® This conical shell is the simplest perturbation from
the uniform cylinder and obviously has a linearly changiadjus and a Gaussian curvature of zero at any point of its
surface.

In what follows, the primary focus will be on the axialeathing moder = 0). Even though this is just a
fundamental and rather simple mode it is complicated entaigéveal a quite sophisticated behaviour as the wave is
travelling along the shell of revolution. For shell (a), thispersion relation, modal unit vector, amplitude, andgne
distribution as functions of frequency and location will b@ensidered. Then, for shell (b), the dispersion relation,
modal unit vector, and amplitude will be treated in the samag.wrinally, as an example of a higher order, though
still fundamental, mode the dispersion relation, modal wector, and amplitude of the waves relatedrte 1, which
among others include the global bending mode, will be presen

3.1. Dispersion Relation — Shell (a)

As described previously the dispersion relation of the [@xieathing mode is obtained from tk1)-system, that

is equation (8a), by takinyl;1Ms3 — M2, = 0 andm = 0 and substituting the radius function for shell (a). Hence,
the results in this subsection, as well as the subsequesgstitin concerning the modal unit vector, uncover how the
dispersion relation and modal unit vector of a classicafarm cylindrical shell depends on the local value of the
radius function.

2The Gaussian curvature is defined as the product of the twoipail curvatures of a surface, i.e. in this céée,%—q
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(@:b=1a=05 (b):b=1
Figure 2: Shell (a) represents a smooth transition from onstant radius to another, while shell (b) is a conical shell
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Figure 3: Contour plot of the wavenumber of (a) the 1st #@xiehthing wave and (b) the 2nd ayiakathing wave.

From the dispersion relation of the axlaleathing mode, two travelling waves are predicted. Theaomplot of

the 1st wave is illustrated in figure 3(a) while the contowt pf the 2nd wave is illustrated in (b). In both contour plots
the location along the shell, in terms of the slow coordinateunning along the horizontal axis while the frequency
is running along the vertical axis. The shading of the conl®eels is such that a lighter blue corresponds to a higher
wavenumber and vice versa. However, it should be remarlegtire white indicates that the wave is not travelling,
but is evanescent, at that location in the contour plot. Towisnagining plot (a) on top of plot (b) it is seen that the
wavenumber of the 1st wave increases dramatically as sotirednd wave cuts on. In this way the contour plots
give a broad overview of how the dispersion relation quinigdy depends on the location and frequency. To quantify
the contour levels the plots in figure 4 are presented. Thiege gontain both the 1st and 2nd waves, but for fixed
locations in (a) and fixed frequencies in (b). The fixed lawagiand frequencies are also indicated in the contour plots
by the coloured dashed lines. The plots in figure 4 demostnatre precisely how the wavenumbers of the 1st and
2nd waves do not cross each other, but instead the 1st wave alBeomewhat before the 2nd wave cuts on. This
veering éfect is already well known, see e.g. [15], and is a direct cgusace of the two waves being coupled through
the Poisson féect, even though they still are linearly independent. Hauethese results also demonstrate how the
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Figure 4: Along the fixed frequencies and locations inditdig the dashed lines in figure 3, the wavenumber is plottedirstion of (a) the

frequency and (b) the slow coordinate.

cut-on of the 2nd wave in this case can lfieeted by the changing radius. Hence figure 3(b) and 4(b) dstrade that
over a rather broad range of frequencies the 2nd wave onlynbes travelling when the radius of the shell becomes
large enough and, in this particular example, below a fraquefw ~ 0.65 the 2nd wave does not becomes travelling
at all. In fact, the relationship between the slow coordiraatd the frequency, that determines where the veering and
cut-on of 2nd wave occurs, is roughly indicated by the reaped curve in the contour plots. This curve is exactly
the so-called ring-frequency as a function of the slow comai@. This will be further discussed in subsection 3.2.1.

3.2. Modal Unit Vector — Shell (a)
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Figure 5: Contour plots of (a) the first component of the maddt vector related to the 1st axflateathing wave, i-ema(s,w)\

component, i.e 23l

To gain more insight about how the 1st and the 2nd waves beh@veas described by [15], useful to plot the
components of the modal unit vector, i.e. the modalfitcents, see equations (20), (23), and (24). Thus, as the
axialbreathing wave consists of axial and normal motion, theaamplot of the axial component of the modal unit
vector related to the 1st wave is illustrated in figure 5(ajlevtihe contour plot of the normal component is illustrated
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Figure 6: Along the fixed frequencies indicated by the dadimed in figure 5, the components of the modal unit vector éottqd as function of

the slow coordinate.
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Figure 7: Contour plots of (a) the first component of the madfal vector related to the 2nd axflateathing wave, i.eleaSall
In the white area the 2nd axlateathing wave is evanescent and thus not travelling.

i alva(Sw)l
component, I'eia/a(S,m)\ .

(b)

i@a(S0) and (b) the third

in 5(b). The axial and normal component, at the fixed freqigzindicated in these contour plots, are plotted in figure
6(a) and 6(b). As marked on top of the vertical axis the moddficients are normalised by the normaf which by
definition is: |aa| = \/laa|2 +|Bal? + lyal?. Similarly, the modal coécients of the 2nd wave are illustrated in figure 7

and figure 8. Again it should be remarked that the purely wduiga of the contour plot is where the 2nd wave is not

yet travelling. However, this does not mean that the 2nd vdmes not give rise to displacements before cut-on. But

as mentioned earlier, the wave is evanescent until cutrahpaly the travelling part of the wave is considered here.
Now, in relation to the red s-shaped curve in figure 5, the@mamplots show that the modal unit vector for the
1st wave changes rapidly somewhat before the red curve. Bldalmnit vector of the 2nd wave, on the other hand,

changes rapidly as soon as the wave cuts on a bit after theurgd,and then afterwards attains a constant level.

Figure 6 also shows that the 1st wave is dominated by axiabmbiefore the veering, and is dominated by normal
motion after the veering. Exactly the opposite is true fer2hd wave which consists purely of normal motion right at
cut-on, but then rapidly shifts towards being dominatedxiglanotion. Together with the dispersion diagrams from
the previous subsection this demonstrates how the 1st ahd/&@ves convert into one another during the veering and
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Figure 8: Along the fixed frequencies indicated by the dadimed in figure 7, the components of the modal unit vector éottqd as function of
the slow coordinate.

continue after the veering as each other’s extension. leratrds, before the veering the 1st wave is an axial wave,
which due to the Poisson’s coupling is forcing the breathiage to be present. In that way the breathing wave is a
slave of the axial wave, as long as the veering has not oatyete Then, after the veering, the 1st wave has converted
into a breathing wave, which then again due to the Poissanipling is now forcing the axial wave to be present.
Thus the axial wave becomes a slave of the breathing wavactnthis interpretation is backed up by the simpler rod
and beam models and will be discussed further in the follgwinbsection.

3.2.1. Dispersion Relation and Modal Vectors in Relatiofrtmdamental Rod, Beam, and Cylindrical Shell Theory
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Figure 9: AtS = —0.5 the dispersion relation as function of the frequency idtetbin (a) whereas in (b) the dispersion relation is plotsd
function of location atv = 1.25. The dashed, thin, and straight curve is the dispersiatioe for the axial wave in a rod while the dashed, thin,
and non-straight curve is the dispersion relation for tleatiiing wave modelled as a bending beam on a Winkler fowordati

In subsection 2.1.4 the axial wave in a rod, the bending waelieam on a Winkler foundation, and the decoupled
axiajbreathing wave in the shell of revolution were found to bepiie identical. The axighreathing wave was
decoupled by equating Poisson'’s ratio to zero in@{t)-system and then separately determining the wavenumber
and amplitude of the two waves. In spite of the continuousneadf Poisson’s coupling, the coupled apiaéathing
wave also has a close connection to the decoupled axial aathiimg wave. Hence the dispersion relation for the axial
wave in a rod and the bending wave in a beam on a Winkler foiordet compared to the coupled axtaleathing
wave in figure 9. This figure clearly shows how the 1st wave ilgefioe veering, and the 2nd wave after the veering,
asymptotically approach the dispersion relation of thealaxave in a rod. Likewise, the 2nd wave cuts on right after
the cut-on of the bending wave, though because of the vedringist wave takes over to asymptotically approach this
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branch. Moreover, the modal vector of the decoupled axiakvadbviously only contains an axial component, while
the modal vector of the decoupled breathing wave only costainormal component.

It was previously mentioned that the red s-shaped curve;twini the contour plots above indicates the location
of the veering, specifies the relation between the frequandylocation of the ring-frequency. For thecoupled
breathing wave this frequency is identical to its cut-omgfrency and matches the eigenfrequency of a closed ring
which is undergoing breathing motion. Actually, this eiffequency is modelled by omitting the bending term from
the model of the bending beam on a Winkler foundation, c peaplix B, and solving equation (45) fax From this,
the ring-frequency is given by, = r(S)~1. Hence, because of the veering of the coupled fdehthing wave, the
cut-on of the 2nd wave will happen shortly after the ringgfrency. Besides this, at the location where the radius
of the shell and the frequency of the wave match the ringtfeegy, the local dynamic $ihess towards breathing
motion will be decreased and thus potentially creatingllsed resonance.

3.3. Amplitude — Shell (a)
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Figure 10: The contour plot in (a) gives an overall impressibhow the amplitude of the modal vector is distributed daberfrequency and slow
coordinate. Plot (b) more precisely shows the level of thelaade as function of the slow coordinate at the fixed freges indicated in the
contour plot. In both plots the modal vector begins at a uadter atS = -5

So far the results only derentiate themselves from classical cylindrical shelbtlidy evaluating the local value of
the radius function. However, the real power of the WKB dolufs its ability to also determine how the amplitude,
e.g. expressed b, is afected by the varying radius. The contours of the amplituddeflst wave is plotted in
figure 10(a) and at fixed frequenciesin (b). It should be ersigkd that the amplitude in both (a) and (b) is normalised
such that a6 = -5 it has unit magnitude at any frequency. Also, in the confdar it should be remarked that the
contour level is chopped such that the purely white narraa & this plot corresponds to valueslgj% > 5. As

the 1st wave is travelling along the shell, both plot (a) andli{ustrate a rather dramatic evolution of the amplitude.
Not only does the model predict the evolution of the ampéttm be very sensitive to the choice of fixed frequency,
but also as soon as the wave comes near the location wheradius matches the ring-frequency a strong increase
in amplitude appears. However, as the wave travels on andathies changes even further, and thus moves away
from the ring-frequency, the amplitude decrease agains iBhbecause of the above mentioned localised breathing
resonance. Having in mind that, as illustrated in figure &g coupled axighreathing wave will inevitably contain
some degree of breathing motion both before and after theernodversion, then it will always have the potential
to excite this localised breathing resonance. Hence thitgagionr mechanism of the resonance does not in principle
rely on the mode conversion itself, but only depends on teathing motion being present at the right location. This
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principle will be further discussed in subsection 3.8, veh®sme of the properties of the waves relatethte 1 are
presented. Nevertheless, as the contour plots in figureo5shtsw that the modal unit vector of the 1st wave does in
fact become dominated by its third component just beforeitigefrequency, the displacement right at the amplitude

peak will, in this case, consist above all of breathing nmatio
Despite the apparent sharpness of the amplitude peaksudsfioally be mentioned that the amplitude function

is in fact smooth such that its derivative is continuous pwéiere. Thus if the graphs were plotted against the fast
coordinate instead, it would just be a matter of choosingfacsently small value ot to spread out the peaks over a

broader region.

3.4. Energy Distribution — Shell (a)
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Figure 11: The contour plot in (a) gives an overall impressid how the kinetigpotential energy is distributed over the frequency and slow
coordinate. Plot (b) more precisely shows the level of theetiypotential energy as function of the slow coordinate at thedfikequency

indicated in the contour plot. In both plots the energy hamit magnitude a = -5
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Figure 12: Total power flow as a results of axial and bendingiono

While the total power flow related to the axtaleathing mode has been proven to be conserved, the kimatic a

potential energy may not be uniformly distributed througtthe shell, as explained in section 2.3. This is illustlate
in figure 11, where the energy clearly is accumulated arobaddcal resonance. In (a), the contour levels above
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20 are chopped and replaced by the purely white area. Platgfimpnstrates how the energy level can be several
decades higher at the local resonance (notice the logacitsoale on the vertical axis), and, like the amplitude, the
localisation of energy is very sensitive to the frequenaturiing to the power flow, it turns out that the total power,
not surprisingly, is carried by fferent types of motion before and after the mode conversibansTh figure 12 the
total power flow forw = 0.7 is plotted together with its components of, respectivakial and bending power. It
confirms that in this particular case the power of the wavaisied by axial motion before the mode conversion and
primarily by bending motion after the mode conversion.

3.5. Dispersion Relation — Shell (b)
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Figure 13: Contour plot of the wavenumber of (a) the 1st @xiahthing wave and (b) the 2nd aximkathing wave.

For the conical shell the dispersion relation in principiaaves in much the same way as it does for shell (a), although
because of the fiierent radius function the contours in figure 13 arefedent shaped to those in figure 3. Again the
ring-frequency as a function of the slow coordinated istplbwvith the red curve and indicates where the veering and
mode conversion takes place. Because shell (a) consisteafrtiform cylinders which are smoothly connected it is
seen from the contour plots in figure 3 how the wavenumber mgdfrequency sfiiciently far fromS = 0 become
independent of the location. For shell (b), on the other h#melradius changes linearly with location, and thus the
ring-frequency, as well as the region of veering, vary eudargeS.

3.6. Modal Vector — Shell (b)

The modal unit vector behaves in a similar way to shell (ay. dhoplicity the contour plot of the modal cfiients
related to the 1st wave are presented in figure 14 and plateefbed frequency in figure 15, while the corresponding
plots related to the 2nd wave are omitted. Again the modaletitor of the 1st wave changes from being dominated
by axial motion before the ring-frequency to being domiddig normal motion after the ring-frequency, whereas the
modal unit vector of the 2nd wave does the opposite right #ftering-frequency where it cuts on.

3.7. Amplitude — Shell (b)

Regarding the amplitude in figure 16, a peak exactly at thg-friaquency is present in shell (b). This confirms that
the Gaussian curvature only has a minor, if afig@ on the amplitude and that the excitation of a localisedting
resonance is primarily causing the peak. Neverthelesgitobably in this plot the biggestftierence from shell (a)

is seen. Because the radius of the conical shell continugsatioge throughout its length the amplitude has a slightly
negative slope both before and after the peak, whereas Ih(ahé finds a constant level $liciently far from the
peak.

21



05 -033 016 0 016 033 05

-05 -033 -016 0 016 033 05
S S
cY (b)
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component, i.e a3l
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Figure 15: Along the fixed frequencies indicated by the dddines in figure 14, the components of the modal unit vecterpdotted as function
of the slow coordinate.

3.8. When nx= 1 - The Bending Mode in Shell (a)

The last example is related to the circumferential waveremb= 1 and the corresponding waves travelling in shell
(a). The following results are obtained from the numeriogliementation briefly described in section 2.1.5.

3.8.1. Dispersion Relation —m1

In figure 17 three plots of the dispersion relation are giéigure 17(a) shows the wavenumbers of the three waves
which are supported by the structurenat= 1, as a function of the frequency. However, as for the Axiaathing
wave, figure 17(b) and (c) demonstrate how the three wavesaral able to travel at any location along the shell.
Obviously figure 17(b) is reminiscent of figure 4(b), in the@se that the 1st wave is able to travel all the way along
the shell, though due to the cut-on of the 2nd wave and theviillg veering the wavenumber is changing rapidly in a
localised region. However, at a frequencyo 2.2 figure 17(c) illustrates a slightly more complicated ditra At

this frequency both the 1st and the 2nd waves are able td thaay location along the shell, but due to the cut-on
of a 3rd wave they are both forced to ved. dike for the axialbreathing wave, the veering of the 1st wave in figure

22



lva(S.wi)l
[@a(-3.0.95)

\\,})
1
I

05 C033 016 0 016 033 05

-05 -033 -016 0 016 033 05
S
cY
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coordinate. Plot (b) more precisely shows the level of thelaude as function of the slow coordinate at the fixed freguies indicated in the
contour plot. In both plots the modal vector begins at a usiter atS = -5
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Figure 17: The wavenumber of the waves relatethts 1 are plotted as function of (a) the frequencysat 0, (b) the slow coordinate at = 0.7,
and (c) the slow coordinate at= 2.2

17(b) and the 1st and the 2nd waves in figure 17(c) is followgthyia mode conversion and possibly also a local
resonance. To clarify this it is necessary to study how thdaheector and amplitude depend on location.

3.8.2. Modal Vector and Amplitude —nl
As soon asn # 0 the three components of the modal vector are all couplédeguation (8), and must therefore be

considered all together. The contour plot of the axial,urnéerential, and normal component of the modal unit vector
associated with the 1st wave are presented in figure 18 arpdaited together as functions of the slow coordinate at,
respectivelyw = 0.7 andw = 2.2 in figure 19. The contour plots give an overview of how a moaleversion occurs
due to the veering of the 1st wave. Qualitatively the s-staoatour lines are reminiscent of those in figure 5 which,
again, is due to the evolution of the radius function of sf@ll In figure 19(a) it can be seen that at the narrow end of
shell (a) the 1st wave consists of an almost equal amounta@fraferential and normal motion along with a smaller
amount of axial motion. With reference to classical cylindfshell theory, fom = 1 this relation between the modal
codficients corresponds more or less to global bending. For #& &ituation the deformation of the cross-section of
the shell is illustrated in the/(w)-plan in figure 20(a). It can be shown that the relation betwtae modal ca@cients

in this ideal case i =y = m and in practice for very low frequencies, thatis< 0.1, this is obeyed. However,
as this bending-like mode is travelling towards the widet efishell (a), figure 19(a) show how it suddenly converts
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Figure 18: Contour plots of (a) the first component of the nhadfét vector related to 1st wave when = 1, i.e. % (b) the second
component 289l anq (c) third componen ﬁzgﬁ;" .
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Figure 19: The three components of the modal unit vectotqaads function of the slow coordinate at (@} 0.7 and (b) atw = 2.2.

into a mode dominated purely by normal motion. The crostigedeformation of such a mode is sketched in figure
20(b). Atw = 2.2, figure 19(b) show how a mode similar to the one illustratefigure 20(b) now dominates all the
way along the shell. Nevertheless, due to the cut-on of tbea@we a slight conversion in the relation between the
three modal cocients still occurs.

Regarding the corresponding amplitude of the 1st wave pitsatir plot is presented in figure 21(a) and plotted
for the fixed frequencies indicated in the contour plot in fegd1(b). From these plots it is clear that for= 1 it also
happens that a local resonance is exited, although the maxiamplification is not as high as for the ayimkathing
wave. Again in this case, like for the axfateathing wave, by comparing the amplitude evolutiondor= 0.7
andw = 2.2 it is tempting to conclude that a more pronounced mode gsinreis inevitably accompanied by an
excitation of a localised resonance. However, it must behasiged that this cannot be regarded as a general rule. To
show this the modal cdicients related to the 2nd wave are plotted in figure 22(a) at 2.2. Obviously a strong
modal conversion takes place as this wave is travellinggatba shell. But in this case, as seen in figure 22(b), the
corresponding amplitude show no sign of excitation of alised resonance. Hence, in order to have an excitation of
a local resonance it is first necessary to have a localisegase in dynamic gthess, and second the mode shape of
the wave at that location needs to contain the componentdweiné able to excite the resonance. Moreover, in relation
to equation (8) this means that it is not enough only to cardite modal co@cients obtained by th@(1)-system,
but the amplitude obtained by tl#&(¢)-system must also be considered in order to predict theagian of a local
resonance.
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Figure 20: At low frequencies the cross-section of the gheles as a rigid body (a), whereas it at higher frequenciegetts to the deformation
mode sketched in (b).
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Figure 21: In (a) the contour the amplitude of 1st wave istptbts function of the frequency and slow coordinate whiie (b) is plotted at the
fixed frequencies indicated in (a).

3.9. Final Remarks

For the two selected shells, shell (a) and shell (b), it mapditeed that in both cases the radius function is mono-
tonically increasing. On top of this, in the way the results presented above, it may be naturally perceived as if
the waves are travelling frol® = —co towardsS = ~. However, because both the wavenumber, modal vector, and
amplitude are determined from the local properties, it make diterence for these quantities in what direction the
wave is travelling. The only quantity which istacted by the history of the waveguide is the phase, c.f. ttegial
formulation of the WKB solution in equation (7). Thereforethe radius function is expressed via e.g. a Gauss
distribution with its maxima a% = 0, then the wave, except for its phase, will be identic& at +So.

4. Conclusions

In this paper the waveguide properties of a shell of revofutiave been examined. Firstly, the equations governing
the elastodynamics of such a shell have been derived arsllyti Under the assumption that the radius is a slowly
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Figure 22: At a frequency ab = 2.2, plot (a) illustrates the three components of the modalwautor related to 2nd wave as function of the slow
coordinate and (b) the corresponding amplitude.

changing function of the axial coordinate, the governingagimns have been asymptotically approximated, and then
solved by means of the WKB-method. With this solution methiwel dispersion relation and the modal vector are
determined from th©(1)-equations, that is the leading order equations, agiskiell was a uniform cylinder with the
local properties. In contrast, théects of the changing radius are accumulated in the amphtinitsh, by considering

the O(e)-equations, are formulated in an integral form, see eqodfi4). For the circumferential wavenumimee= 0

the integration has been done analytically, and hence therdiency of the amplitude on the radius function for the
fundamental modes, i.e. the torsional wave and the /axedthing wave, have been obtained in closed form, see
equations (19), (23), and (24). However, for arbitramyeven with state-of-the-art symbolic computation sofesyar

it has not been found possible to carry out the integratialyaically. Instead, by specifying a radius function, the
evolution of the amplitude, for each specific wave, has beenessfully obtained by numerical integration.

The validity of the analytical expressions has been testedhiowing that the power flow associated with the
analytical solution is conserved. Moreover it has been detnated that, even though the time-averaged kinetic and
potential energy have a non-uniform distribution througihthe shell, they are still of the same magnitude at any
location. This is a prerequisite for a conservative elagtadhical system. As a by-product of these considerations
it becomes easy to determine to what extent the wave enegriied in the shell wall by axial motion, shearing
motion or bending motion, and how the contribution of eagietgf motion may gradually change with the evolution
of the radius function.

Despite the complexity of the shell structure, the propsrif the torsional wave and the decoupled dxiahthing
wave have been related to classical rod and beam theory amdashexcellent correlation. On one hand this also
confirms the validity of the derived equations, but, justrapartantly, on the other hand it points out a short-cut to
predict, under suitable conditions, the behaviour of tHeedamental waves supported by the shell of revolution.

To further demonstrate the capabilities of the derived rhadeé solution, and to illustrate some general waveguide
properties of shells of revolution, two characteristicpgsof shells have been specified. For these shells it isiargla
how high-order modes cut on, one after one, as the radiusases, and how veering of coupled waves is taking place,
not only as a function of frequency, but also as function oat@mn along the shell. Along with the veering it has also
been demonstrated how the modal vector is changed suchweateatravelling along the shell may change its mode
shape completely over a rather short distance. Specifi¢allyhe axiglbreathing wave it is shown how the veering
and mode conversion is triggered by the match between thadrey of the travelling wave, the local radius and the
ring-frequency given by, = r(S)~. On top of this, in the vicinity of where the conditions foething-frequency set
in a localised resonance appears, making the shell sengitibreathing motion. Consequently a very large increase
in breathing motion appears in this region. Finally, wheamining how a set of higher-order waves depend on the
changing radius, it becomes clear that, on one hand, the oauersion of such waves can also be accompanied by
an excitation of a localised resonance. On the other haranpbes have also been found where a pronounced mode
conversion is taking place, but without any noticeableéase in amplitude. Hence, the location of a localised peak
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amplitude cannot be indirectly predicted from the mode eosion obtained purely by th@(1)-equations, but needs
the information from th&(e)-equations in order to explicitly determine the amplitude

For future work a reasonable next step is to compare theseorigly derived analytical results with numerical
models such as a finite element model. Likewise, experirhealidation would also be highly appreciated. Possible
extensions of the current model could be to include fluidratgon, either inside or outside or both. Itis expected tha
the peaks in amplitude at localised resonances will stilptesent, but they will probably be reduced in magnitude
because the fluid will provide a way to dissipate energy froasé areas. Another extension to the model could also
be to consider a bounded waveguide. This will involve theegelised forces in equation (32) which e.g. must be zero
for a free boundary or may be used to calculate the reactiomsestricted or even clamped boundary.
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Appendix A Equations of Motion Expressed in Displacements

The equations of motion expressed in displacements of thléaftrevolution are obtained by removing the circum-
ferential dependency from the Lamé parameters and radiinfatures from the general shell equations. Thus the
displacement-deformation relations for a shell of revioluaare
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wheree; is the membrane normal strain in directigry is the membrane shear straifiis the change of curvature in
directioni, andr* is the twist. Likewise, the constitutive relations are
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E*h*

T = - (85 + veg) (40a)
Ty = 1_—V2 (20 + ves) (40b)
M; = % (K + vkp) (40c)
M = 12(1h*3 ) (K + vKg) (40d)
TS = 2(E1*E*y) (y + 2:2 T*) (40e)
Tos = % (7 + 6;;,;7*) (40f)
M2, = M, = %T (40)

whereT; is the membrane normal force resultant in directio” is the bending moment resultant due to normal
stresses in directionT;: is the membrane shear force resultant acting in diregtmma surface normal tip M is the
torsion momentE* is the modulus of elasticity, is Poisson’s ratio, anld* is the thickness of the shell. The equations
of motion, obtained by establishing the force balance, are
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whereN; is the out-of-plane shear force resultant acting on a serfiacmal ta, po* is the density, antf is the time.
In this force balance the dynamics of the shell has beeniocated as an inertia force acting on the middle surface
of the shell. Finally the force resultari§ are obtained by the moment balance
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By combining equation (39) to (42) the equations of motio& expressed purely in in terms of the shell displace-
ments.

Appendix B The Breathing Wave M odelled as an Euler-Bernoulli Beam on a Winkler Foundation
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Figure 23: The breathing mode in the shell of revolution maydplicated by cutting out a narrow strip along a fixed adglend then model the
bending behaviour while the strip is supported by a Winkbtemidation.

When the shell of revolution is undergoing breathing matiois possible to replicate its behaviour by cutting out a
narrow strip along a fixed small angle, s&@in figure 23, and then modelling the bending properties af $hiip. By
further cutting out a segment of dimensional leng#i, the edges facing the axial direction will, due to the begdin
be loaded with momentdVl*, (though not illustrated) and out-of-plane shearing ferd&, which are related by
% = V*. Moreover, when the shell displaces uniformly along thewinference, in the normal direction, the shell
will respond with membrane stressds, in the circumference which are acting on the strip as artielamindation,
i.e. a Winkler foundation. The level of these stresses angralted by the straining of the circumference. Hence it
may be found thaf* = Er‘“("—s) Finally due to the mass of the segment it will iBeated by translational inertig;,
distributed over its volume. Thus the forcing balance prigd on thev-axis is
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Dividing by As* and taking the limit oiAs® — 0 yields
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Now, as well as the shell in this paper being subjected to ihehKoff-Love assumptions, this strip may be regarded

as an Euler-Bernoulli beam. Thus the relation between timelilhg moment and the displacement is given by the
Euler-Bernoulli beam equatiod* = E*I*‘(’;?W; wherel* is the area moment of inertia of the strip. And because the
strip is narrow, the area moment of inertia can simply be esged a$*(S) = lizr*(S)AHh*3. Then, using the time

dependency’(s, t*) = rgv”v(s)Exp(i‘”r%), and scaling lengths witt}, the PDE from above simplifies to

62 P W 1 2\
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