9,236 research outputs found
Sr-Nd isotope compositions of cenozoic granitoids along a traverse of the central Peruvian Andes
Global satellite triangulation and trilateration for the National Geodetic Satellite Program (solutions WN 12, 14 and 16)
A multi-year study and analysis of data from satellites launched specifically for geodetic purposes and from other satellites useful in geodetic studies was conducted. The program of work included theoretical studies and analysis for the geometric determination of station positions derived from photographic observations of both passive and active satellites and from range observations. The current status of data analysis, processing and results are examined
Structural models for the Si(553)-Au atomic chain reconstruction
Recent photoemission experiments on the Si(553)-Au reconstruction show a
one-dimensional band with a peculiar ~1/4 filling. This band could provide an
opportunity for observing large spin-charge separation if electron-electron
interactions could be increased. To this end, it is necessary to understand in
detail the origin of this surface band. A first step is the determination of
the structure of the reconstruction. We present here a study of several
structural models using first-principles density functional calculations. Our
models are based on a plausible analogy with the similar and better known
Si(557)-Au surface, and compared against the sole structure proposed to date
for the Si(553)-Au system [Crain JN et al., 2004 Phys. Rev. B 69 125401 ].
Results for the energetics and the band structures are given. Lines for the
future investigation are also sketched
Magnetohydrodynamic kink waves in two-dimensional non-uniform prominence threads
We analyse the oscillatory properties of resonantly damped transverse kink
oscillations in two-dimensional prominence threads. The fine structures are
modelled as cylindrically symmetric magnetic flux tubes with a dense central
part with prominence plasma properties and an evacuated part, both surrounded
by coronal plasma. The equilibrium density is allowed to vary non-uniformly in
both the transverse and the longitudinal directions.We examine the influence of
longitudinal density structuring on periods, damping times, and damping rates
for transverse kink modes computed by numerically solving the linear resistive
magnetohydrodynamic (MHD) equations. The relevant parameters are the length of
the thread and the density in the evacuated part of the tube, two quantities
that are difficult to directly estimate from observations. We find that both of
them strongly influence the oscillatory periods and damping times, and to a
lesser extent the damping ratios. The analysis of the spatial distribution of
perturbations and of the energy flux into the resonances allows us to explain
the obtained damping times. Implications for prominence seismology, the physics
of resonantly damped kink modes in two-dimensional magnetic flux tubes, and the
heating of prominence plasmas are discussed.Comment: 12 pages, 9 figures, A&A accepte
Interplay between excitation kinetics and reaction-center dynamics in purple bacteria
Photosynthesis is arguably the fundamental process of Life, since it enables
energy from the Sun to enter the food-chain on Earth. It is a remarkable
non-equilibrium process in which photons are converted to many-body excitations
which traverse a complex biomolecular membrane, getting captured and fueling
chemical reactions within a reaction-center in order to produce nutrients. The
precise nature of these dynamical processes -- which lie at the interface
between quantum and classical behaviour, and involve both noise and
coordination -- are still being explored. Here we focus on a striking recent
empirical finding concerning an illumination-driven transition in the
biomolecular membrane architecture of {\it Rsp. Photometricum} purple bacteria.
Using stochastic realisations to describe a hopping rate model for excitation
transfer, we show numerically and analytically that this surprising shift in
preferred architectures can be traced to the interplay between the excitation
kinetics and the reaction center dynamics. The net effect is that the bacteria
profit from efficient metabolism at low illumination intensities while using
dissipation to avoid an oversupply of energy at high illumination intensities.Comment: 21 pages, 13 figures, accepted for publication in New Journal of
Physic
Quantum phase interference (Berry phase) in single-molecule magnets of Mn12
Magnetization measurements of a molecular clusters Mn12 with a spin ground
state of S = 10 show resonance tunneling at avoided energy level crossings. The
observed oscillations of the tunnel probability as a function of the magnetic
field applied along the hard anisotropy axis are due to topological quantum
phase interference of two tunnel paths of opposite windings. Mn12 is therefore
the second molecular clusters presenting quantum phase interference.Comment: 3 pages, 4 figures, MMM'01 conference (12-16 Nov.
Electrons in Dry DNA from Density Functional Calculations
The electronic structure of an infinite poly-guanine - poly-cytosine DNA
molecule in its dry A-helix structure is studied by means of density-functional
calculations. An extensive study of 30 nucleic base pairs is performed to
validate the method. The electronic energy bands of DNA close to the Fermi
level are then analyzed in order to clarify the electron transport properties
in this particularly simple DNA realization, probably the best suited candidate
for conduction. The energy scale found for the relevant band widths, as
compared with the energy fluctuations of vibrational or genetic-sequence
origin, makes highly implausible the coherent transport of electrons in this
system. The possibility of diffusive transport with sub-nanometer mean free
paths is, however, still open. Information for model Hamiltonians for
conduction is provided.Comment: 8 pages, 4 figure
- …
