Reports of the Department of Geodetic Science

Report No. 199

GLOBAL SATELLITE TRIANGULATION AND TRILATERATION FOR THE NATIONAL GEODETIC SATELLITE PROGRAM (SOLUTIONS WN 12, 14 and 16)

by

M. Kumar, J. P. Reilly, N. Saxena, T. Soler

Prepared for the

National Aeronautics and Space Administration Washington, D..C.

> Grant No. NGR 36-008-093 OSURF Project No. 2514

The C'.io State University Research Foundation Calumbus, Ohio 43212 hADA-Ch-138252) GLUBAI DATELLITE N24-550 PATICNAL GEOLETIC DATELLITE THOREAU (DEBITONS AN (DHID DEALE THE THOREAU FOUNDATION) DEE DIC \$16-50 CDCL OBE G3/13 16621 UNCTOR

May, 1973

Reports of the Department of Geodetic Science

Report No. 199

GLOBAL SATELLITE TRIANGULATION AND TRILATERATION FOR THE NATIONAL GEODETIC SATELLITE PROGRAM (SOLUTIONS WN 12, 14 and 16)

by

Ivan I. Mueller

and

M. Kumar, J.P. Reilly, N. Saxena, T. Soler

Prepared for the

National Aeronautics and Space Administration Washington, D.C.

> Grant No. NGR 36-008-093 OSURF Project No. 2514

The Ohio State University Research Foundation Columbus, Ohio 43214

May, 1973

ACKNOWLEDGEMENT

This report is related to the work performed by the staff of the Department of Geodetic Science, The Ohio State University sponsored by NASA under the National Geodetic Satellite Program. Grateful acknowledgement is given for the generous support given during the past eight years which not only made The Ohio State University's participation in this program possible but also provided a total of thirty-four undergraduate and graduate students with assistantships of various lengths and types during their studies. Cn NASA's behalf the project was monitored by Jerome D. Rosenberg (currently Deputy Director, Communication Programs, NASA Headquarters) from 1965 to 1972, whose support and encouragement were felt and appreciated throughout. Due to a reorganization within NASA, his work was taken over with enthusiasm by Benjamin Milwitzky, Deputy Director, and James P. Murphy, Special Programs, NASA Headquarters.

Project staff with significant contributions is listed in the table on the next page. The proportion of their individual contributions is reflected in a general way by the length of stay and/or by the issue numbers in the Report Series of the Department of Geodetic Science to which the individual contributed most. In a university environment where there are important interactions between the students themselves and the instructional staff, it is generally difficult to separate out individual contributions from the team work. Thus the Report numbers listed reflect, in most cases, responsibilities in a given area rather than "individual" contributions. Exceptions to this are theoretical studies contained in Reports No. 114, 147, 150, 177, 185, where very little input came from students other than the authors.

ii

	1965	19	99	190	-	968	1	66	197		971	18	12	191	<u> </u>	Contribution of the Dep	un in the partment	Reports of Geo-		Earn	a p
				ļ	-†	$\left \right $	_[1	t	-	-	_	Τ	ł	4	lotic Scie	auus I	:	1	I I I	
	11:1	-	Η	-	H	픤	-	H	믭	금	리	-	Η		Ξ		No.		BS	MS	DhD
Administrative Assistants						<u> </u>															
Miller, J. R.	×	×	×	×	×	× -															
Preston, J. C.	×	×	×	×	×	X					-				\vdash						
Testal, I.	F ⁻				×	×	×	×	×	\vdash					-						
Rist, E.	$\left \right $					┟╌┥			Ĥ	X	×	×	×	×	Η						
Student Assistants										-		_									
or Associates																					
Preuss, H. D.	×	×													~	0			×	×	
Krakiwsky, E. J.	×	×	×	×	×	×			-	-						6, 67, 88, 1	PEI		×	×	×
Ferrier, J.	<u> </u>	×	×	L		┡		t	\vdash	+-	i-	•		†	Fr.	1,88			Ĺ		1
Pope, A. J.	+ -	-	×		┢	╞			┢	-	-	Į	I	\mathbf{f}						×	Ι
Hotter, F. D. *		-	×	×	-	-			\vdash	-		1				2		;		×	1
Dlaha, G.				×	×	×	×	×	×	×	<u> </u>		I	† -	Ê	7, 140, 146	1.150	1		-	·×
Reilly, J. P.				•	×	×	×	×	×	×	×	×	×	×	e	8,125,140	187,190	193,199		×	
Schwarz, C. R.					×	×	×	×	×	×						18, 125, 14	147,1	90	 	×	×
Hornbarger, D. H.*			,		×	- -				•	ļ					00	1			×	
Veach, J. P.					×	¥								Η		10				×	
Gross, J.					×	×										00				×	
Arur, M. G. *	_							×	×							39				×	
Whiting, M.	-				Η	$\left - \right $			H	Ŷ	×	×			H	88, 190, 19	86		×	×	
Kumar, M.						-			\vdash	-	×	<	×	×		84, 193, 19	1,194,1	88		×	
Soler, T.	-	Ĺ			-					\vdash	×	×	×	×		87, 195, 19	99				
Tsimis, E.				· · ·					-		×	×	×		-	85, 191				×	
Joshi, C. S.*		L											×	•		92				×	
Research Associate		_			†-		↓		 		•	; 	÷								
Saxena, N. K.			-					×	×	$\frac{2}{x}$	×	×	×	 × -		77, 193, 19	66				
			ļ	1	t]	1	1	ł			1	1	\mathbf{I}						

¹ See Index to Reports in the Bibliography

Those students receiving financial assistance (travel, etc.), other than direct fellowships, have asterisks next to their names. In addition to those listed in the table, fifteen students also carried short-term appointments for various generally nonprofessional responsibilities.

Graduate students on regular fellowships also received full tuition waivers from the University which is acknowledged here. Other University contributions came from the Computer Center, which provided a significant amount of free computer time and from the Department in the form of 4.4% cost sharing of the total research budget.

Last but not least, grateful acknowledgement is given to Defense Mapping Agency (Aerospace and Topographic Centers), NASA (Goddard Space Flight Center and Wallops Island), National Geodetic Survey/NOS/NOAA, Smithsonian Astropf, sical Observatory for supplying the observational and survey data, the basic ingredients of the work, and other information, always without reservations and delay. In this connection the Computer Sciences Corporation and the National Space Science Data Center also played important roles.

TABLE OF CONTENTS

			Page
	ACKN	OWLEDGEMENT	ii
	LIST	OF TABLES	viii
	LIST	OF FIGURES	x
۱.	INTR	ODUCTION	1
2.	INST	RUMENTATION	4
3.	DATA		6
	3.1	Satellites and Observation Stations	6
	3.2	Satellite Observational Data and Its Handling	12
		3.21 Satellite Observational Data	12 32
		3.221 Preprocessing	32 36
		A. Optical C^{ta} .	36
		B. Range Data	37
	3.3	Constraints	39
4.	THEO	RY AND MATHEMATICAL MODELS	48
	4.1	Definitions and Coordinate Systems	48
		4.11 Basic Concepts and Statement of the Problem	4 8
		4.12 Coordinate Systems	49 51
	4.2	The Direction Adjustment	55
		4.21 Uncorrelated Events	55
		4.211 The Mathematical Model	55 50
		4.212 Weighting of Observations	64
		4.22 Correlated Events	68 62
		4.221 The Mathematical Model	68
		Quantities	70
		4.223 The Reduced Normal Equations	72

	4.3	The Range Adjustment	;
		4.31The Mathematical Model.734.32Weighting of Observed Ranges.75	
		4.33 The Normal Equations	,
	4.4	Addition of Normal Equations	;
	4.5	Constraints' Contributions to the Normal Equations 79)
		4.51 General)
		4.53 Length (Chord) Constraints	\$
		4.54 Station Position Constraint	1
		4.55 Height Constraints)
		4.50 Ulrectional Constraints	i P
		4.57 Inner consciantics (Free Auguschienc)	
	4.6	Solution of Normal Equations and Formation of the Inverse Weight Matrix	
		4.61 Introduction)
		4.62 Reduction	j
		4.63 Back Solution 	ł
		4.04 FORMACION OF INVERSE	ł
	4.7	Statistical Evaluation (Precision of Ground Stations	
		After Adjustment)	>
		4.71 Variance of Unit Weight	5
		4.711 Optical Adjustment	5
		4.712 Range Adjustment	,
		4 72 Variances and Covariances of Ground Stations.	1
		4.721 Cartesian Coordinates.	ś
		4.722 Geodetic (Curvilinear) Coordinates 101	1
		4.73 Correlation Between Ground Stations 102	2
		4.74 Error Ellipsoid Computation 103	3
	4.8	Computer Programming	ł
5			
J .	RESU	LTS (SOLUTION WN14)	5
5.	RESU 5.1	LTS (SOLUTION WN14)	5
5.	RESU 5.1 5.2	LTS (SOLUTION WN14)	5

	5.4 Comparisons with Dynamic Solutions	169
	5.5 Comp risons with Geodetic Datums.	183
6.	SUMMARY AND CONCLUSIONS	203
	INDEX TO REPORTS OF THE DEPARTMENT OF GEODETIC SCIENCE	
	PRODUCED UNDER THIS PROJECT	210
	INDEX TO REPORTS OF THE DEPARTMENT OF GEODETIC SCIENCE PRODUCED UNDER THIS PROJECT. REFERENCES	210 211

LIST OF TABLES

Page

2.1	Index to Descriptions of Instruments Used in Producing Data for OSU Work	5
3.1-1	Summary of Observed Satellites	6
3.1-2	Survey Information of Observation Stations	7
3.1-3	Geodetic Datums	11
3.1-4	Summary of Source Information	12
3.2-1	Basic Information on the OSU Solutions (Networks)	13
3.2-2	Summary of Observation Types	21
3.2-38	(MPS Network)	22
3.2-3b	Summary of Simultaneous Observations by Line (BC Network)	27
3.2-3c	Summary of Simultaneous Observations by Line	รก
3.2-3d	Summary of SECOR Observations by Quadrangle	31
3.3-1	Summary of Constraint-Types with the Source Information.	40
3.3-2	Relative Position Constraints	41
3.3-3	Geoidal Undulations and Heights Used in the Constraints.	42
3.3-4	Chord Constraints	47
5.1-1	Determination of Scale	114
5.2-1	Average Standard Deviations (Solution WN14)	117
5.2-2	Cartesian and Geodetic Coordinates (Solution WN14)	118
5.2-3	Station to Station Correlation Coefficients P _{ij} > 0.75 (Solution WN14)	146
5.2-4	Station Correlation Coefficients $c_{ii} > 0.75$	
	(Solution WN14). \ldots	151
5.3-1	Chord Length Comparisons (Solutions WN12, 14 and 16)	152
5.3-2	Standard Deviation Comparisons (So ⁷ utions WN12, 14 and 16)	153
5.3-3	Transformation: WN16 - WN14	155
5.3-4	Transformation: WN12 - WN14	158
5.3-5	Height Residuals (Solution WN14)	162
5.3-6	Undulation Comparison (Solution WN14)	167
5.4-1	Relationships Between Various Dynamic and the WN	
	Systems (Dynamic - WN14)	1/0
5.4-2	Transformation: NWL-JU - WN14	1/1
5.4-3	Transformation: SAO III - WN14	1/3
5.4-4	Iransformation: GEM-4 - WN14	1/6

5.4-5	Transformation GSFC-73 - $WN14$
5.4-6	Shifts to the Geocenter (Solution WN14)
5.5-1	Relationship Between Various Datums and the WN System
	(Datum - WN14)
5.5-2	Transformation Australian Datum - HN14
5.5-3	Transformation European 50 Datum (W) - WN14 191
5.5-4	Transformation European 50 Datum - WN14
5.5-5	Transformation NAD 1927 (W) - WN14
5.5-6	Transformation NAD 1927 (E) - WN14
5.5-7	Transformation NAD 1927 - WN14
5.5-8	Transformation South American 1969
	Datum - WN 14
6 - 1	Summary of Cartesian Coordinates (Solutions WN12 and
	WN14)
A - 1	Cartesian and Geodetic Coordinates (Solution WN12) 219
A - 2	Station to Station Correlation Coefficients, $\rho_{ij} > 0.75$ (Solution WN12)
A - 3	Station Correlation Coefficients, $\rho_{ij} > 0.75$ (Solution WN12)

LIST OF FIGURES

3.2-1 3.2-2 3.2-3 3.2-4 3.2-5 3.2-6 3.2-6	MPS stations in North America.14MPS stations in Europe15SAO and C-Band stations in the MPS net16BC-4 Worldwide Geometric Satellite Network17SECOR Equatorial Network18South American densification net19OSU Correction Satellite Network (UN)20
3.2-7 3.2-8 3.2-9	0SU Geometric Satellite Network (WN) 20 0ptical data preprocessing procedure summary for major U.S. agencies. 33 Scheme of SECOR preprocessing procedure at OSU 34
4.1-1	Numbering of coordinate axes
4.1-2	coordinate systems
4.1-3	Instantaneous and average terrestrial coordinate systems
4.2-1 4.?-2	The adjustment coordinate system
4.3-1	The uvw coordinate system
5.1-1 5.1-2	Height components
5.4-1	Dynamic zero meridians relative to the WN14 zero meridian
5.4-2	Dynamic pole positions relative to the WN14 pole 182
5.5-1	Major geodetic datum blocks

Page

1. INTRODUCTION

In 1965 the Department of Geodetic Science at The Ohio State University had been requested to submit a proposal to the National Aeronautics and Space Administration for a multi-year study and analysis of data from satellites launched specifically for geodetic purposes and from other satellites useful in geodetic studies. The program of work included theoretical studies and analysis for the geometric determination of station positions derived from photographic observations of both passive and active satellites and from range observations. This paper examines the current status of data analysis, processing and results. Various theoretical studies have been described in the Report series of the Department of Geodetic Science (Nos. 106, 110, 114, 118, 139, 147, 150, 177, 185, and 191) and are not repeated here.

The ultimate goal of the data analysis was to obtain an improved global net combining all participating tracking stations in a single worldwide coordinate system. In deriving these results OSU representatives were to work with other universities and government agencies to prepare a handbook containing the best goedetic data from satellite observations available at the time. This report condenses the OSU contribution to the above enterprise.

The work performed during the grant period included, tut was not limited to, the following:

 Deriving the necessary mathematical formulations, programming and testing the same.

- (2) Making use of the observational data as they became available to determine the relative positions of the tracking stations in an arbitrary Cartesian coordinate system.
- (3) Estimating the position of this coordinate system with respect to an absolute (geocentric) system and also with respect to coordinate systems used by the other agencies.
- (4) Participating in working groups and other planning meetings to establish desirable operational procedures, including tracking procedures, data format, analysis procedures, etc.
- (5) Providing advice to NASA on various aspects of the National Geodetic Satellite Program.

Thus, the primary objective of the OSU investigation was the geometric analysis of geodetic satellite data. The analysis was to be accomplished in three steps:

 The establishment of a primary network where station positions are known to an internal consistency of 10 meters or better to serve the following purposes: (a) to establish the relative relationships between the various geodetic datums in use around the world;
 (b) connect isolated tracking stations, islands, navigational beacons and other points of interest.

In fulfilling the requirement of (a) a minimum of three tracking stations were to be used on any given datum.

(2) Establishment of a densification network where station positions are known to an internal consistency of three meters or better to serve the following purposes: (a) improve the internal quality of existing geodetic networks (triangulation, etc.) by establishing "super" control

points in sufficient numbers; (b) to provide control for mapping to scales as large as 1:25,000 in areas where no primary geodetic control exists.

(3) Establishment of a set of scientific reference stations where positions are known to an internal consistency of one meter or better for advanced (earth and ocean physics) applications.

This report contains results in connection with (1). The goals of items (2) and (3) still need to be fulfilled when the quality of the observational material and/or the distribution of tracking stations will become better than those made available for this study. Since the National Geodetic Satellite Program is no longer funded, it is only hoped that these goals will be incorporated in the Earth and Ocean Physics Application (EOPAP) or in the GEOS-C Programs.

This report is in six sections. Following the brief section on instrumentation, section 3 contains material on observational and survey data as provided to The Ohio State university by the various data collecting agencies. After describing the theory in section 4, the results of the least squares adjustment are given in section 5. This section also contains the comparison of these results with various dynamic solutions and survey data. In section 6 conclusions are presented with some recommendations for future work. Numbers in brackets after the section captions refer to the appropriate Department of Geodetic Science Report where more detailed information on the content of the section are yee found.

2. INSTRUMENTATION

The Ohio State University used data provided by other groups and did not make any observations of its own. It did not develop or use any instruments or equipment which were unique to OSU's work, and the instruments used in getting the data used by OSU are described in [American Geophysical Union, in press].

Table 2-1

Index to Descriptions of Instruments Used in Producing Data for OSU Work

	Responsible Group	Location Chapter ¹
1. Satellite Instrumentation		
ANNA 18 Courie: 18	APL	II
Dash 2 Echo 1 Echo 1 Rocket	NASA	v
Echo 2 Electron 3 Explorer 9 Explorer 10	NASA	v
GEOS-I GEOS-II Midas 4	APL APL	VI II
PAGEOS RCS	NASA	v
SECOR (EGRS) Telstar l	dod/d m a	III
2. <u>Ground Instrumentation</u>		
2.1 <u>Cameras</u>		
2.1.1 PC-1000 2.1.2 BC-4 2.1.3 MOTS 2.1.4 Baker-Nunn 2.1.5 Other	DOD NGS NASA SAO Other	III VII IV IX
2.2 <u>Radar</u>		
2.2.1 C-Band 2.2.2 SECOR	NASA DOD	VI III
		1

¹in [American Geophysical Union, in press]

3. DATA

Details of the data used by OSU and obtained from various agencies are presented in the tables of section 3.1, 3.21 and 3.3. Before reaching OSU the data was subjected to reductions considered necessary by the respective agencies [Gross, 1968; Hotter, 1967]. Most of the obtained data needed some kind of additional treatment before it could be used for analysis; the more important details of this treatment (preprocessing) are given in section 3.22.

3.1 Satellites and Observation Stations [71]

Data used for OSU investigations was obtained by observing the satellites listed in Table 3.1-1. Orbital and other information on these satellites is tabulated in [Girnius and Joughin, 1968; King-Hele et al., 1970].

Survey information regarding the observation stations is summarized in Tables 3.1-2 to 3.1-4.

10010 911 1	Ta	P	1	е	3		1	-1	
-------------	----	---	---	---	---	--	---	----	--

Name	Designation	Name	Designation
ANNA 1B	62 60 1	GEOS-I	65 89 1
Courier 1B	60 13 1	GEOS-II	68 02 1
Dash 2	63 30 4	Midas 4	61 28 1
Echo 1		Midas 7	63 30 1
Echo 1 Rocket	60 09 2	PAGEOS	66 56 1
Echo 2		RCS	65 34 3
Elektron 3	64 38 1	Relay 1	62 68 1
Explorer 9	61 04 1	SECOR (EGRS)	1967 65A
Explorer 19	63 53 1	Teistar 1	62 20 1

Summary of Observed Satellites

Table 3.1-2

_

Survey	Information	of	Observation	Stations

 	STATION	1 DATUM	 	S U	RVEY	C	0 0	ROINA	T E S'	(MSL 3	INSTR.	I INSTR.	SOURCE
I NO	1 NAME	1 CCDE'	i	LATI	TUUE	L	ONG I	TUDE	IELL. H(M)	{M}	I (M)	TYPE	i copti
1	1	1	1						1	•••••••••••••••••			
1021	BLOSSON POINT	29	38*	25'	49.628	285.	54	48.225	1 7.0	5.76	1 1.23	MOTS 40	1 1 1
1 1022	I FORT MYERS	29	26	32	51.091	278		3.926	21.0	4.P1	1 1.23	MOTS 40	1 1 1
1 1030	I GOLUSIUNE	24	32	19	48.088	243		2.730	907.0	929.10	1 1.71	MOTS 40	1 1 1
1 1033	I FATRRANKS	1 29		5 3	10 711	212	10	43.304	1 108.0	04,00	1.95	MO15 40	! ! !
1 10 34	I F. GRAND FORKS	1 20	1 44	22	23 403	242	60	31 641		1 102+/0	2.10		1 7 1
1042	ROSMAN	29	35	12	6.926	277	7	41.008	916.0	909.40	1.69	MOTS 40	
1 31.06	Í E ANTIGUA	29		•	67 496	104		37 447			! . !	05-1000	1 . 1
3334	STONEVILLE	20	22	26	31.950	240	- 16	11.350	44.0	39.00		PC=1000	! ! !
1 3400	I COLORADO SPRINGS	29	1 30	- 6	22.440	255	ź	1.010	2191.0	2184.10		PC-1000	1 1 1
1 3401	E PEOFORO	29	42	27	17.530	288	43	35.033	89.0	83.00	1.32	PC-1000	1 1 1
3402	SEMMES	1 29	30	46	49.350	271	44	52.370	1 80.0	73.00	•	PC-1000	: : ;
3404	SWAN ISLAND		1 17	24	16,570	276	3	29.870	•	40.40	i • i	PC-1000	iīi
1 3405	GRAND TURK	29	21	25	46.796	288	51	13.786	8.0	2.20	•	PC-1000	111
1 3406	CURACAD	41	12	5	26.843	291	9	45.803	-4.0	6.83	1.25	PC-1000	
1 3407	TRINIDAD	1 41	10	44	35.844	29A	23	25.652	1 237.0	254.80	1.25	PC-1000	i i i
1 3413	I NATAL	1 41 1	- 5	54	56.253	324	49	57.605	63.0	36.90	•	PC-1000	1 1 1
1 3414) BRASILIA	1 41	-15	51	35.540	312	6	2.679	1 1059.0	1058.25	1 1.14	PC-1000	1 2 1
3431	ASUNCION	41	-25	18	56.192	302	25	15.376	1 162.0	149.74	1 1.65	PC-1000	1 2 1
1 3476	J PARAMARISO	41	5	26	54.045	304	47	44.216	8.6	18.27	1.25	PC-1000	1 1 1
3477 	L ECGOTA	41	4	49	2.379	285	55	35.482	2586.0	2557.90	1.25	PC-1000	2 1
3478	ZUANAM	i • i	- 3	A	44.820	300	٥	59.620		83.40		PC-1000	
1 3499		i 41 i	- 0	š	50.468	281	34	69.212	2706.6	2681.80	•	PC+1000	1 1 1
1 3649	HUNTER AF8	1 29	32	ó	5-868	278	50	46.359	1 17.0	12.00	1.32	PC-1000	1 1 1
3657	APERCEEN	29	39	28	18.971	283	55	44.780	0.0	5.50	1.32	PC-1000	iii
3861	HOMESTEAD	1 29	25	30	24.690	279	36	42.640	1 16.0	0.20	•	PC-1000	iīi
1 3902	I CHEVENNE	1 29	41	7	59.200	255	8	2.650	1 1890.0	1882.20	i • 1	PC-1000	i i
3905	HERNDON	29	38	59	32.360	282	40	21.200	169.0	168.00	•	PC-1000	<u>j 1 j</u>
4050	PRETORIA	3	-25	56	35.340	28	21	29.950	1 1592.0	1584.00	•	MPS-25	2
1 4061	E ANTIGUA	29	17	8	34.780	298	12	24.470	48.0	42.30	•	FPC-6	iži
4081	GRAND TURK	1 29	21	27	43.490	288	52	3.050	42.0	36,00	1 •	TP2-18	1 2 1
4767	MEPRITT ISLAND	29	28	25	27.930	279	20	7.380	1 21.0	11.25	•	TPQ-18	1 2 1
4280	VANDENBERG AFB	[29	34	39	57.130	239	25	10.430	89.0	123.00	1 +	TPC-18	1 7 1
4740	I BEPHUDA	29	32	20	52.300	295	20	44.300	11.0	19.86	•	FPS-16	1 2 1
4/42	I KAUAI	33	22	7	35.830	200	19	53,960	1 1151.0	1155.00	•	FPS-16	
5001	I HERNDON	1 29	38	59	37.697	282	40	16.705	1 129.0	127.80	9.39	SECON	isi
5201	MOSES LAKE	29	47	11	5.916	240	39	50.463	358.0	368.92	2.00	SECOR	([]
5410	I SAND ISLAND	1 27 1	28	12	32.061	182	37	49.531	1 0.0	6.10	4.13	SECOR	1 2 1
5648	I FORT STEWART	29	31	55	18.405	278	26	0.260	1 34.0	27.80	3.90	SECOR	1 1 1
5712	PARAMARIBO	41	5	26	59.817	304	47	44.990	1 12.0	1 21.50	4.93	SECCR	1 1 1
1 5713	I TERCEIRA	1 17	38	45	36.725	332	54	21.064	56.0	56.00	4.25	SECOR	1 2 1
1 2735	(GANAR }	50	14	44	41.008	342	30	52.935	27.0	27.30	4.42	SECOR	1 7 1
5717	FORT LAMY	1 1	12	7	49.300	15	2	6.148	320.0	29+.50	4.03	SECCR	1 1 1
5720	ADDIS ABABA	1 1	8	46	9.479	38	59	49.196	1 1881.0	[1889.40	4.29	SECOR	1 2 1
5721	I PASHHAD	16	36	14	30.404	59	37	40.105	962.0	994.40	4.35	SECON	1 1 1
1 5/22	DIEGO GARCIA	•	- 7	20	57.440	72	28	31 +5 70	1 1	6.10	4.60	SECOA	21
3 2/23	1 UMIANG MAI 1 71Maningi		18	47		49	00		•	316.A0		SECOR	! ! !
1 8730	I GANG TELAND	1 /0		>>	20.213	122		3.338	1 14.0	13,30	4.83	SECON	2
1 2730	I MAVE TOFAUR	1 47	1 14	11	24+100	100	20	41.200	1 8.0	8.10	4.29	I SECOR	
		•							•		1	r 	; ;

Table 3.1-2 (cont'd)

1	STATION	DATUM		sυ	RVEY	c	0 0	RDIN	ΤΕ ς ²	+ MSL	I INSTR.	INSTR.	SOURCE
NO) NAME	CODE'		LATI	TUDE	L	ONG I	TUDE	[ELL. H(M)	(M)	(4) [TYPE	i coor 1
1	I PAGO PAGO	1							1			55000	1 1
1 5733	FUELSTALS TSLAND	1 12	2	Ā	35.672	202	15	21.962	4.0	3.50	2.29	SECOR	1 . 1
1 5734	I SHEPYA	1 29 1	52	42	54.894	174	ĩ	37.870	-7.0	39.30	1 1.50	SECOR	1 1 1
5735	INATAL	41	- 5	54	56-253	324	49	57.605	66.0	39.40	1 4 1	SECOR	1 1 1
5736	ASCENSION ISLAND	i 5 i	- 7	58	15.220	345	35	32.385	1 74.0	1 74.00	1 4.32	SECOR	i i i
1 5739	I TERCEIRA	1 17	36	45	36.311	332	54	19.686	1 56.0	56.10	1 4.25	SECOR	i i i
5744	I CATANIA	1 16 (37	26	40.831	15	2	44.955	-4.0	1 11.80	4 - 17	SECOR	1 1 1
5907	WORTHINGTON	i • i		٠			٠		•	•	•	SECOR	1 1
5911	I BERMUDA	1 + 1		•			•		•	•	•	SECOR	1 1
5912	PANAMA	•		٠			•		•	•	1 • 1	SECOR	1 1
5914	PUERTO RICO			•			•			•	•	SECOR	1 1
5915	AUSTIN									•	!!!!	SECOR	! !
1 5923											!!!!	SECOR	!!
1 3924	I KUIA			•			•		•		•	SECOR	
5925	ROBERTS FIELD	I • i	i i i	٠			•		1 +	•	i • i	SECOR	i i
1 5930	SINGAPORE	1 • 1		٠			۰		•	j •	i • i	SE COR	i i
1 5931	HONG KONG	1 • 1		٠			٠		1 •	•	1 • 1	SECOR	1 1
1 5933	DAPRIN	1 • 1		•					•) •	1 • 1	SECOR	1 1
5934	MATIUS	•		•			•		•	•	•	SECCR	1 [
1 5935	CUAM	!!!							•	•	•	SECOR	!!!
1 5937	I PALAU			•			•		•	•		SECOR	
5938	GUADALCANAL	i • i		٠			•		i •	i •	i • i	SECOR	i i
5941	I MAUI	• • 1					٠		+	1 •	1 • 1	SECOR	1 I
5001	1 THULE	29	76	30	3.411	291	27	51.087	238.0	206.00	1 1.50	8C - 4	1 2 1
6005	NELTSVILLE	29	39	1	39,003	283	10	26.942	45.0	1 44.30	1 1.50	BC -4	1 1 1
6003	MOSES LAKE	1 29	47	11	7.132	240	39	40.118	1 358.0	1 36P.74	1 1.50 1	PC-4A	1 1 1
6004	I SHEMAN	29	52	42	54.890	174	7	37.870	-9.0	36.80	1 1.56 1	BC-4	1 1 1
1 0000	1 180420	1 10	69	34	44.270	18	20	31.908	1 119.0 f	106.00	1 1.50	BC-4	2
6007	TERCEIRA	1 17	38	45	36.725	332	54	21.064	53.0	53.30	1 1.49	8C-4	i 1 i
6008	PARAMARIBO	41	5	26	55.325	304	47	42.832	1 0.7	18.38	1 1.49	8C4	1 1 1
1 6009	QUIIO	41	- 0	. 5	50.468	281	34	49.212	2706.7	2682.10	1 1 50	80-4	1 1 1
1 2011	I MAUI	33	20	42	38.561	203	44	28.529	3041.3	1 3049.77	1 1.50	8C-4	! ! !
1 4017	I WARE ISLAND 1		1 14	22	23.221	100	30	34.740	4.0	3.50	1 1.50	86-4	1 3 1
1 0013		1 16	34	14	20.627	430	26	47.730	1 959.0	07.90	1 1 50	86-4	1 1 1
1	1	1			4 7 9 7 8 8	27		769/67	1 737.00	1 774,000	1 4450	06-4	1 1
6016	E CATANIA	1 16	37	26	42.628	15	2	47.308	-7.0	9.24	1 1.50	8C-4A	1 1 1
9076	I VILLA DOLORES	41	-31	56	33.954	294	53	41.342	621.0	60P+18	1 1.50	8C-4	1 2 1
6020	I EASTER ISLAND	1 15	-27	10	34.213	250	34	17.495	231.0	230.80	1 1.50	8C-4	1 1 1
6022	TUTUILA	1 2	-14	ZC	12.216	189	17	13.242	5.0	5.34	1 1.50	BC-4A	1 1 1
6023	THURSDAY ISLAND	6	-10	35	B.037	142	12	35.495	62.0	60.50	1 1.50	BC-4	1 2 1
6031	I INVERCAPGILL	28	-46	25	3,491	169	19	31.155	1.0	0.90	1 1.49	8C-4	1 1 1
1 2032	I LAVERSHAM		-31	50	28.992	115	58	26.618	1 33.0 t	I 26.30		8C-4	
6038	SOCORRO ISLAND	23	18	43	44.930	249	2	39.280	23.0	23.20	1 1.50	8C-4	i i i
6039	PITCAIRN ISLAND	36	-25	4	7.146	229	53	11.882	339.0	339.40	1 1.50 1	BC-4	1 1 1
6040	COCOS ISLAND	•	-12	11	57.910	96	49	47.080	1	4.40	•	BC-4	1 2 1
6042	1 ADDIS ABABA	1 1	8	46	8.501	30	59	49.164	1 1878.0	1 1886.46	1 1.52	BC4	1 1 1
6043	I CERRO SCHBRERO	1 39	-52	46	52.468	290	46	29.573	1 81+0	60.70	1.48	HC-4A	1 1 1
1 6044	I MEARD ISLAND	1 20	-53	1	12.030	73	23	27.420	1 4.0	1 3.80	1 1.50	8C-4	1 1 1
1 0045	I MAUKITIUS		-20	13	50	57	22	12		1 149+40	! • !	80-4	1 1 1
1	1	1							1	l	1		τ Ι

	T	a	b	1	е	3		1	-2	- ((c	0	n	t	' (d)	
--	---	---	---	---	---	---	--	---	----	-----	----	---	---	---	-----	---	---	--

NO N A N R CODE LATITUGE LONGITUGE FELL. H(H) (H) (H) <th(h)< th="" th<=""><th> 1</th><th>STAT10N</th><th>1 DATUM1</th><th></th><th> \$ U</th><th>RVFY</th><th> c</th><th> 0 0</th><th>ROINA</th><th>T E S'</th><th>MSL 3</th><th> INSTR. </th><th>INSTR.</th><th>ISOURCEI</th></th(h)<>	 1	STAT10N	1 DATUM1		 \$ U	RVFY	 c	 0 0	ROINA	T E S'	MSL 3	INSTR.	INSTR.	ISOURCEI
NG N & A M & E CODE* LATTUDE LONGTTUDE FLL. H(M) (M)			1									HEIGHT'		1
Add D Jum Damica 24 4 55 20.132 122 4 55.83 0.6 0.55 1.60 86.4 7 6050 Max GD STATION 1 77 56 33.080 62 32 24.410 1 1 1.50 86.4 7 6051 Mick GD STATION 10 -77 50 46.240 168 39 7.84 1 0.0 1.60 1.50 86.4 1 6053 Mick Follow TSLAMD 12 2 0 33.4622 12.00 11.10 6 6.4 1 6040 SOUTH GFORGIA TSL 4 3 -54 18 39.13 34.692 12.00 1.60 86.4-4 1 6040 SOUTH GFORGIA TSL 4 4.528 342.30 52.30 1.50 86.4-4 1 6040 TATAL 50 TATAL 10 17 57.57 10 151 10.10 10.10 1.60 <td>I NO</td> <td>) NAME</td> <td>I CODE'</td> <td> </td> <td>LATI</td> <td>TUDE</td> <td>L </td> <td>ONG I</td> <td>TUDE</td> <td>IELL. H(M) (</td> <td>(M) </td> <td>((M) </td> <td>TYPE</td> <td>1 (001)</td>	I NO) NAME	I CODE'	 	LATI	TUDE	L 	ONG I	TUDE	IELL. H(M) ((M) 	((M) 	TYPE	1 (001)
0000 ALLERT STATION 61 -0.8 22 35.460 255 7.00 1.2	1	1	1 !						4 034	1		1		1 1
Oddi Mukicov Sizioni	4047	I DALMER STATION	1 20 1	0	22	20.132	295	5.4	4.830 37.040	1 26-0	16.44	1 1.50 1	86-4	
0003 PERMEC 10 10 12 4.10 4.10 4.10 1.50 8C-4 1 0003 PERMEC STATION 10 -77 50 4.224 160 37 277 130 8C-4 1 0003 PERMEC STATION 10 -77 50 4.224 160 37 30 2.77 130 8C-4 1 0004 CANDING CONGIA 6 -30 18 34.18 140 33 34.922 211.06 4.20 1.40 8C-4.4 1 0001 SOUTH GCONGIA 6 -30 18 34.18 140 33 34.922 211.06 4.20 1.40 8C-4.4 1 0001 SOUTH GCONGIA 10 12 75 314 32 30 32.00 42.20 1.40 8C-4.4 1 0005 MATA 110 12 75 32.00 42.20 1.50 8C-4.4	1 60 50	I MARSON STATION		-64	36	3.080	677	\$2	24.410	1 1	11.30		80-4	
DODS PERMIPSC STATION 10 -77 50 -46.240 100 7.584 100 19.00 1.50 82-4 1 DODS ALFENSIDN JSLAND 12 2 0 35.872 7.58 100 7.58 1.50 82-4 1 DODS CARESTRAS ISLAND 12 2 0 35.872 702 35 22.104 7.10 7.50 82-4 1 DODS CURCOMA 43 -36 18 38.418 103 3.54.72 7.21.0 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.00 7.00 7.00 7.00 7.00 8.0 4.00 7.00 8.0 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0 7.00 8.0	6052	WILKES STATION		-01	16	45.120	110	32	4.610			1 1.50	8C-4	1 2 1
0000 CALL 0 </td <td>1 6053</td> <td>MEMUROC STATION</td> <td>1 10</td> <td>-77</td> <td>50</td> <td>46.249</td> <td>266</td> <td>38</td> <td>7.584</td> <td>1 19.0</td> <td>19.00</td> <td>1 1.50</td> <td>86-4</td> <td>i i i</td>	1 6053	MEMUROC STATION	1 10	-77	50	46.249	266	38	7.584	1 19.0	19.00	1 1.50	86-4	i i i
COMP Comparising island 12 2 0 55.622 202 35 21.462 3.0 2.74 1.50 BC-44 1 60001 CULCORA 6 -50 18 39.418 144 33 38.462 211.0 211.46 6 86-44 1 6001 SQUIM GCORCIA IS. 50 14 44.4228 342.30 42.317 40.0 24.30 1.60 86-44 1 6005 FORMERG 10 17 76.711 11 10 76.72 343.00 76.32 76.33 1.51 86-44 10 6005 FORMERG 3 -25 52 56.480 27 42 24.170 1531.46 152.46 1 86-4 1 6007 TATAL 47 -55 57.714.14 32 50 56.75 23.00 66.77 40.63 15.50 86-4 1 6072 CHACC MAI 47 -25 5	6055	ASCENSION ISLAND	1 5	- 7	58	16.634	345	35	32.764	1 71.0	70.94	1 1.50	6C-4	i ī i
COLLCORA GOLD SULT GONGLA 13 6 3 -30 18 30.418 140 33 38.892 212.0 211.00 * BC-4. 2 GOLD GOLD GOLD GOLD GOLD GOLD GOLD GOLD	6059	CHRISTNAS ISLAND	1 12	Ż	ō	35.672	202	35	21.962	1 3.0	2.75	1 1.50	BC-4A	i i i
BODD CULCUUMA C -30 18 34.48 1.47 33 36.092 214.00 214.00 214.00 214.00 214.00 214.00 1.400 EC-A 1 00011 SOUTH GORDILATS. 40 10 144 44 44.232 300 45.334 724.00 125.00 125.00 125.00 25.334 724.00 125.00 </td <td>1</td> <td></td> <td>1 1</td> <td></td> <td></td> <td></td> <td>• • •</td> <td>•••</td> <td></td> <td></td> <td></td> <td>!</td> <td></td> <td>! . !</td>	1		1 1				• • •	•••				!		! . !
Boost Subin Construct Subin Construct Subin	1 6060	I COLGOORA		-30	10	34.418	144	33	30.042	212.0	211.00		66-4	1 1 1
DOGR DOGR <thdogr< th=""> DOGR DOGR <thd< td=""><td>1 60 61</td><td>I STALL CLARGIN 12.</td><td>1 60</td><td></td><td>40</td><td>24.279</td><td>243</td><td>30</td><td>42+731 64 104</td><td></td><td>24.20</td><td>1 1.40</td><td>BC-4A</td><td>1 1 1</td></thd<></thdogr<>	1 60 61	I STALL CLARGIN 12.	1 60		40	24.279	243	30	42+731 64 104		24.20	1 1.40	BC-4A	1 1 1
LODS LODS <thlods< th=""> LODS LODS <thl< td=""><td>1 4044</td><td>L CODT LAMY</td><td>1 20 1</td><td></td><td></td><td>51.750</td><td>15</td><td>30</td><td>4 141</td><td>1 314-0</td><td>294.40</td><td>1 1.50</td><td>86-44</td><td>; ; ;</td></thl<></thlods<>	1 4044	L CODT LAMY	1 20 1			51.750	15	30	4 141	1 314-0	294.40	1 1.50	86-44	; ; ;
BODG VARE ISLAND II Log I go I P<	1 6065	I HOHENPETSSENRERG	1 16	47	48	7.011	- 11	1	29.378	943.0	943.20		BC-4A	1 1 1
b007 NATAL 41 -5 55 37.414 324 50 6.200 66.7 40.63 4 BC-4A 1 c004 1574N 0.00MA 47 -37 32.55 25.0 24.80 8 BC-4 1 d007 1517AN 0.00MA 47 -37 32.55 25.0 24.80 8 BC-4 1 d007 10EGO GARCIA -7 12 56.27 77 22 32.156 -3.900 1.50 BC-4 1 d078 PGRT VILA 52 -17 46.076 164 17.722 15.0 15.20 1.50 BC-4 2 d11 WRIGHYMODO I 29 34 22 54.537 742 19 9.464 2259.0 1284.00 1.50 BC-4 2 d12 PCI-VT BARROW 26 71 18.982 20.232 21.07.70 -6.0 8.30 6.6.4 2 2 4.4.4 42.120 27.30 27.88 1.11 MDT5 40 1.70 1.70 <td< td=""><td>6006</td><td>WAKE ISLAND IT</td><td>1 49</td><td>19</td><td>17</td><td>24.100</td><td>166</td><td>36</td><td>41.206</td><td>5.0</td><td>5.30</td><td>1 1.51</td><td>BC -4</td><td>i i i</td></td<>	6006	WAKE ISLAND IT	1 49	19	17	24.100	166	36	41.206	5.0	5.30	1 1.51	BC -4	i i i
BOAR JONA WHESEURG 3 -25 52 50.000 27 42 25.170 1531.6 1523.60 * 8C-4 1 BO17 CHIASC MAI * -37 3 20.237 347 40 53.655 * 3190.20 * 8C-4 1 BO17 CHIASC MAI * -7 20 55.27 72 28 32.165 * 3.900 1.50 8C-4 1 BO17 MAHE 42 -4 40 7.210 57 28 50.360 59.40 15.00 15.20 1.50 8C-4 2 BO12 PCIAT VILA 52 -17 14 40.953 213 20.720 -6.0 8.51 * 8C-4 2 B123 PCIAT VILA 29 34 22 44.442 19 9.239 2173.00 128.40 1.50 8C-4 2 B123 PCIAT VILA 29 32 24.40	6067	I NATAL	1 41 1	i – s	55	37.414	324	50	6.200	66.7	40.63	•	BC-4A	i i i
4004 JONANVESUNG 3 -25 52 56.080 27 42 25.0 152.80 • 8C-4 1 4006 ISTAN DA CUMMA * 18 46 10 98 58 15 • 318.70 • 8C-4 1 40071 DIECO GARCIA • - 7 056.77 72 28 50.360 580.68 1.50 8C-4 1 6071 DIECO GARCIA 42 - 4 07.230 55 28 50.360 580.68 1.550 8C-4 2 6071 PART VILA 52 -17 14 40.96.82 203 1 97.44 225.00 228.630 1.500 8C-4 2 6123 PCINT BARROW 26 71 18 49.882 203 21 27.50 2178.60 1.500 8C-4 2 6123 PCINT BARROW 26 71 18 49.882 203 2173.00 2198.40 1.500 8C-4 2 6123 PCINT BARROW <	i	l	1	i				• •		1		i i		1 1
BOLGO TAISTAN DA CUMMA 47 -37 3 26.257 347 400 53.55 25.0 24.00 4 664 1 BOT2 CHASG MAI • -7 20 55.27 72 28 32.150 • 3.000 1.550 664 2 BOT3 IAME 42 -4 40 72.20 552 28 50.360 588.08 1.550 664 2 BOT3 IAME 52 -17 41 46.056 10.01 15.0 15.20 15.50 864 2 BOT3 IAME 22 43.22 24.5.43 201.40 9.250 273.00 228.4.30 1.50 854 2 1 9.250 273.00 228.4.30 1.11 MOT5 40 1 1 1 1 1 1 1.50 85.70 1.11 MOT5 40 1 1 1 1 1 1 1 1 1 1	6063	JOHANNESEURG	1 3	-25	52	56.980	27	42	25.170	1 1531.8	1523.80	•	AC-4	1 4 1
4073 DIEGO GARCIA • 18 46 10 98 58 15 • 319-20 • 8C-4 1 6073 DIEGO GARCIA 42 -4 40 7.230 55 28 32,156 • 32,00 15.50 8C-4 1 6076 PORT VILA 52 -17 44 60,557 72 28 32,156 • 35.00 58,00 58,00 15.50 1.50 8C-4 2 6111 WRIGH WOOD I 29 34 22 54,642 203 21 20,720 -6.0 8.30 • 8C-4 22 6134 WRIGH WOOD II 29 35 22 45,442 201 9.259 2173.0 2198,400 1.50 8C-4 22 7037 COLUMATA 29 35 36.068 267 47 42,120 273.0 31.18 1.11 MOTS 40 1 7037 COLUMATA 29 39 1 15.014 283 10 19.934 55.0 53.46	6303 1	I TRISTAN DA CUNHA	1 47	-37	3	26.257	347	40	53.555	25.0	24.80	1 •	BC 4	1 1 1
b073 DIECD GARCIA • -7 70 20 32.136 • 3.400 1.50 8C-4 2 b075 MAME 52 -17 41 46.075 180.08 1.50 15.20 1.50 8C-4 2 b111 MARCM VILA 52 -17 41 46.075 180.08 1.50 15.20 1.50 8C-4 2 b111 MARCM VILA 52 -17 41 46.055 180.18 17.0721 15.0 15.20 1.50 8C-4 2 b112 PCINT BARDM 29 34 22 54.37 72 20 -6.0 8.30 1.00 8C-4 2 b122 PCINT BARDM 29 34 22 44.444 242 19 9.259 2173.0 2128.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 MOTS 40 1 1.00 1.00 1.01 MOTS 40 1 1.00 1.00 1.01 MOTS 40 1 1.00 1.01 MOTS 40	6072	CHIANG MAI		1.8	46	10	98	58	15	•	319.20	•	8C -4	1 1 1
b078 PART VILA 42 4 40 7.230 55 28 50.50 580.0 580.0 580.00 580.00 580.00 580.00 1.550 BC-4A 1 6111 WARGHYMOOD I 20 34 22 54.537 742 19 9.484 2259.0 2286.30 1.550 BC-4 2 6122 PCIVT BARROW 20 71 16 40.646 22173.0 2184.00 1.500 BC-4 2 6134 WRIGHYLCOD II 20 34 22 45.443 261 40 9.033 66.0 59.59 1.11 MOTS 400 1 7037 COLUMATA 20 32 21 46.700 23.0 31.18 1.13 MOTS 40 1 7040 SAN JUAN 20 32 21 46.700 23.0 31.18 1.11 MOTS 40 1 7040 SAN JUAN 20 39 39 48.026 255 23 10 19.034 55.0 53.46 0.64 74.70 10 <	6073	I DIEGO GARCIA	•	- 7	20	58.527	72	28	32.156	•	3.90	1.50	8C 4	1 2 1
BORT VILA 22 -17 41 46.956 168 17 97.921 15.0 15.20 15.00 15.20 15.00 15.20 15.00 15.20 15.00 15.20 15.00 15.20 15.00 15.20 15.00 15.20 15.00 15.20 15.00 <th15.00< th=""> <th15.00< th=""> <th15.00< th=""></th15.00<></th15.00<></th15.00<>	6075	I MAHE	1 42	- 4	40	7.230	55	2.5	50.360	589.0	588.98	1 1.55	BC-4A	1 1 1
6111 WALGHINGUD 1 20 34 22 54.337 742 10 40.884 2259.0 2284.30 1.50 8C-4 2 6122 PCIVT BARROW 26 71 18 49.882 203 21 20.720 -6.0 8.30 6.6.4 7 6134 WPIGHTNCOD II 29 34 22 44.444 22 10 9.259 2173.0 270.68 1.11 MOTS 40 1 7037 COLUMBIA 29 32 21 48.700 295 20 32.400 23.0 31.48 1.11 MOTS 40 1 7040 SAN JUAN 29 32 21 48.702 255 23 41.194 1704.0 1749.63 1.11 MOTS 40 1 7040 SAN JUAN 29 39 39 48.026 255 23 41.194 1704.0 1749.63 1.11 MOTS 40 1 7040 SAN JUAN 29 29 27 135.180 10.554 281.0 14.19 1.10 MOTS 40	6078	I PORT VILA	1 52	-17	41	46.956	168	17	57.921	1 15.0	15.20	1.50	BC - 4	1 2 1
6122 PCIVT BARROW 26 71 18 49.882 203 21 20.720 -6.0 8.30 6 BC-4 2 6134 WPIGMINCOD II 20 34 22 44.444 24 19 9.259 2173.0 2198.40 1.50 BC-4 2 7036 EDINEURC 20 24 25.443 24 40 9.033 66.0 59.99 1.11 MDT5 40 1 7037 ERMUDA 20 32 21.46.700 27.68 1.11 MDT5 40 1 7043 DERNUCA 20 18 15.014 283 10 19.934 55.0 53.46 0.64 9 1.01 MDT5 40 1 7043 DERNUCA 20 18 15.014 283 10 19.934 55.0 53.46 0.64 9 1.01 MDT5 40 1 7043 DERNUCA 29 39 39 46.026 255 23 41.10 179.60 1.4178.63 1.11 MDT5 40 1 <	1 0111	I MAICHIACOD I	24	1 34	22	34.331	242	14	4.484	1 2259.0	2284.30	1 1.70	56-4	1 2 1
6134 WPICHTCOD II 29 34 22 44.444 242 19 9.259 2173.0 2198.0 1.50 8C-4 2 7036 ESINEURG 29 26 22 45.443 261 40 9.033 66.0 59.59 1.11 MDTS 40 1 7037 COLUMBIA 29 32 21 48.740 250 22.460 23.0 31.18 1.11 MDTS 40 1 7040 SAN JUAN 29 32 21 48.740 255 23 41.194 1764.0 44.70 1.07 MDTS 40 1 7040 SAN JUAN 29 39 1 15.014 283 10 19.934 55.0 53.46 0.64 PHH-100 1 7045 SUBRY 29 46 27 20.968 279 3 10.354 281.0 1.411 MDTS 40 1 7075 SUBBRY 29 46 27 20.968 279 3 10.354 281.0 1.417 MDTS 40 1	6123	PCINT BARROW	29	71	18	49.882	203	21	20.720	-6.0	8.30	•	8C-4	
17036 EC1ARURC 29 26 22 45.443 261 40 9.033 66.0 59.59 1.11 MOTS 40 1 17037 COLUMBIA 29 38 53 36.068 267 47 42.120 273.0 273.08 1.11 MOTS 40 1 17036 BERMUDA 29 32 21 48.70 295 20 32.460 23.0 31.18 1.11 MOTS 40 1 17043 GELENBELT 29 39 34 48.026 255 23 41.194 1764.0 44.70 1.07 MOTS 40 1 17045 DENVER 29 39 34 48.026 255 23 41.194 1766.0 1787.63 1.11 MOTS 40 1 17075 SUGBURY 29 18 43.090 231 24.58 460.0 454.90 1.07 MOTS 40 1 17075 SUGBURY 29 18 43.900 231 24.588 460.0 454.90 1.07 MOTS 40 1	6134	WPIGHTWCOD II	29	34	22	44.444	242	19	9.259	2173.0	2198.40	1 1.50	BC-4	1 2 1
7037 COLUMPIA 29 38 53 36.068 267 47 42.120 273.0 272.68 1.11 MOTS 40 1 7039 BERMUDA 29 32 21 48.700 295 20 32.460 23.0 31.18 1.11 MOTS 40 1 7040 SAN JUAN 29 18 15 26.216 244 0 22.174 59.0 49.70 1.07 MOTS 40 1 7040 SAN JUAN 29 39 1 15.014 283 10 19.934 55.0 53.46 0.64 PTH-100 1 7045 DEHVER 29 29 13 148.026 255 23 41.194 1796.0 1787.63 1.11 MOTS 40 1 7072 JUPITER 29 29 14 31.480 26.43 26.50 14.194 1796.0 147.450 1 10 65.00 14.10 45.22 21.230 21.230 21.240 21.230 21.240 21.230 21.240.240 21.240.2 21.240.20<	7036	I EDINBURG	29	26	22	45.443	201	40	9.033	1 66.0	59,59	1 1.11	MOTS 40	1 1 1
7039 BERMUDA 29 32 21 48.790 29 23.460 23.0 31.18 1.13 MOTS 40 1 7040 SAN JUAN 29 18 15 20.2174 55.0 47.70 1.07 MOTS 40 1 7043 GREENBELT 29 39 1 15.014 283 10 19.934 55.0 53.46 0.644 PTM-100 1 7043 GREENBELT 29 39 38 48.026 255 23 41.194 1796.0 1787.63 1.11 MOTS 40 1 7045 DENVER 29 39 38 48.026 255 23 41.194 1796.0 1787.63 1.11 MOTS 40 1 7075 SUDSURY 29 18 43.1980 283 10.235.78 486.0 445.90 1.07 MOTS 40 1 80010 ZIMERALD 16 52 0.300 7 27 58.070 900.0 903.46 6004.45.90 1.07 MOTS 40 1 1 <t< td=""><td>7037</td><td>I COLUMBIA</td><td>29</td><td>38</td><td>53</td><td>36.068</td><td>267</td><td>47</td><td>42.120</td><td>1 273.0</td><td>272.68</td><td>1 1.11</td><td>MOTS 40</td><td>1 1 1</td></t<>	7037	I COLUMBIA	29	38	53	36.068	267	47	42.120	1 273.0	272.68	1 1.11	MOTS 40	1 1 1
17040 SAN JUAN 29 18 15 26,216 294 0 22,174 59,0 49,70 1,07 MOTS 40 1 17043 GREENBELT 29 39 1 15,014 283 10 19,934 55,0 53,464 0,664 PTH-100 1 17045 DENVER 29 39 38 48,026 255 23 41,194 176,60 1789,63 1,111 MOTS 40 1 17075 SUBURY 29 46 27 20,948 279 3 10,354 281,0 28:00 1,17 MOTS 40 1 17075 SUBURY 29 46 27 20,948 279 3 10,354 281,0 28:00 1,07 MOTS 40 1 18009 MIPPCLOER 16 52 0,9240 422 21,230 21.0 24.70 60UNERS 2 2 21.00 21.0 24.70 60UNERS 2 2 2 2 2 2 2 2 2 2 2	1 7039	1 BERMUDA	29	1 32	21	48.790	295	20	32.460	23.0	31.18	1 1.13	MOTS 40	1 1 1
70-3 GREENBELT 29 39 1 15.014 283 10 19.934 55.0 53.46 0.64 PTH-100 1 70-5 DEHVER 29 39 38 48.026 255 23 41.194 1766.0 1789.63 1.111 MOTS 40 1 7075 SUJBURY 29 27 1 31.68 279 53 12.485 26.0 1.4.19 1.10 MGTS 40 1 7075 KIASTON 29 46 27 20.948 278 310.354 281.0 282.00 1.07 MOTS 40 1 8009 MIPPCLDER 16 52 0 9.240 42 21.70 24.70 # 60UNERS 2 8010 ZIMERALD 16 45 20.00 7 7 58.070 900.0 903.44 # SCMH A 1 8011 MALVERH 16 43 56 1.140 5 42 49.280 651.0 659.000 # SCHM A 1 8019 MIC	1 7040	I SAN JUAN	1 29	1 18	25	26.216	294	0	22.174	1 59.0	49.70	1 1.07	MOTS 40	1 1 1
70-45 DENVER 29 39 38 48.026 255 23 41.194 1796.0 1789.63 1.11 MOTS 40 1 7072 JUPITER 29 27 1 13.168 279 53 12.485 26.0 14.19 1.10 MOTS 40 1 7075 SUBBURY 29 46 27 20.986 279 3 10.354 281.0 282.90 1.17 MOTS 40 1 7076 KINSTON 29 18 43.080 283 11 26.528 486.0 445.90 1.07 MOTS 40 1 8010 KINSTON 29 18 52 9.240 4 22 21.0 24.70 4 60ukers 2 2 60.0 703.44 60ukers 2 5 28 1 4 5 6 5 40.20 651.0 659.00 4 5 5 5 1 1 1 8 1 1 1 1 1 1 1 1 1 1	7043	I GREEDBELT	29	1 39	1	15.014	283	10	19.934	55.0	53.46	0.64	PTH-100	1 1 1
TOT2 JUPITER 24 27 13.168 276 53 12.485 26.0 14.19 1.10 MGTS 40 1 TOT5 SUGBURY 29 46 27 20.986 279 3 10.354 281.0 281.0 1.17 MGTS 40 1 TOT5 SUGBURY 29 18 431.980 283 11 26.528 486.0 445.90 1.07 MGTS 40 1 8009 MIPPCLDER 16 52 0 9.240 4 22 21.0 24.70 # 80UKRS 2 8010 ZIMMERALD 16 46 52 40.300 7 27 58.070 900.0 903.44 # SCHM H 1 8015 HAUTE PROVENCE 16 43 50 1.140 5 42 49.280 651.0 659.00 # SCHM D 2 SCHM A 1 1 8013 # 13.309 155.01 13.742 # ANTARES 1 1 901 105.00 1651.33 #	1 70.45	I DENVER	1 29	1 10	3.0	48.076	255	23	41.194	1 1794.0	1 1789.43	1 1.11	MOTS 40	
7075 SUBBURY 29 46 27 20.988 279 3 10.354 281.0 281.00 1.17 MD15.40 1 7076 KINSSTDN 29 18 4 31.980 283 11 26.528 4866.0 445.90 1.07 MD15.40 1 8009 WIPPCLOER 16 52 0 9.240 4 22 1.230 21.0 24.70 # 80UMERS 2 8010 ZIMMERALD 16 52 40.300 7 27 58.070 900.0 903.44 # 5CMM H 1 8011 MALVERN 16 52 8 39.130 358 1 59.470 109.0 113.20 # SCMM A 1 8015 MAUTE PROVENCE 16 43 56 1.140 5 42 49.280 651.0 659.00 # SCMM A 1 1 1 8 16 48 25.354 7 13 .1339 155.01 1651.43 # # # #	7072	1 JUPITER	1 29	27	ĩ	13,168	279	55	12.485	26-0	1 14.19	1.10	MOTS 40	1 1 1
7076 RTASTON 29 18 4 31.980 283 11 26.578 486.0 445.90 1.07 MDTS 40 1 8009 WIPPCLDER 16 52 0 9.240 4 22 21.230 21.0 24.70 4 800WERS 2 8010 IMMERALD 16 46 52 40.300 7 27 58.070 900.0 903.44 4 50.00 50.00 13.20 4 50.00 50.00 13.20 4 50.00 50.00 13.20 4 50.00 50.00 13.20 4 50.00 50.00 13.20 4 50.00 50.00 50.00 50.00 50.00 13.20 4 50.00 50.00 13.20 4 50.00 13.20 4 50.00 13.00 50.00 13.00 50.00 13.00 50.00 13.00 50.00 13.00 50.00 13.00 50.00 15.00 50.00 15.00 50.00 15.00 50.00 50.00 50.00 50.00 50.00 50.00	1 70 75	SUSBURY	29	46	27	20.988	279	3	10.354	281.0	28:.90	1 1.17	NOTS 60	1 1 1
BOO9 WIPPGLDER 16 52 0 9.240 4 22 21.00 24.70 0 BCUWERS 2 8010 ZIMMERWALD 16 46 52 40.300 7 27 58.070 900.00 903.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 504.44 0 104.00 113.20 0 504.44 0 504.44 0 504.44 0 504.44 0 104.54 0 504.44 1 106.43 43 36.496 7 18 3.309 369.00 377.42 0 ANTARES 1 107.00 165.00 1651.33 0 REFR 1 1 9001 10552.41 1654.00 1651.33 0 16.36 27 51.370 1651.43 0 1651.43 0 16.44 <	7076	I KINSSTON	29	1 18	- 4	31.980	263	11	26.528	486.0	445.90	1 1.07	MOTS 40	i i i
8010 ZIMMERHALD 16 46 52 40.300 7 27 58.070 900.0 903.44 • SCHM H 1 8011 MALVERN 16 52 8 39.130 358 1 59.470 109.0 113.20 • SCHM A 1 8015 HAUTE PROVENCE 16 43 56 1.140 5 42 49.280 651.0 659.00 • SCHM D 2 8019 NICE 16 43 43 36.496 7 18 3.309 369.0 377.42 • ANTARES 1 9001 CSGA' PASS 29 32 25 74.560 253 76 1.55.0 1651.33 • • NITARES 1 9001 CSGA' PASS 29 32 25 74.560 253 76 1.55.0 1651.33 • • NITARES 1 9004 SAN: FERNANDD 16 36 27 51.370 353 47 42.390 -9.0 25.90 • <	8009	WIPPCLOER	1 16	1 52	0	9.240	4	22	21.230	21.0	24.70	•	BOUWERS	1 2 1
8011 MALVERN 16 52 8 39.130 358 1 59.470 109.0 113.20 • SCHM A 1 8015 HAUTE PROVENCE 16 43 56 1.140 5 42 49.280 651.0 659.00 • SCHM D 2 8019 NICE 16 43 43 36.496 7 18 3.309 369.0 377.42 • ANTARES 1 8030 MEUGON 16 48 48 25.354 7 13 .339 155.0 165.46 % % FR A 1 9001 CSGA' PASS 29 32 25 74.60 253 76 51.*70 1650.0 1651.33 • P-N 1 9002 CLIFANTSFONTEIN 3 -25 57 33.850 28 14 53.910 1552.1 1564.10 ® P-N 1 9004 SAN FERNANDD 16 29 21 38.970 79 27 25.510 1827.0 1927.00 <t< td=""><td>8010</td><td>ZIMMERWALD</td><td>1 16</td><td>46</td><td>52</td><td>40.300</td><td>7</td><td>27</td><td>58.070</td><td>900.0</td><td>903.44</td><td>•</td><td>SCHM H</td><td>1 1 1</td></t<>	8010	ZIMMERWALD	1 16	46	52	40.300	7	27	58.070	900.0	903.44	•	SCHM H	1 1 1
8015 HAUTE PROVENCE 16 43 56 1.140 5 42 49.280 651.0 659.00 • SCHM D 2 8019 NICE 16 43 43 36.496 7 18 3.309 369.0 377.42 • ANTARES 1 8030 MEUDCN 16 48 48 25.354 7 13 339 155.0 165.46 • REFR A 1 9001 CSGA' PASS 29 32 25 74.620 253 76 51.70 1650.0 1651.33 • • NTARES 1 9002 0.1FATSFONTEIN 3 -25 57 33.850 28 14 53.910 1552.1 154.10 • • • • 4 90.4 SATTSFONTEIN 3 -25 57 33.850 28 14 53.910 1552.41 154.10 • • • • • • • • • • • • • • • • •<	8011	I MALVERN	1 16	52	8	39.130	358	1	59.470	1 109.0	113.20	•	SCHM A	1 1 1
0012 100 10	1 8015	I HALLTE PROVENCE	1 14	1 43	5.4	1.140	*	47	40.200	1 451.0				1 1
B330 MFUUCN 16 48 48 25.354 7 13 15.10 15.46 MRMC3 1 9001 CSGA' PASS 29 32 25 24.560 253 26 51.70 165.46 MRFRA 1 9002 D_LFANTSFONTEIN 3 -25 57 33.850 28 14 53.910 1552.1 1544.10 MRFRA 1 9004 SAM FERNANDO 16 36 27 51.370 353 47 42.960 -9.0 25.90 B-N 1 9005 SCKYO 46 35 40 11.078 139 32 28.222 60.0 59.77 B-N 1 9005 YCKYO 46 35 40 11.078 139 32 28.222 60.0 59.77 B-N 1 9005 YCKYO 46 35 40 11.078 139 32 28.222 60.0 59.77 B-N 1 9006 NAINI TAL 16 29 21 38.970 7	1 6019	I NICE	1 16	1 41	47	36.496	2	1.0	3,309	1 369.0	1 377.42			1 1 1
9001 CSGA* PASS 29 32 25 24.560 253 26 51.70 1650.0 1651.33 4-N 9072 0LIFANTSFONTEIN 3 -25 57 33.850 28 14 53.910 1552.1 1544.10 8-N 4 9004 SA*: FERNANDO 16 36 27 51.370 353 47 42.960 -9.0 25.90 8-N 1 9005 ?CKYO 46 35 40 10.78 32 28.222 60.0 59.77 8-N 9005 ?CKYO 46 35 40 1.078 32 28.222 60.0 59.77 8-N 1 9006 NAINI TAL 16 29 21 38.970 79 27 25.085 268 30 26.814 2486.0 2451.86 8-N 9008 SHIRA	1 8030	I MENGON	1 16	4 48	48	25.384	;	13	1.319	1 155-0	1 165.46		96569 A	
90C2 0LIFANTSFONTEIN 3 -25 57 33.850 28 14 53.010 1552.1 1544.10 # 8-4 4 9004 SAN: FERNANDD 16 36 27 51.370 353 47 42.390 -9.0 25.90 # B-H 1 9005 YCVD 46 35 40 11.078 139 32 28.222 60.0 59.77 # B-H 1 9006 NAINI TAL 16 29 21 38.970 79 27 25.510 1927.00 # B-N 1 9006 NAINI TAL 16 29 21 38.970 79 27 25.510 1927.00 # B-N 1 9006 NAINI TAL 16 29 21 38.970 79 27 25.510 1927.00 # B-N 1 9007 AREQUIPA 41 -16 27 55.085 268 30 26.814 2486.0 2451.86 B-N 1 9008 SMIRAZ	1 9001	1 CSGAT PASS	1 29	1 32	25	24.560	253	26	51. 70	1 1650-0	1 1651.33			
9004 SAN FERNANCO 16 36 27 51.370 353 47 42.040 -9.0 25.90 • B-N 1 9005 17CKYO 46 35 40 11.078 139 32 28.222 60.0 59.77 • B-N 1 9006 NAINI TAL 16 29 21 38.970 79 27 25.510 1927.00 • B-N 1 9007 AREQUIPA 41 -16 27 55.085 288 30 26.814 2486.0 2451.86 • B-N 1 9008 SHIRAZ 16 29 38 18.112 52 31 11.445 1553.0 1597.40 • B-N 1 9008 SHIRAZ 16 29 38 18.112 52 31 11.445 1553.0 1597.40 • B-N 1 9010 JUPITER 29 27 1 12.862 279 53 13.008 27.0 15.13 • B-N 1	9002	1 OLIFANTSFONTEIN	i i	1 -25	57	33.850	28	14	53.910	1 1552.1	1 1544.10	•	8-5	1 2 4
9005 ?CKY0 46 35 40 11.078 139 32 28.222 60.0 59.77 * B-N 1 9006 NAINI TAL 16 29 21 38.970 79 27 25.510 1827.0 1927.00 * B-N 1 9007 AREQUIPA 41 -16 27 55.085 288 30 26.814 2486.0 2451.86 * B-N 1 9008 SHIRAZ 16 29 38 18.112 52 31 11.445 1553.0 1597.40 * B-N 1 9008 SHIRAZ 16 29 38 18.112 52 31 11.445 1553.0 1597.40 * B-N 1 9010 JUPITER 29 27 12.882 274 53 13.008 27.0 15.13 * B-N 1 9011 VILLA DULORES 41 -31 56 33.226 294 53 38.949 621.0 606.00 * B-N 4	9004	SATI FERNANDO	1 16	1 36	27	51.370	353	47	42.390	-9.0	25.90	•	B-N	iii
9006 NAINI TAL 16 29 21 38.970 79 27 25.510 1827.0 1927.00 • 8-N 1 9007 AREGUIPA 41 -16 27 55.085 288 30 26.814 2486.0 2451.86 • 8-N 1 9007 AREGUIPA 41 -16 27 55.085 288 30 26.814 2486.0 2451.86 • 8-N 1 9009 SHIRAZ 16 29 38 18.112 52 31 11.445 1553.0 1574.0 • 8-N 2 9009 CURACAD 41 12 5 25.912 291 9 46.078 -2.0 8.70 • 8-N 1 9010 JUPITER 29 27 112.882 279 53 13.008 27.0 15.13 • 8-N 1 9012 MAUI 33 20 42 37.500 203 44 24.080 3026.1 3034.14 • 8-N 4 <td>9005</td> <td>I TCKYO</td> <td>46</td> <td>1 35</td> <td>40</td> <td>11.078</td> <td>139</td> <td>32</td> <td>28.222</td> <td>60.0</td> <td>59.77</td> <td>•</td> <td>B-N</td> <td>1 1</td>	9005	I TCKYO	46	1 35	40	11.078	139	32	28.222	60.0	59.77	•	B-N	1 1
1 0000 1 NA INI IAL 1 16 2 7 21 38.970 1 7 27 25.510 1827.0 1927.00 0 8-N 1 1 9007 AREGUIPA 41 -16 27 55.085 288 30 26.814 2486.0 2451.86 0 8-N 1 1 9007 AREGUIPA 41 -16 27 55.085 288 30 26.814 2486.0 2451.86 0 8-N 1 1 9030 SHIRAZ 16 29 38 18.112 52 31 11.445 1553.00 1574.00 0 8-N 1 1 9009 CURACAD 41 12 5 25.912 291 9 46.078 -2.0 8.70 0 8-N 1 1 9010 JUPITER 29 27 1 12.882 279 53 13.008 27.0 15.13 0 8-N 1 1 9010 JUPITER 29 27 1 12.882 279 53 13.008 27.0 15.13 0 8-N 1 1 9010 JUPITER 29 27 1 12.882 279 <t< td=""><td>1</td><td>t</td><td>!</td><td></td><td>• -</td><td></td><td></td><td>•-</td><td></td><td> </td><td></td><td></td><td></td><td>1 1</td></t<>	1	t	!		• -			•-						1 1
1 9007 [AREVOLPA 1 91] -10 27 55.005 208 30 20.814 [2480.0 [2451.86] • [B-N] [1 1 9008 [SHIRA2 1 6 [29 38 18.112 52 31 11.445] 1553.0 [1597.40] • [B-N] [2 1 9009 [CURACAD 4 1 [12 5 25.912 291 9 46.078] -2.0 [B.70] • [P-N] 1 1 9010] JUPITER 29 [27 1 12.862 279 53 13.008] 27.0 [15.13] • [B-N] 1 1 9011] VILLA DULORES 4 1 [-31 56 33.228 294 53 38.949] 621.0 [608.00] • [B-N] 4 9012] MAUI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 9006	I NAINI TAL	1 16	29	21	38.970	79	27	25.510	1 1927.0	1927.00	! ! .	8-N	1 1 1
1 000 1 50104 100 1 27 30 10.112 32 31 11.445 1 1533.0 1377.40 [# 8-N 2 9009 1 CURACAD [41 1 12 5 25.912 291 9 46.078] -2.0 [8.70] 8 8-N 1 9010 1 JUPITER [29 27 1 12.862 279 53 13.008] 27.0 [15.13] 8 8-N 1 1 0011 1 VILLA DULORES [41] -31 56 33.226 204 53 38.949 [621.0 [606.00] 8 8-N 1 9012 1 MAUI [33] 20 42 37.500 203 44 24.080 [3026.1] 3034.14 [#] 8 8-N 4	1 9007	E AKEGUIPA 1 Cutoli	1 91	1 -16	21	25.085	288	30	20.014	1 2486.0	1 2451.86		B-N	1 1 1
9010 JUPITER 29 27 1 2.862 274 53 13.008 27.0 15.13 # B=N 1 9010 JUPITER 29 27 1 12.862 274 53 13.008 27.0 15.13 # B=N 1 9010 JUPITER 29 27 1 12.862 274 53 13.008 27.0 15.13 # B=N 1 9011 VILLA DULORES 41 -31 56 33.226 294 53 38.949 621.0 606.00 # B=N 4 9012 MAUI 33 20 42 37.500 203 44 24.080 3026.1 3034.14 # B=N 4	1 90 08	1 2014584	1 10	1 29	5 d	10.112	201	21	41.4447	1 1723+0	1 1241.40	1 1		
VO11 VILLA DULORES 41 -31 56 33.226 294 53 38.949 621.0 608.00 # B-N 4 VO12 MAUI 33 20 42 37.500 203 44 24.080 3026.1 3034.14 # B-N 4	1 90.09	I NUPITES	1 20	1 14	2	12.042	274	42	13.004	1 22.0	1 0.70 1 18 13	1 1		1 1 1
9012 MAUI 33 20 42 37.500 203 44 24.080 3026.1 3034.14 4 B-N 4	1 4011	I VILLA DOLORES	1 41	1 - 21		12.374	204	23	38 040	1 621.0	1 17+13	1	6 - N	
	1 9012	1 MAUI	1 33	20	42	37.500	203	4	26.080	3026.1	1 3034-14		S=N	1 Z I
	1	1	i	i T		214200					,	i	ω=rφ	iii

Table 3.1-2 (cont'd)

	STATION	DATUM		S U	RVEV	с С	0 0	ROIN	L T E S'	1 H2L 3	I INSTR. I	INSTR.	SOURCE
I NO	I NAME	CODE'		LATI	TUDE	L	ONGI	TUDE	[ELL. H(M)	(M)	1 (M) 1	TYPE	
!	1								!	!			
9021	MOUNT HOPKINS	29	31	41	2.670	249	7	21.350	2371.0	2382.00	•	8-N	1 1 1
9028	I ADDIS ABABA	1 1 1	8	44	47.230	38	57	30,480	1 1895.0	1925.20	1 * 1	8-11	1 2 1
9029	NATAL	41	- 5	55	38.616	324	50	066.8	1 71.4	1 45,34	1 • 1	B-N	1 4 1
1 90 31	L COMODORO RIVADAVIA	41	-45	53	11.028	292	23	12.215	173.0	186.54	1 • 1	8-N	1 1 1
1 9051	1 ATHENS	16	37	59	40.310	23	46	42.890	1 180.0	1 187.90	1 • 1	GEO 36	1 1 1
1 9091	I DIONVSOS	16	38	- 4	48.240	23	56	1.010	459.0	1 467.00	1 • 1	B-N	1 1 1
9424	I COLD LAKE	29	54	44	33.858	249	57	26.389	1 702.0	1 704.60	1 • 1	B-N	1 1 1
1	1	1 1							1	1	1 1		1 1
1 9425	1 EDWARDS AFB	1 29 1	34	57	50.742	242	5	11.584	1 760.0	1 104.23	1 + 1	8-N	1 1 1
9426	HARESTUA	1 16 1	60	12	40.380	10	45	8.740	1 5A2.0	575.92	j • i	8-N	i ī i
1 9427	JOHNSTON ISLAND	24	16	44	45.390	190	29	5.590	5.0	5.00	i • i	8-N	i ī i
4 9431	I RIGA	ו אנ ו	56	56	54.980	24	3	37.810	1 2.0	6.00	i • i	AFU 75	i ī i
9432	I UZHGOROD		48	30	4.560	22	17	57.880		189.00	1 . 1	AFU 75	i ī i
I OSNI	GOLDSTONE	i 29 i	35	23	22.346	243	9	1.262	1 1014-3	1 1036.30	i 11.80 i	851 H-0	i . i
DSN2	I GOLDSTONE	29	35	17	59.854	263	11	43.414	1 944.9	988.90	1 11.70	851 4-0	1 4 1
1	1			• •			••		1	1		••••••••	
I DSN4	I GOLOSTONE	i 29 i	36	25	33.360	243	*	40.850	1 1000.8	1 1031.00	1 16.50	21014-5	
I DSNA	1 TIGSTNBILLA		-34	24	8.038	148	« A	48.204		1 464 00	1 16 00 1	550 - A-C	
I OSNZ	1 IOMANNE SRIIPG		-25		21.160	27	<u> </u>	8.530	1 1309.0	1 1391.00	1 13.00 1		1 2 1
1	1		-63		611130	61		0,030	1 137710	1 2072100	1 12100 1	02. 0-0	1 7 1
	,									•	1 1		<u>. '</u>

INSUFFICIENT DATA

REFER TO TABLE 3.1-3

- ² GECDETIC CODRDINATES OF THE INSTRUMENTAL REFERENCE POINT (OPTICAL/ELECTRONIC CENTER, ETC.) ON THE LOCAL GEODETIC DATUM
- MEAN SEA LEVEL HEIGHT OF THE INSTRUMENTAL REFERENCE POINT
- . HEICHT OF INSTRUMENTAL REFERENCE POINT ABOVE SURVEY MONUMENT
- * REFER TO TABLE 3.1-4

NOTE 3 ZERO IN THE LAST DIGIT MAY INDICATE THAT THE DIGIT IS UNKNOWN.

Table 3.1-3

Geodetic Datums

Code	Datum	Ellipsoid	Origin	Latitude	Longitude
1	. Jindan (Ethiopia)	Clarke 1880	STATION ZS ADINDAN	22*10:07:110	31*29.217608
2	American Samoa 1962	Clarke 1866	BETTY 13 ECC	-14 20 08.341	189 17 07.75
3	Arc-Cape (South Africa)	Clarke 1620	Buffel fontein	-33 59 32.000	25 30 44.62
Â.	Argentine	International	Campo Inchauspe	-35 58 17	297 49 48
5	Ascension (s)and 1958	International	Mean of three stations	-07 57	345 37
6	Australian Geodetic	Australian	Johnston Memorial Cairo	-25 56 54 55	133 12 30.08
-		National			100 12 00.00
7	Remuta 1957	Clarke 1866	FT. GEORGE B 1937	32 22 44 360	295 19 01 89
Â	Berne 1898	Rescel	Rerne Observatory	A6 57 09 660	07 26 22 33
ă	Betin Island, 1966	International	1966 SECOR ASTRO	01 21 42 03	172 55 47 00
10	Camp Area Astro 1961-62	International	CAMP AREA ASTRO	-77 50 52.521	166 40 13.75
••			1055 510700 55500 15000		
12	Canton Astro 1966 Christmas Island	International International	SAT.TRI.STA, 059 RM3	-02 46 28.99 02 00 35.91	188 16 43.4/ 202 35 21.82
13	Astro 1967 Chua Astro	International	CHUA	-19 45 41,16	311 53 52,44
14	(Brazil-Geodetic)			10 50 15 140	211 02 17 26
	(Brazil-Mapping)	Incernacional	CORREGO ALEGRE	-19 30 15.140	311 02 17.23
15	Easter Island 1967 Astro	International	SATKIG KAT NO. 1	-27 10 39.95	250 34 16.8
16	European	International	Helmert Tower	52 22 51.45	13 03 58.74
17	Graciosa Island (Azores)	International	SW BASE	39 03 54.934	331 57 36.11
18	Gizo, Provisional DOS	International	GUX 1	-09 27 05.272	159 58 31.75
19	Guan	Clarke 1866	TOGCHA LEE NO. 7	13 22 38.49	144 45 51.56
20	Heard Astro 1969	International	INTSATRIG 0044 ASTRO	-53 01 11.68	73 23 22.64
21	Iben Astru, Navy 1947 (Truk)	Clarke 1866	IBEN ASTRO	07 29 13.05	151 49 44.42
22	Indian	Evernet	Kaliannur	24 07 11 26	77 30 17 57
23	Isla Socorro Astro	Clarke 1866	Station 038	18 43 44.93	249 02 39.28
24	Johnston Island 1961	International	JOHNSTON ISLAND 1961	16 44 49,729	190 29 04.78
25	Kusaje, Astro 1962, 1965	International	ALLEN SODANO LIGHT	05 21 48.80	162 58 03 29
*	Luzon 1911 (Philippines)	Clarke 1866	RAL ANCAN	13 33 41 000	121 52 03 00
27	Midway Actro 1961	International	MITTIAY ASTRO 1961	29 11 24 50	142 36 24 28
20		Teternet innet	DEDATAUT	41 10 00 000	100 30 24.20
20	New Zealand 1949	International	PAPATAH1	-41 19 08.900	
30	North American 1927 MAD 1927 (Cape	Clarke 1866 Clarke 1866	CENTRAL	39 13 26.686 28 29 32. 364	261 27 29.49
	Canaveral)				
31	"WAD 1927 (White Sands)	Clarke 1866	KENT 1909	32 30 27.079	253 31 01.30
32	Old Bavarian	Bessel	Munich	48 08 20.000	11 34 26.48
33	Old Hawaiian	Clarke 1866	OAHU WEST BASE	21 18 13.89	202 09 04.20
34	Ordnance Survey G.B. 1936	Airy	Herstanceux	50 51 55.271	00 20 45.88
35	Pico de las Nieves (Caparies)	International	PICO DE LAS NIEVES	27 57 41.273	344 25 49.47
36	Pitcairn Island Astro	International	PITCATRN ASTRO 1967	-25 04 06.97	229 53 12.17
37	Potsdam	Reccel	Helmert Tower	52 22 53, 054	13 04 01 15
38	Provisional S.American	International	LA CANDA	08 34 17.17	296 08 25.12
39	Provisional S. Chile	International	HIIO XVIII	-53 57 07.76	291 23 28.76
40	1703 Bulkovo 1947	Knaccourti	Pulkovo Obcomustom	50 A6 10 55	30 10 42 00
41	South American 1969	South American	CHUA	-19 45 41.653	311 53 55.93
	· · · · · · · · · · · · · · · · · · ·	1909		AA AA AA AZ-	FF 30 40 1-
4Z	Southeast Island (Mah	LIARKE 1880		-ma an 34,460	55 32 00.16
43	South Georgia Astro	International	ISTS OGT ASTRO POINT 1968	-54 16 38.93	323 30 43.97
44	Swallow Islands (Solomons)	International	1966 SECOR ASTRO	-10 1R 21.42	166 17 56.79
45	Tananarive	International	Tananarive Observatory	-18 55 02.10	47 33 06.75
46	Totvo	Bessel	Tokyo Observatory (old)	35 39 17.51	139 44 40.50
47	Tristan Astro 1968	International	INTSATRIG 069 RM No. 2	-37 03 26.79	347 40 53.21
49	Viti Levu 1916 (Fiii)	Clarke 1880	MONAVATU (latitude only)	-17 53 28 285	
			SINA (longitude onlu)		178 25 25 83
49	Wake Island, Astronomic	International	ASTRO 1952	19 17 19.991	166 38 46.29
	1952 No.5 Antro 1053 (Datas)	Clarke 1880	VOF 45TR0 1967	14 44 41.62	342 30 52.98
50	TOT ASTED 1907 (Dakar)				
50 51	Palmer Astro 1967 (Dakar)	International	ISTS 050	-64 46 35.71	295 56 39.53

*Local datums of special purpose, based on NAD 1927 values for the origin stations.

Table	3.1-4	ļ
-------	-------	---

Summary of Source Information

Code	Source
1	[CSC, 1971]
2	[CSC, 1972/73]
3	[Huber, 1971]
4	[Gaposchkin et al., 1973]

3.2 Satellite Observational Data and Its Handling

3.21 Satellite Observational Data [187, 188, 193, 195, 196]

Data used in the four OSU partial solutions (networks) reported earlier, namely, MPS, BC, SECOR, and SA, and in the current combined solutions designated WN, is summarized in Table 3.2-1. These networks are shown in Figs. 3.2-1 through 3.2-7. Various statistical information on the solutions are provided in Tables 3.2-2 and 3.2-3.

Table 3.2-1

0511					No. of Co	onstraints	Used		Í		
Solution (Network)	No. of Stations	No. of Observations	Origin	Relative Position	Scale (Length)	Station Position	Height	Direc- tional	6 _{σ0}	⁷ Refer- ence	F1g.
1 MPS	66	28774	inner	9	7		63	± #	1.07	188	3.2-1,2,3
² BC	49	30302	inner	2	7		48		2.80	193	3.2-4
³ SECOR	50	28844	Inner	14			37	9	1.37	195	3.2-5
4SA	14	2524	inner	3	1		14		2.50	196	3.2-6
^S WN	159	90444	inner	43	11		158		1.02	199	3.2-7

Basic Information on the OSU Solutions (Networks)

¹ MPS includes 14 PC-1000 stations, 15 MOTS-40 stations, 1 PTH-100 station, 7 C-Band stations, 6 European stations (8000 series), and 23 SAO stations (9000 series).

²BC includes all 49 stations of BC-4 Worldwide Geometric Satellite Network.

³SECOR includes 37 SECOR stations of the Equatorial Network and 13 collocated BC-4 camera stations.

⁴SA includes 9 PC-1000 stations of South American Densification Net and 5 BC-4 stations.

⁵WN includes all the above-mentioned four networks, namely, MPS (less one C-Band station: 4742), BC, SECOR, and SA.

⁶A posteriori standard deviation of unit weight.

⁷OSU Department of Geodetic Science Report No.

Fig. 3.2-1 MPS stations in North America.

Fig. 3.2-2 MPS stations in Europe.

Fig. 3.2-3 SAO and C-Band stations in the MPS net.

Fig. 3.2-4 BC-4 Worldwide Geometric Satellite Network.

Fig. 3.2-5 SECOR Equatorial Network.

Fig. 3.2-6 South American densification net.

Fig. 3.2-7 OSU Geometric Satellite Network (WN)

Table 3.2-2

Summary of Observation Types

		_		
Instrument	NASA Series No.	Satellite Observed	OSU Network Where Used	Data Source*
MOTS	1000	GEOS-I	MPS	NSSDC
PC-1000	3000	GEOS-I	MPS	NSSDC
PC-1000 So. America	3000	Echo I,II PAGEOS GEOS-II	SA	DMA/Aerospace Center
C-Band Radar	4000	GEOS-II	MPS	NASA/Wallops Isl.
SECOR	5000	SECOR (EGRS)	SECOR	DMA/Topographic Center
BC-4	6000	PAGEOS	BC, SA	NGS, NSSDC
Special Optical	7000	GEOS I	MPS	NSSDC
International Optical	8000	GEOS, PAGEOS Echo I, II	MPS	SAO
Smithsonian Optical	9000	ANNA 1B Courier 1B Dash 2 Echo 1 Rocket Elektron 3 Explorer 9,19 Midas 4, 7 RCS, Relay 1 Telstar 1	MPS	SAO

*DMA

*DMA Defense Mapping Agency NGS National Geodetic Survey NSSDC National Space Science Data Center SAO Smithsonian Astrophysical Observatory

Table	3.	2-	3a
-------	----	----	----

Summary of Simultaneous Observations by Line (MPS Network)

Line Station-Station	No. of Pairs	Line Station-Station	No. of Pairs
1021-1022 1021-1030 1021-1032 1021-1034 1021-1042 1021-3106 1021-3401 1021-3405 1021-3406	47 11 4 35 39 6 25 17 22 13	1022-7037 1022-7039 1022-7040 1022-7043 1022-7045 1022-7075 1022-7075 1022-7076 1030-1033 1030-1034	91 52 90 88 43 221 31 44 10 97
1021-3407 1021-3648 1021-3657 1021-3861 1021-7036 1021-7037 1021-7039 1021-7040 1021-7043 1021-7045	6 5 36 13 24 41 6 29 59 11	1030-1042 1030-3401 1030-3402 1030-3404 1030-3657 1030-3861 1030-3903 1030-7036 1030-7037 1030-7043	34 4 22 4 6 12 6 94 75 20
1021-7072 1021-7075 1021-9001 1021-9010 1022-1030 1022-1034 1022-1042 1022-3106 1022-3400 1022-3401	10 31 14 24 60 78 127 31 5 81	1030-7045 1030-7072 1030-7075 1032-1042 1032-3401 1032-7043 1032-7072 1033-1034 1033-7045 1033-9425	98 10 35 3 , 6 1 13 9 10
1022-3402 1022-3404 1022-3405 1022-3406 1022-3407 1022-3648 1022-3657 1022-3861 1022-3903 1022-7036	62 53 24 54 4 28 30 114 6 109	1034-1042 1034-3334 1034-3400 1034-3401 1034-3402 1034-3404 1034-3648 1034-3657 1034-3861 1034-3902	117 4 6 33 2' 5 15 27 5

Line Station-Station	No. of Pairs	Line Station-Station	No. of Pairs
1034-3903	6	3106-3405	7
1034-7036	51	3106-3406	41
1034-7037	163	3106-3407	23
1034-7039	12	3106-3648	18
1034-7040	4	3106-3657	4
1034-7043	24	3106-3861	10
1034-7045	84	3106-7039	16
1034-7072	14	3106-7040	64
1034-7075	36	3106-7043	10
1034-7076	6	3106-7072	20
1034-9001	51	3106-7076	5
1034-9010	49	3334-3400	4
1034-9424	20	3334-3402	7
1034-9425	63	3334-3402	4
1042-3106	12	3334-7036	12
1042-3400	8	3334-7037	2
1042-3401	26	3334-7045	4
1042-3402	46	3400-3902	6
1042-3404	16	3400-7036	13
1042-3406	15	3400-7037	3
1042-3648	5	3400-7045	13
1042-3657	7	3401-3402	17
1042-3861	15	3401-3406	9
1042-3903	6	3401-3407	7
1042-7036	19	3401-3648	9
1042-7037	86	3401-3657	25
1042-7040	22	3401-3861	37
1042-7043	51	3401-3903	4
1042-7045	35	3401-7036	10
1042-7072	34	3401-7037	12
1042-7075	53	3401-7039	11
1042-7076	5	3401-7040	16
1042-9001	13	3401-7043	39
1042-9009	7	3401-7072	39
1042-9010	20	3401-7076	22
1042-9424	7	3402-3405	6
1042-9425	19	3402-3406	6
3106-3401	14	3402-3648	6
3106-3402	10	3402-3657	23
3106-3404	13	3402-3861	42

Table 3.2-3a (cont'd)

Line Station-Station	No. of Pairs	Line Station-Station	No. of Pairs
3402-3902	4	3406-7072	25
3402-7036	23	3406-7076	19
3402-7037	22	3407-3657	6
3402-7039	10	3407-3861	14
3402-7040	6	3407-7039	4
3402-7043	20	3407-7040	31
3402-7072	13	3407-7043	7
3402-7076	8	3648-3657	10
3404-3401	14	3648-3861	28
3404-3462	17	3648-7036	6
3404-3405	4	3648-7037	20
3404-3406	7	3648-7039	6
3404-3407	5	3648-7040	7
3404-3648	12	3648-7072	16
3404-3657	7	3657-3861	24
3404-3661	29	3657-7036	19
3404-7037	9	3657-7037	15
3404-7039	6	3657-7039	4
3404-7040	28	3657-7040	6
3404-7043	7	3657-7043	31
3404-7072	3	3657-7045	6
3404-7076	4	3657-7072	28
3405-3406	7	3861-7036	33
3405-3657	12	3861-7037	34
3405-3657	12	3861-7039	5
3405-3861	6	3861-7040	8
3405-7036	9	3861-7043	8
3405-7037	6	3861-7072	73
3405-7039	5	3861-7076	13
3405-7040	19	3902-7036	12
3405-7043 3405-7072 3406-3407 3406-3861 3406-3903 3406-7036 3406-7037 3406-7039 3406-7040 3406-7043	13 6 19 23 5 11 5 21 31 31 3	3902-7037 3902-7045 3903-7037 3903-7043 3903-7045 7036-7037 7036-7039 7036-7043 7036-7043 7036-7045 7036-7072	12 6 6 6 124 14 6 56 44

Table 3.2-3a (cont'd)

Line Station-Station	No. of Pairs	Line Station-Station	No. of Pairs
7036-7075 7036-7076 7036-9001 7036-9010 7036-9010 7036-9425 7037-7039 7037-7040 7037-7043	31 43 66 6 49 17 27 5 33	7075-9010 7076-9010 8009-8010 8009-8011 8009-8015 8009-8019 8009-9431 8009-9432 8010-8015	22 21 4 10 10 11 8 4 58
7037-7045 7037-7072 7037-7075 7037-7076 7037-9001 7037-9009 7037-9010 7037-9010 7037-9425 7039-7040 7039-7072 7039-7075	63 24 48 29 27 6 57 38 10 5 21	8010-8019 8010-9004 8010-9051 8010-9431 8010-9432 8011-8030 8011-9004 8011-9008 8011-9426 8011-9431 8015-8019	48 74 6 27 11 7 4 5 1 7 112
7039-7076 7039-9010 7040-7043 7040-7072 7040-7075 7040-7076 7040-9009 7040-9010 7043-7045 7043-7072	17 18 18 9 7 10 7 22 33 24	8015-9004 8015-9051 8015-9091 8015-9431 8015-9432 8019-8030 8019-9004 8019-9091 8019-9431 8019-9432	68 39 16 16 48 7 349 83 44 13
7043-7076 7045-7072 7045-7075 7045-9001 7045-9010 7045-9024 7045-9025 7072-7076 7075-7076	6 9 11 4 6 11 11 54 29 7	8030-9004 9001-9007 9001-9009 9001-9010 9001-9012 9001-9424 9001-9427 9002-9008 9002-9028 9004-9006	7 35 189 288 205 74 17 7 30 14

Table 3.2-3a (cont'd)
Line Station-Station	No. of Pairs	Line Station-Station	No. of Pairs
9004-9008 9004-9009 9004-9010 9004-9028 9004-9029 9004-9051	146 44 43 44 48 40	9424-9425 9424-9426 9424-9427 9425-9427 9431-9432	56 5 2 15 21
9004-9091 9001-9424 9004-9426 9004-9431 9005-9006	381 1 89 74 63		
9005-9008 9005-9012 9005-9427 9006-9008 9006-9028	3 3 181 30		
9006-9426 9007-9009 9007-9010 9007-9011 9007-9029	19 276 92 467 5		
9007-9031 9008-9028 9008-9051 9008-9426 9009-9010 9009-9011 9009-9424 9010-9012	36 11 16 45 117 76 7 3		
9011-9029 9011-9031 9012-9021 9012-9424 9012-9427 9021-9425 9028-9091 9029-9031 9091-9431 9091-9432	4 9 32 26 247 61 49 32 17 23		

Table 3.2-3a (cont'd)

Table 3.2-3b

Line Line No. of Pairs Station-Station No. of Pairs Station-Station 6001-6002 105 6007-6067 28 6001-6003 121 6008-6009 53 6001-6004 37 6008-6019 87 6001-6006 103 6008-6061 4 6001-6007 4 33 6008-6063 29 7 6001-6011 6008-6067 7 6001-6015 69 6009-6019 22 18 6001-6016 6009-6020 6001-6038 7 6009-6038 67 6001-6065 60 6009-6043 25 6001-6123 43 6011-6012 71 6002- 0003 12 156 6011-6022 600 -6006 6011-6038 67 7 6002-6007 57 6011-6059 114 93 32 6002-6008 6011-6111 6002-6009 39 6011-6134 64 6002-6038 71 6012-6013 60 79 41 6002-6111 6012-6022 6002-6134 21 6012-6023 57 57 6003-6004 52 6012-6059 7 6003-6011 84 6012-6060 14 6023-6012 11 6013-6015 6003-6038 96 6015-6040 8 6013-6047 6003-6111 89 87 6003-6123 24 6013-6072 57 6003-6134 32 6013-6078 4 6015-6016 170 6004-6006 4 7 41 6004-6011 6015-6040 99 6015-6042 6004-6012 53 58 6004-6013 60 6015-6045 65 6004-6723 24 6015-6064 80 6006-6007 30 6015-6065 75 6006-6015 87 6015-6072 6006-6016 94 6015-6073 77 44 6006-6065 76 6015-6075 23 6007-6016 125 6016-6042 14 6016-6063 61 6007-6055 113 6007-6063 111 6016-6064 6007-6064 6016-6065 108 25 40 35 6007-6065 6019-6020

Summary of Simultaneous Observations by Line (BC Network)

Line		Line	
Station-Station	No. of Pairs	Station-Station	No. of Pairs
6010 6042	120	C000 C104	
6019-6043	132	6038-6134	/1
6019-6061	70	6039-6059	49
6019-6067	70	6040-6044	4
6019-6069	8	6040-6045	96
6020-6038	60	6040-6047	36
6020-6039	18	6040-6060	19
6020-6043	52	6040-6072	10
6022-6023	15	6040-6073	52
6022-6031	44	6040-6075	53
6022-6039	14	6042-6045	93
6022-6059	103	6042-6064	96
6022-6060	33	6042-6068	93
6022-6078	21	6042-6073	22
6023-0031	51	6042-6075	75
6023-6032	116	6043-6050	74
6023-6040	14	6043-6061	88
6023-6047	50	6044-6045	11
6023-6060	224	6044-6051	33
6023-6066	29	6044-6052	7
6023-6072	28	6044-6068	4
6023-6078	28	6045-60F1	42
6031-6032	102	6045-6068	112
6031-6039	15	6045-6073	99
6031-6051	7	6045-6075	90
6031-6052	57	6047-6060	8
6031-6053	101	6047-6072	88
6031-6059	4	6047-6078	4
6031-6060	305	6050-6051	1
6031-6078	28	6050-6052	14
6032-6040	72	6050-6053	25
6032-6044	36	6050-6061	63
6032-6045	18	6051-6052	100
6032-6047	54	6051-6053	103
6032-6051	12	6051-6061	35
6032-6052	34	6051-6068	106
6032-6053	8	6052-6053	98
6032-6060	174	6052-6060	47
6032-6072	7	6053-6060	35
6038-6039	55	6053-6061	7
6038-6059	35	6055-6061	14

Table 3.2-3b (cont'd)

Line Station-Station	No. of Pairs	Line Station-Station No. of Pairs
6055-6063 6055-6064 6055-6067 6055-6068 6055-6069 6061-6067 6061-6069 6063-6069 6063-6064 6063-6069 6064-6068 6067-6069 6068-6075 6072-6073 6072-6075 6073-6075	101 99 86 11 47 18 18 29 84 7 62 14 106 4 21 14 15 14 80	

Table 3.2-3b (cont'd)

Line Station-Station	No. of Pairs	Line Station-Station	No. of Pairs
6002-6008 6002-3406 6002-3407 6002-3476 6002-3477 6008-6009 6008-6019 6008-6067 6008-3406 6008-3477 6009-3477 6009-3406 6009-3407 6009-3477 6009-3477 6009-3476 6019-3407 6019-3406 6019-3407 6019-3477 6019-3477 6067-3407 3406-3413 3406-3414 3406-3417	$ \begin{array}{c} 23\\ 14\\ 11\\ 7\\ 7\\ 10\\ 36\\ 14\\ 25\\ 3\\ 6\\ 7\\ 14\\ 6\\ 6\\ 5\\ 9\\ 35\\ 19\\ 38\\ 4\\ 19\\ 6\\ 3\\ 9\\ 25\\ 41\\ 53\\ 25\\ 41\\ 52\\ 41\\ 52\\ 41\\ 52\\ 41\\ 52\\ 52\\ 41\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52$	3406-3478 3406-3499 3407-3431 3407-3476 3407-3477 3407-3478 3413-3431 3414-3431 3414-3431 3476-3477 3477-3478 3477-3499	14 4 16 19 23 9 29 2 22 15 2 5
3406-3476	13		

Table 3.2-3c

Summary of Simultaneous Observations by Line (SA Network)

Table 3.2-3d

Summary of SECOR Observations by Quadrangle

5001-5907-5648-5911 432 5726-5930-5933-5934 644 5911-5001-5648-5914 168 5726-5933-5934-5935 808 5911-5907-5915-5912 1008 5931-5726-5934-5935 1144 5911-5907-5912-5712 92 5935-5726-5934-5937 2048 5911-5907-5912-5712 260 5935-5726-5934-5937 1264 5911-5912-5712-5713 684 5730-5935-5938-5732 1380 5713-5911-5712-5715 1220 5730-5938-5732-5733 756 5715-5713-5912-5712 548 5730-5732-5733-5411 752 5715-5713-5712-5735 548 5730-5733-5411-5410 648 5715-5735-5736-5717 640 5734-5730-5411-5734 508 5715-5735-5736-5717 640 5734-5730-5411-5201 312 5715-5735-5736-5717-5744 28 5734-5730-5411-5201 312 5744-5715-5717-5724 804 5734-5730-5411-5201 264 5744-5715-5717-5720 1236 5923-5717-5720 526 5923-5717-5720-5721 772 752 572 5721-5923-5720-5722 752 572 572 5923-5721-	Quad	Nc. of	Quad	No. of
	Stations Involved	Observations	Stations Involved	Observations
5723-5722-5930-5931 588 5722-5723-5930-5726 68 5931-5723-5930-5726 768 5931-5930-5726-5933 1064 5722-5723-5930-5726-5933 1064	Stations involved 5001-5907-5648-5911 5911-5001-5648-5912 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5713 5715-5735-5736-5717 5715-5736-5717-5744 5739-5715-5717-5744 5745-5736-5717-5744 5744-5715-5717-5923 5744-5715-5717-5924 5744-5715-5717-5925 5923-5744-5717-5720 5923-5744-5717-5720 5923-5717-5720-5721 5744-5717-5720-5721 5721-5923-5720-5722 5721-5720-5722 5721-5720-5721 5723-5721-5722-5723 5923-5721-5722-5723 5923-5721-5722-5930 5723-5723-5930-5726 5931-5723-5930-5726 5931-5723-5930-5726 5931-5723-5930-5726	432 168 1008 92 260 228 684 1220 548 288 660 640 28 384 464 868 804 512 1236 772 20 752 296 36 460 588 68 768 1064 462	5726-5930-5933-5934 5726-5933-5934-5935 5931-5726-5934-5935 5935-5726-5934-5730 5935-5726-5934-5937 5730-5935-5938-5732 5730-5938-5732-5733 5730-5732-5733-5411 5730-5733-5411-5410 5730-5733-5411-5201 5734-5730-5411-5201	644 808 1144 2048 1264 2216 1380 756 752 648 508 312 264

_

3.22 Data Handling

3.221 Preprocessing. [70, 82, 93, 100, 106, 110, 195]

The term preprocessing covers any treatment (reductions, corrections, etc.) necessary to be applied to the observed data prior to its analysis for the purpose of removing systematic errors burdening the observations. From the point of view of the investigator who has not participated in the actual observations preprocessing can be considered as consisting of two parts, namely,

- (1) Reductions and corrections of observed data by the respective agencies responsible for the observations prior to sending the data either to the National Space Science Data Center or to the individual investigator. This part of the preprocessing is dealt with by Hotter [1967] and by Gross [1963].
- (2) Additional corrections to the reduced data, or homogenization of the data obtained from various agencies, screening of data for blunders and ambiguities are the parts of the preprocessing procedure to be done by the investigator.

Fig. 3.2-8 is a self-explanatory summary of both types of preprocessing for optical observations as handled in practice. The shaded blocks represent the portion of the work performed at OSU. For more details see [Hotter, 1967].

Fig. 3.2-9 is a summary of preprocessing applied to the SECOR data. For more details see [Gross, 1968].

No preprocessing was applied to the C-Band radar data [Mueller and Whiting, 1972].

			ĺ	DMA			NGS		N	ASA/GSFC		1	SAO	
CAMERA		NAME		PC-1000		BC1 (A	STRO) BC-4((COSMO)	MOTS	24 MOTS 40 ?	TH 100	BAKER	-NUNN K	- 50
CATALOGUE				SAO			SAO			SAO	••••••	<u> </u>	SAO	
	TYPE		1	PHOTO			РНОТО			PHOTO			ASTRO	
	NO. OF ST	ARS	L	25-30		<u> </u>	120		<u> </u>	40-50		1	8-10	
	NO. OF SA	T. IMAGES (PASSIVE)					600			-			1	
CALIORATION	NO. OF PA	RAMETERS		16 (EXT. INT: 6 (REFRACT: 2)			14-20 (EXT INT: DIST: 6 NON 1 : 1 DIFF. SC.	6 ;	B (EXT.INT: 6 (REFRACT. 2)		2)	6		
1	LENS DIST	PREDETERMINED	YES NO		YES									
TIME SYNCHRO	NIZATION		PORTABLE CLOCK & VLF PORTABLE CLOCK & VLF		ACTIVE SAT ONLY		PORTABLE CLOCK & VLF							
		ſ	STAR	SATELLITE	TIME	STAR	SATELLITE	TIME	STAR	SATELLITE	TIME	STAR	SATELLIT	TIME
,		PROPER MOTION	C			M		Ι	C		T	C		
		PRECESSION	C		Ι	M,C		L	M		_	L		1
STAR UPDATING	3 AND	NUTATION	C			C		L	L C		L		Landida	1
SATELLITE IMA	NGE	ANNUAL ABERRATION	C			C		L	L c		L		4.91	
CORRECTIONS		DIURNAL ABERRATION	C			C					ļ	L	Vililli.	<u></u>
		ASTRO REFRACTION	CP	- CP		CP	- CP	}	CP	– CP	Į –	IMPLIC	IT IN PLA	re
M MATRIX COR	RECTION	(GARFINKEL)	L	WITH ADJ. COET.	L			.		WITH ADJ. COEF	ļ	REDUCT	TION W777/FTFF	· · · · · · · · · · · · · · · · · · ·
C CONVENTION	AL CORR.	PARALL. REFRACTION	L					+		C		! <u></u> /	4444	4
CP: CONVENTIÓ PLATE PRO	NAL DURING	SAT. ABERRATION						(P. S.O.)		{			1.1.1	TO STA
			+		her 1777			-	t		TTT	<u>↓</u> ~		~~~~
PSO PASSIVE 9	AT ONLY	UTC+UTI	1	1	1 1 1]	•			1	V////	1 1		
PSO PASSIVE 9	AT ONLY	UTC + UTI UTC - AS	<u> </u>		<u> initi</u>		<u> </u>	<u> </u>			<i></i>	f		c

CORRECTION NEEDED

Fig. 3.2-8 Optical data preprocessing procedure summary for major U.S. agencies.

Fig. 3.2-9 Scheme of SECOR preprocessing procedure at OSU.

Fig. 3.2-9 Cont'd

3.222 Detection of Blunders and Rejection.* [86]

<u>A.</u> <u>Optical Data</u>. Blunders in the observed declinations and right ascensions and/or observing ground station coordinates are detected during the formation of the normal equations. The procedure used is to test the variance of unit weight that would result from a preliminary least squares adjustment of each simultaneous event. In this adjustment the ground stations are held fixed. The residuals on the ij^{th} observed α , δ pair from such a preliminary adjustment are the first two elements of the 3 x l vector

$$V_{ij} = B_{ij}^{-1} (\vec{X}_{i} - \vec{X}_{j}^{0}) \vec{X}_{j}^{0} = \{\sum_{i} M_{ij}^{-1}\}^{-1} \{\sum_{i} M_{ij}^{-1} \vec{X}_{i}\}$$

(The third element is the range to the preliminary adjusted satellite position.) And, therefore,

$$\sum_{i} V'_{ij} P_{ij} V_{ij} = \sum_{i} (\vec{X}_{i} - \vec{X}_{j}^{o})' M_{ij}^{-1} (\vec{X}_{i} - \vec{X}_{j}^{o})$$

since the third element is dispensed within the product

$$\mathsf{P}_{ij}\mathsf{B}_{ij}^{-1} (\dot{X}_{i} - \dot{X}_{j}^{0})$$

(see equation 4.2-16). Therefore, the variance of unit weight is computed from Σ to to -1 to to

$$\sigma_0^2 = \frac{\text{event } (X_i^0 - X_j^0)' M_{ij}^{-1} (X_j^0 - X_j^0)}{2n - 3} \qquad 3.2 - 1$$

where the numerator can be shown to be the sum square of the weighted residuals (arc seconds squared) of all the observed declinations and right ascensions in the event; n is the number of ground stations in the event.

If a number of rejected simultaneous events repeatedly contain a particular ground station, it is probably due to a blunder in the coordinates *To appreciate this section the reader is advised to study section 4 first. of the particular ground station rather than in the observed quantities. In this case, the preliminary coordinates of that ground station should be verified.

<u>B. Range Data</u>. Blunders in the observed topocentric ranges and/or ground station coordinates are detected during the formation of the normal equations. The procedure used is to test the variance of unit weight (equation 3.2-10) arising from a preliminary least squares adjustment of each simultaneous event.

The preliminary adjustment is basically an iterative adjustment for the u_j , v_j , w_j rectangular coordinates of the satellite position by fixing the ground stations and applying the residuals of the adjustment to the observed ranges. The approximation to the parameters u_j , v_j , w_j is obtained by converting the so-called approximate geodetic coordinates of the satellite into rectangular coordinates by use of equation 4.2-18. The approximate geodetic coordinates of the satellite are obtained by averaging the latitudes and longitudes of the ground stations involved in the simultaneous event and estimating the ellipsoidal height of the satellite. The idea that the above is crude is immediately rejected upon the knowledge that at most four iterations (to a tolerance of 1 cm in u_j , v_j , w_j) are required and that the electronic computers perform these iterations more quickly than the time necessary to solve the corresponding simultaneous, exact, secondorder equations.

The equation giving the mathematical structure of this preliminary adjustment is identical to equation 4.3-1, the mathematical structure for the main range adjustment. Since only three parameters are involved, the linearized form of the mathematical structure for n ground stations in one simultaneous event becomes

$$AX - \overline{V} + W = 0$$
 3.2 - 2

where the coefficient matrix

$$A = \begin{bmatrix} \frac{u_{j}^{0} - u_{l}^{0}}{r_{lj}^{0}} & \frac{v_{j}^{0} - v_{l}^{0}}{r_{lj}^{0}} & \frac{w_{j}^{0} - w_{l}^{0}}{r_{lj}^{0}} \\ \frac{u_{j}^{0} - u_{2}^{0}}{r_{2j}^{0}} & \frac{v_{j}^{0} - v_{2}^{0}}{r_{2j}^{0}} & \frac{w_{j}^{0} - w_{2}^{0}}{r_{2j}^{0}} \\ \frac{2j}{r_{j}^{0}} & \frac{2j}{r_{j}^{0}} & \frac{2j}{r_{j}^{0}} \\ \vdots & \vdots & \vdots \\ \frac{u_{j}^{0} - u_{k}^{0}}{r_{kj}^{0}} & \frac{v_{j}^{0} - v_{k}^{0}}{r_{kj}^{0}} & \frac{w_{j}^{0} - w_{k}^{0}}{r_{kj}^{0}} \\ \frac{\vdots}{r_{kj}^{0}} & \frac{v_{j}^{0} - v_{k}^{0}}{r_{kj}^{0}} & \frac{w_{j}^{0} - w_{k}^{0}}{r_{j}^{0}} \\ \frac{u_{j}^{0} - u_{m}^{0}}{r_{mj}^{0}} & \frac{v_{j}^{0} - v_{m}^{0}}{r_{mj}^{0}} & \frac{w_{j}^{0} - w_{m}^{0}}{r_{mj}^{0}} \end{bmatrix}$$

$$3.2 - 3$$

the correction vector for the satellite coordinates

$$X = \begin{bmatrix} du_{j} \\ dv_{j} \\ dw_{j} \end{bmatrix}$$
3.2 - 4

the residual vector for the ranges

$$\vec{\mathbf{v}} = \begin{bmatrix} \vec{\mathbf{v}}_{1j} \\ \vec{\mathbf{v}}_{2j} \\ \vdots \\ \vec{\mathbf{v}}_{kj} \\ \vdots \\ \vec{\mathbf{v}}_{mj} \end{bmatrix} \qquad 3.2 - 5$$

and the constant vector

$$\dot{w} = \begin{bmatrix} r_{1j}^{0} - r_{1j}^{b} \\ r_{2j}^{0} - r_{2j}^{b} \\ \vdots \\ \vdots \\ r_{mj}^{0} - r_{mj}^{b} \end{bmatrix}$$
 5.2 - 6

where r_{lj}^{0} and r_{lj}^{b} are preliminary and observed ranges respectively.

The normal equations

$$NX + U = 0$$
 $3.2 - 7$

where

and

$$U = A'PL$$
 3.2 - 9

are solved for X by iteration until the elements of the vector X are less than 1 cm. At this point, X is entered into equations 3.2 - 2 and the vector of residuals \overline{V} is determined; the variance of unit weight is then computed according to

$$\sigma_0^2 = \frac{\overline{V} \cdot P \overline{V}}{n-3} \qquad 3.2 - 10$$

The complete set of data for the simultaneous event is printed out for evaluation in the case that the particular σ_0^2 is greater than a chosen input value. At the same time, no contribution is made to the normal equations by the rejected event.

3.3 Constraints

For the explanation of the type of constraints used in the solution, see section 4.5. Only the data used in applying the various constraints is summarized here in Tables 3.3-1 to 3.3-4.

Summary of Constraint-Types with the Source Information

Code	Constraint Type	Source (Agency)*
1 2 3 4	<u>Relative Position</u> BC-4 - Baker-Nunn BC-4 - SECOR BC-4 - BC-4 Others	SAO, NGS DMA/TC NGS OSU
5 6	<u>Height</u> MSL (mean sea level heights) Geoidal undulations	CSC, NGS, NWL OSU [Rapp, 1973]
7 8 9 10 11	<u>Length (Chord)</u> North America Europe Africa Australia C-Band	NGS NGS, DGFI NGS NGS, DNP NASA/Wallops Isl.

Computer Sciences Corporation *CSC

Deutsche Geodätisches Forschungsinstitut DGFI

DMA/TC

- Defense Mapping Agency Topographic Center Division of National Mapping, Dept. of National Development, Australia DNP NGS
- National Geodetic Survey NWL Naval Weapons Laboratory
- SA0
- Smithsonian Astrophysical Observatory

Relative Position Constraints

	RELATIVE	COORDINATES	(MFTERS)	WE IGHTS	SOURCE
	Δυ	1 Δν	Δw	(1/σ ²)	CODE 2
	!	1	1		
1 1033-6123	I _417481.74	1 +673256.41	1 -267776.56	1 0.01	4
3106-4061	245.98	1 359.44	514,15	0.75	4
3405-4081	-928-41	-1670.35	-3352.87	0.75	4
3406-9009	-10.6?	4.41	27.55	1 3.00	4
3413-6067	-48.64	-289.13	1258.05	1 3.00 1	4
3476-6008	36.31	22.94	-20.80	1 3.00	4
3499-6009	0.0	0.0	0.0	100.00	4
3648-5048	37875.28	1 10510.31	7502.84	1 3.00	4
4050-9002	-4500.31	10094.67	1601.88	0.75	4
4082-9010	-65710.25	62288.48	137731.57	0.28	4
4280-9425	-221861.49	103220.84	-27546.08	0.12	4
740-7039	674.06	-699.92	-1476.31	1 0.75	4
41-2-9012	-77910.13	349731.80	145328.72	0.05	4
5201-6003	29.55	-48.21	-25+52	1.00	2
5712-6008	45.95	45.97	1 137.68	1 1.00	2
5713-5739	8.05	33,26	9.95	1 20.00 1	2
5713-6007	2.08	-1.06	1.88	1 1.00	2
5715-6063	1.05	-83.72	-95.45	1.00	2
5720-6042	-1.87	-0.26	30.16	1 1.00	2
5720-9028	-2977.60	3046.18	2495.80	1 1.00	4 1
5721-6015	49.67	-44.84	23.59	1 1.00	2
5726-6047	30.82	24.81	3.07	1 1.00	2
5730-6012	-4.69	-41.68	26.66	1 1.00	2
5733-6059	-0.92	1 -0.38	G-04	1 1.00 1	2
5734-6004	-1.20	0.12	1 1.59	1 1.00 1	2
5735-6067	-46.20	-290.84	1257.74	1 1.00	2
5736-6055	5.82	-13.48	42.60	1.00	2
5744-6015	49.84	-46.49	-42.16	1.00	2
6002-7043	56.22	499.51	568.41	3.00	4
6011-9012	49,30	-118.74	35.91	3.00	4
6012-6066	1.93	42.34	-25.67	1100.00	3
6013-9005	380844.93	1 154432-31	-395410.11	0.01	4
6019-9011	52.02	1 37+19	1 -18.98	1 3.00	1
1 0U42-9U28	-2915.13	1 2140+44	1 2465.64	1 3.00	1
1 1067-9029	-44.20			1 3.00	1 1
0006-0005	20121.91	1 -40107.10	1013.52	1 2 2 2 0 1	1 1
D111~0134 A111=043F	1160 34	90+04 _/366/ 34	-52201 DT	1100.00 1	5
1 0111-7423 0111-7423	1 110/104	1 -43004020 1 400442 00	1 72284+82	1 1.02 1	4
7072-0010		9 34	220224+73		4 4
BO15-9010	-1141 50	1 29639.04	1 15776.81	1 3.00 1	4
8015-8020	372508 34	1 20626410		1 0.02 1	~ 1
9051~0030	11702.44	I = 9725-37	-9108.20		
		//2/0// 			- 1
				; ;	
		•		1 I	

 1 APPLIED EQUALLY TO ALL THREE RELATIVE COORDINATES IN M^{2} - UNIT

PREFER TO TABLE 3.3-1

Geoidal Undulations and Heights Used in the Constraints

1	STATION	I NREF	HCONSTR 2	1 OT HCONSTR
NO	1 N A M E	(M)	((()	I (M)
!		!		1
1021	I BLOSSOM POINT	1	1 -45-65	2.5
1022	FORT MYERS	-31.58	-39.92	4.0
1030	GOLDSTONE	-30.00	896.45	4.0
1032	ST. JOHNIS	11.57	61.03	4.0
1033	FAIRBANKS	9.11	168.16	6.0
1034 	I E. GRAND FORKS	-25.47 	218.56 	2.5
1		1 - 36 39	 043 66	
1 31042			1 -69.70	
3334	STONEVILLE	-31.54	-7.54	
3400	COLORADO SPRINGS	-18.42	2159.63	2.5
3401	BEDFORD	-30.59	36.93	2.5
3402	SEMMES	-29.04	33.07	4.0
			1	
3404	SWAN ISLAND	-6.69	20.89	6.0
3405	GRAND TURK	-49.77	-64.73	5.0
3400	I LUKALAU	-29.19		
1 3413	I TRINIUAU	-12 03	1 174.03	1 4.0 1
3414	BRASILIA	- 9.88	1 1021.23	
3431	ASUNCION	11,98	137.72	6.0
3476	PARAMARIBO	-28.31	-34.02	6.0 1
3477	BOGCTA	10.71	2551.44	6.0
3478	MANAUS	- 7.17	53.63	6.0
3499		16.73	2682.74	
	HUNIEK AFD	-32.10	-30+04 	2+2
 3657	ABERDEEN	-36-55	 -45.38	
3861	HOMESTEAD	-33.70	-47.20	4.0
3902	CHEYENNE	-16.53	1859.48	2.5
3903	HERNDON	-36.87	117.14	1 6.0 1
4050	PRETORIA	24.12	1573.21	6.0 1
4061 1	ANTIGUA	-49.83	-28.30	8.0
i		(0.0)		
1 4081	I GRAND IURK	-47.84	-31.01	
4280	I MENNIFI ISLAND	-36.79	1 -27+71 1 84.52	
4740	BERMUDA	-43.45	-41.92	4.0
4742	KAUAI	5.61	1166-61	8.0
5001	HERNDON	-36.87	76.95	6.0
· · · · · · · · · · · · · · · · · · ·				•

	STATION	I NREF	HCONSTR '	Ι σ _{HCON}
NO	1 NAME			i (M
			1	 I
5201 ·	I MOSES LAKE	 -17.65	347.84	1 4.
5410	I MIDWAY ISLANDS	1 - 4.13	1 7.51	i e.
5648	FORT STEWART	-35.07	-20.18	1 2.
5712	PARAMARIBO	-28.31	-30.79	4.
5713	TERCEIRA	1 54.00	83.29	1 4.
5715	I DAKAR	27.20	21.50	4.
5717	I I FORT LAMY	l 10.35	1 273.29	1
5720	ADDIS ABABA	1 - 5.78	1 1850.34	1 6.
5721	MASHHAD	-20.67	949.29	1 4.
5722	I DIEGO GARCIA	1 -73.64	-92.76	8.
5723	CHIANG MAI	-40.39	256.21	6.
5726	ZAMBDANGA	62.16	69.14 	18.
5730	I I WAKE ISLAND	1 13.75	1 26.83	i 18.
5732	I PAGD PAGD	27.35	1 40.70	1 6.
5733	CHRISTMAS ISLAND	1 16.07	25.90	1 8.
5734	1 SHEMYA	6.22	45.72	1 8.
5735	NATAL	-12.03	1 -3.37	1 6.
5736	ASCENSION ISLAND	16.26 	55.09	8.
5739	l tfrceira	1 54.00	83.39	1 4.
5744	I CATANIA	37.43	1 18.89	1 4.
5907	WORTHINGTON	-28.11	445.03	1 2.
5911	BERMUDA	-43.44	-39.80	8.
5912	PANAMA	6.16	0.39	1 6.
5914	I PUERTO RICO	-50.08 	-5.07	6.
5915	l Austin	-26.32	172.03	1
5923	I CYPRUS	24.64	1 158.72	1 8.
5924	ROTA	54.48	36.90	6.
5925	ROBERTS FIELD	33.75	1 10.31	6.
5930	SINGAPORE	8.28	1 1.16	6.
5931	I HONG KONG I	2.32	155.02	6.
5933	I DARWIN	1 50.66	 61.75	1 8.
5934	MANUS	1 74.75	81.69	1 8.
59 35	I GUAM	1 48.15	86.00	1 8.
5937	1 PALAU	69.93	1 137.52	1 8.
5938	GUADALC ANAL	! 59.97	74.99	8.
	1	1	1 10 70	

Table 3.3-3 (cont'd)

1	STATION	I NREF	HCONSTR	GHCONSTR
NO	I NAME	· (M)	(м)	(M)
!		!	!	
L 6001	Т . Т. Тыск б	1	1 204-62	
6002		1 -36.90	-6.73	
1 6003	MOSES LAKE	1 -17.65	1 347.66	4.0
6004	SHEMYA	6.22	43.22	B.O I
6006	TROMSO	27.06	113.19	4.0 1
6007	TERCEIRA	54.00	80.59	4.0
		1	l l	
60.08	PARAMARIBO	-28.31	-33.91	4.0
6009	GUITO	1 16.73	2683.04	6.0
6011	IUAM	1 1.75	3056.88	8.0
6012	WAKE ISLAND I	13.75	22.23	8.0
6015	KANUYA	34.27	96.47	6.0
6015	MASHHAD	-20.67	945.89	4.0
1 (0)(
1 6010	L CATANIA	1 27.42	409 43	
1 6020	FASTER ISLAND	1 - 4.75	1 219.02	
6022		27.35	38.04	B.0 I
6023	THURSDAY ISLAND	67.94	127.40	4.0
6031	INVERCARGILL	8.68	6.35	8.0
		1 1		
6032	CAVERSHAM	-30.51	-15.59	6.0 1
6038	SOCORRO ISLAND	35.47	-15.81	6.0 1
6039	PITCAIRN ISLAND	-16.68	3245	8.0
6040	COCOS ISLAND	-38.11	-50.26	8.0 1
6042	ADDIS ABABA	- 5.78	1847.40	6.0
6043	CERRO SOMBRERO	15.60	76.25	8.0
			17.14	
1 6044	I MAND TTING	1 - 4 07	112 EE	
1 6049	MAUNIIIUS 784808NC8	1 62 17	L 112+22	
6047	DAINED STATION	1 15.70	02+24	
6051	MANSON STATION	1 29.20	12.68	6.0 1
6053	MCMURDO STATION	-56.10	-50.90	6.0 1
1		1		
6055	ASCENSION ISLAND	16.26	52.04	8.0
1 6059 1	CHRISTMAS ISLAND	1 16.07	25.15	8.0 1
1 6060	CULGOORA	27.33	236.27	6.2 1
6061	SOUTH GEORGIA	1 11.28	-10,88	B.O
6063	DAKAR	27.20	20,50	4
6064	FORT LAMY	10.35	270,19	6.0
ii		j		

Table 3.3-3 (cont'd)

	STATION	I NPEF	HCONSTR 2	
NO	I NAME	і Е (м)	1 [(M)	i (M) i
!		1		t (
1				
1 6065	I HUHENPEISSENBERG	1 44+23	1 26 02	1 2+7 1
1 6060	I NATAI	1 - 12.03	1 =2.14	
6068	I JOHA I SPURG	1 24.65	1 1513.46	6.0
6069	TRISTAN DA CUNHA	1 25.52	17.30	8.0
6072	CHIANG MAI	-40.39	264.61	8.7 1
1	1	t	t	I I
1 4073		l -72 44	[
6075	I MANE	-44.40	1 514 23	
6078	PORT VILA	63.10	I 81.72	
6111	I WRIGHTWOOD I	-33.18	2248-74	4.0
6123	POINT BARROW	- 1.40	1.62	6.0
5134	WRIGHTWCCD II	-33.19	7167.83	1 4.0 1
1	l	l	ł	I I
1 2024				i
1 70 30		1 -19.78	1 32.17	1 4.0 1
1 7030	L COLUMDIA		229+20	1 2+7 1
1 7040	SAN HAN		-20-06	
7043	GREENSELT	-36-91	2.46	
7045	DENVER	-18.10	1765.36	2.5
Í		I	l	iii
			1	
1 7072		-36.04	-35.56	4.0
1 7074	L SUDRUKT	-39.20 -36.63	1 230.07 1 603 91	
1 8009		42.33	403.71 41.11	
8010	ZIMMERWALD	44.77	920-58	1 2.5 1
8011	MALVERN	47.43	134.97	4.0
Î I				iii
			i 	
1 8015	HAUTE PROVENCE	46.38	676.87	
1 8030		47.¥L	1 374+13	4.U 36
1 90001	I ORGAN PASS	-72.93	1 1623.14	1 2.5 I
9002	OLIFANTSFONTEIN	24.27	1533.45	
9004	SAN FERNANDO	54.57	50.44	6.0 1
! i	1		l i	I İ
	Torne	20.00		
1 9005	NATMY TAL	20.20	00.1/ 1450 00	
1 9007	L DE CHITDA	1 -40+12 31.82	1 1020+07	
1 900A	SHIRA?	-10-91	1 2407+27	
9009	CURACAD	-29.19	-39.15	4.0 1
9010	JUPITER	-36.04	-34.63	4.0
1			l i	i i
I (1	1 1	1 1

Table 3.3-3 (cont'd)

STATION		I NREF	HCDNSTR 2	(THCONSTR
I NO	I NAME	і 1 (м)		i (n) i
!	· · · · · · · · · · · · · · · · · · ·	[!	!
l 9011 ·	I VILLA DOLORES	1 22.80	1 609.25	6.0
9012	MAUI	1.76	3041.76	1 8.0 1
9021	MOUNT HEPKINS	-27.00	2351.01	1 4.0 1
9028	ADDIS ABABA	- 5.78	1886.15	1 6.0 1
9029	NATAL	-12.03	2.57	1 6.0 1
9031	COMODORO PIVADAVIA	1 13.43	179.36	1 8.0 1
		l	l	1 1
1	l	l I	ł	1 1
9051	L ATHENS	32.81	1 190.96	1 8.0 1
9091	DICNYSOS	32.84	470.13	1 9.0 1
9424	I COLD LAKE	-26.21	672.13	1 2.5 1
9425	EDWARDS AFB	-32.39	749.47	1 4.0 1
9426	HARESTUA	36.39	589.17	1 2.5 1
9427	JOHNSTON ISLAND	8.83	20.59	1 8.0
			[
9431	RIGA	25.67	9.76	1 2.5 1
9432	UZHGOROD	1 39.71	201.99	1 2.5 1
		E 1	l 1	

' FROM [RAPP,1973]

² HCONSTR = MSL + NREF + ΔN (SEE SECTION 5.1)

* USED IN COMPUTING THE WEIGHTS OF THE HEIGHT CONSTRAINTS

Chord Constraints

		and the second state of th	
Station-Station	Chord Distance (meters)	σ × 10 ^{6 1}	Source Code ²
6002-6003 6003-6111 6006-6065 6016-6065 6063-6064 6023-6060 6006-6016 3861-7043 4082-4050 4082-4742 4082-4740 4082-4081 4082-4061	3 485 363.232 1 425 876.452 2 457 765.810 1 194 793.601 3 485 550.755 2 300 209.803 3 163 623.866 3 54 ⁻ 871.454 1 531 562.9 10 909 592 7 362 142 1 593 106 1 230 691 2 288 026 2 73 62	1.00 1.11 1.43 1.18 1.18 2.00 Rejected 1.00 1.33 Rejected Rejected 2.00 2.00 2.00	7 7 8 9 10 10 8 7 11 11 11 11
4/42-4200	3 9/1 004	rejected	• •

¹Used in computing the weights.

²Refer to Table 3.3-1.

4. THEORY AND MATHEMATICAL MODELS [86, 150, 185, 191] This section presents almost the complete theory used in transforming the observational data (section 3) into geodetic results. Left out of this section and given in section 3 instead is that part of the theory which concerns the preprocessing procedure of the observed data where systematic errors in the observed data are removed, detected, and eliminated, or where generally the necessary corrections to the observed data are made <u>before</u> inserting them into the method of least squares adjustment.

4.1 Definitions and Coordinate Systems [86]

4.11 Basic Concepts and Statement of the Problem

A theory proceeds from a set of known facts or assumptions celled the <u>data</u>, and by manipulating these according to accepted rules called <u>theory</u>, produces certain conclusions called <u>results</u>. This process is started in response to the posing of a <u>problem</u>. The problem in this case can be stated as follows:

Given are the approximate coordinates of a number of points (stations) on the surface of the earth, which are assumed to be in error by unknown amounts. Also given are measured distances and/or directions from these points to other points on and also above the surface of the earth (artificial satellites); the observations occur in sets with all observations within a given set being made at the same time. The problem is then to find the most probable values for the unknown errors in the coordinates of points (stations) on the earth's surface.

Thus in this "space triangulation (trilateration)" method satellites are observed simultaneously from groups of known and unknown ground

48

stations, permitting a purely geometric solution. The main characteristic of this method is that orbital elements are not required. If the satellite positions are needed they can be computed from the preliminary coordinates of the ground stations and the observations themselves.

The method used to get a solution is therefore (1) to set up the equations giving the observations (angle or distance) in terms of observer and satellites coordinates; (2) linearize these equations to give observation <u>residuals</u> in terms of observer and satellites coordinate <u>errors</u>; (3) select from the data available those which can be put into simultaneity sets; (4) using known and assumed statistical properties of the observations, solve the equations of (2) using the data of (4).

Since the method is geometric and involves coordinates of earth surface points <u>and</u> of points in "inertial" space, transformation between coordinate systems occurs frequently. The systems used and their interrelation are described in 4.12 and 4.13 respectively.

4.12 Coordinate Systems

The optical observations after preprocessing (section 3.22) are assumed to be in the true topocentric celestial system, while the preprocessed topocentric ranging data is independent of the coordinate system used.

Two distinct types of coordinate systems have been used here:

- (a) the terrestrial (average and instantaneous) system,
- (b) the celestial (true) system.

The following summary of these systems assumes right-handed rectangular coordinates with axes numbered according to Fig. 4.1-1. Generally the

origin of the coordinate system coincides with or is near to the center of gravity of the earth.

Fig. 4.1-1 Numbering of coordinate axes.

Average Terrestrial (X)

- (*) 3-axis directed toward the average north terrestrial pole as defined by the International Polar Motion Service (IPMS), commonly known as the Conventional International Origin (CIO) [Mueller, 1969, p. 351].
- (b) 1-3 plane parallel to the mean Greenwich astronomic meridian as defined by the Bureau International de l'Heure (BIH) [Mueller, 1969, p. 343].

This system is the geodetic (terrestrial) coordinate system later also referred to as the u,v,w system.

Instantaneous Terrestrial (Y)

- (a) 3-axis directed toward the instantaneous rotation axis of the earth (true celestial pole), the coordinates of which are given by the IPMS or by the BIH with respect to the CIO.
- (b) 1-3 plane contains the point where the mean Greenwich astronomic meridian intersects the true equator of date.

This coordinate system is used as the intermediate connection between the terrestrial and celestial coordinate systems.

True Celestial (Z)

- (a) 3-axis equivalent to 3-axis of instantaneous terrestrial system (true celestial pole).
- (b) 1-axis directed toward the true vernal equinox of date.

These and still other coordinate systems are discussed in detail in [Veis, 1963; Mueller, 1969].

4.13 Transformations of Coordinate Systems

Transformation between terrestrial and celestial coordinate systems becomes necessary in the case that topocentric directions to satellites are obtained by photographing the satellite against a background of stars. After corrections for the physical effects such as differential refraction and aberration, shimmer, etc. [Mueller, 1964, pp. 309-317; Hotter, 1967] have been applied, the resulting topocentric right ascension and declination form the purely geometric ground-to-satellite direction. In terms of the corresponding direction cosines, \vec{Z} can be expressed by the column vector

$$\vec{Z} = \begin{bmatrix} \cos \delta & \cos \alpha \\ \cos \delta & \sin \alpha \\ \sin \delta \end{bmatrix} = \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix}$$

$$4.1 - 1$$

In order to transform \vec{Z} from the celestial to the average terrestrial system (in which the mathematical model for the adjustment is expressed), rotations about the coordinate axes are required.

Fig. 4.1-2 True celestial and instantaneous terrestrial coordinate systems.

Transformation is first made into the instantaneous terrestrial system (see Fig. 4.1-2). This transformation is a function of a single finite rotation through the Greenwich apparent sidereal time (GAST). A vector \vec{Z} in the true celestial system is transformed into the instantaneous terrestrial system by the following equation:

$$\vec{Y} = R_3 (GAST) \vec{Z}$$
 4.1 - 2

where \vec{Y} is the resulting vector in the instantaneous terrestrial system and R_3 (GAST) is a 3 x 3 matrix that expresses a counterclockwise rotation, as viewed from the positive end of the 3 axis, by the amount GAST, namely:

$$R_{3}^{2}(GAST) = \begin{bmatrix} \cos(GAST) & \sin(GAST) & 0 \\ -\sin(GAST) & \cos(GAST) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 4.1 - 3

Next the vector \vec{Y} in the instantaneous terrestrial system (Y) is transformed to the average terrestrial (X) system (see Fig. 4.1-3). This transformation is a function of two rotations through the x and y coordinates of the instantaneous terrestrial pole.

Fig. 4.1-3 Instantaneous and average terrestrial coordinate systems.

$$\dot{X} = R_2(-x) R_1(-y) \vec{Y}$$
 4.1 - 4

where \vec{X} is the resulting vector in the average terrestrial coordinate system; $R_1(-y)$ and $R_2(-x)$ are 1-axis and 2-axis rotations through -y and -x. Since the x and y values are differentially small, the finite rotations may be replaced by differential rotations and equation 4.1 - 4 is reduced to

$$\vec{x} = \begin{bmatrix} 1 & 0 & x \\ 0 & 1 & -y \\ -x & y & 1 \end{bmatrix} \vec{Y}$$
4.1 - 5

by omitting the products of x and y. Thus the transformation from the true celestial to the average terrestrial coordinate system is achieved by combining the rotations expressed in equations 4.1 - 2 and 4.1 - 4, namely:

$$\vec{X} = R_2(-x) R_1(-y) R_3(GAST) \vec{Z}$$
 4.1 - 6

and after considering equation 4.1 - 5, the matrix form is

$$\vec{X} = S \vec{Z}$$
 4.1 - 7

where

$$S = \begin{bmatrix} \cos(GAST) & \sin(GAST) & x \\ -\sin(GAST) & \cos(GAST) & -y \end{bmatrix} 4.1 - 8$$

-x cos(GAST)-y sin(GAST) -x sin(GAST)+y cos(GAST) 1 \end{bmatrix}

The quantities x, y and GAST in the above equation are obtained as described in [Mueller, 1969, pp. 80, 153, 337].

4.2 The Direction Adjustment

4.21 Uncorrelated Events [86]

4.211 The Mathematical Model.

The adjustment method is by least squares, where the parameters are the three-dimensional rectangular coordinates of the ground stations and satellite positions,* while the observables are the topocentric range,* and topocentric declination and right ascension of the satellite.

The mathematical structure relating the parameters and the observables is a function of three vectors. The three vectors as depicted in Fig. 4.2-1 are (the arrow over the symbol will be reserved for those vectors which have a finite magnitude as opposed to, say, vectors containing differential corrections):

(1) \vec{X}_{i} , the coordinate-system-origin to ground station vector, (2) \vec{X}_{j} , the coordinate-system-origin to satellite position vector, (3) \vec{X}_{ii} , the ground station i to satellite position j vector.

Thus

$$\vec{x}_{j} - \vec{x}_{i} = \vec{x}_{ij}$$
 4.2 - 1

or

$$F_{ij} = \vec{X}_j - \vec{X}_i - \vec{X}_{ij} = 0$$
 4.2 -2

where

$$\vec{X}_{j} = \begin{bmatrix} u_{j} \\ v_{j} \\ w_{j} \end{bmatrix}$$
 4.2 - 3

^{*}Needed in the algebraic derivation but, in fact, in the numerical computation, they are either not needed, or obtained to a sufficient accuracy from the observed quantities.

is a vector composed of the rectangular coordinates of an arbitrary satellite position;

$$\vec{X}_{i} = \begin{bmatrix} u_{i} \\ v_{i} \\ w_{i} \end{bmatrix}$$
 4.2 - 3(a)

is a vector composed of the rectangular coordinates of an arbitrary ground station;

$$\vec{X}_{ij} = S \begin{bmatrix} r_{ij} \cos \delta_{ij} \cos \alpha_{ij} \\ r_{ij} \cos \delta_{ij} \sin \alpha_{ij} \\ r_{ij} \sin \delta_{ij} \end{bmatrix}$$

$$4.2 - 4$$

 r_{ij} , δ_{ij} , α_{ij} being the topocentric range, true declination and right ascension from i to j, respectively, while S is the matrix which transforms the vector from the true celestial to the average terrestrial coordinate system (section 4.13).

The point-by-point build-up of the network can be visualized in the following way. Given the components of the vectors \vec{X}_i and \vec{X}_{ij} , \vec{X}_j is computed. Then with this position j as known, and a known vector from an unknown k station to j, the coordinates of the unknown station \vec{X}_k are computed (see Fig. 4.2-1). This is extended to include many unknown and known stations, along with many redundant observations thereby necessitating an adjustment.

Strictly speaking, pure optical or range data does not permit such a procedure to be literally followed; however, the adjustment framework (a form of collinearity) remains applicable.

The mathematical structure (equation 4.2 - 2) is linearized by a Taylor series expansion about the preliminary values of the ground stations and satellite positions, and the observed topocentric values of the range, declination and right ascension. The result is the following matrix equation

$$AX + BV + W = 0$$
 4.2 - 5

which represents the general linearized mathematical model.

In this equation, the design matrix A is composed of submatrices of the form

$$A_{ij} = \frac{\partial F_{ij}}{\partial X_{j}} = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} +I_{3} & |-I_{3} \end{bmatrix} = 4.2 - 6$$

and the unknown X vector is composed of subvectors of the form

$$X_{ij} = \begin{pmatrix} X_{j} \\ --- \\ X_{i} \end{pmatrix}$$
 4.2 - 7

where

$$X_{j} = \begin{bmatrix} du_{j} \\ dv_{j} \\ dw_{j} \end{bmatrix}, \quad X_{i} = \begin{bmatrix} du_{i} \\ dv_{i} \\ dw_{i} \end{bmatrix} \quad 4.2 - 8$$

$$4.2 - 9$$

are corrections to the preliminary values of the satellite positions and ground stations respectively. The design matrix B is composed of 3 x 3 submatrices of the form

$$B_{ij} = \frac{\partial F_{ij}}{\partial \delta_{ij}, \partial \alpha_{ij}, \partial r_{ij}} = S R_3(-\alpha_{ij}) R_2(-90^\circ + \delta_{ij}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\cos\delta_{ij} & 0 \\ 0 & 0 & -1 \end{bmatrix} 4.2 - 10$$

where S is defined by equation 4.1 - 8; R and R are rotation matrices. The matrix

is omitted from the expression for B_{ij} since it is multiplied into the vector of residuals V composed of the subvectors

$$V = \begin{bmatrix} r_{ij}^{\delta\delta} ij \\ (r_{ij} \cos \delta_{ij}) & \delta_{ij} \\ \delta r_{ij} \end{bmatrix}$$
 4.2 - 1i

These are the residuals of the adjustment in units of meters $(\delta\delta_{ij} \text{ and } \delta\alpha_{ij}$ are in radians). Observe that $\delta\delta_{ij}$ is measured on the circle of radius r_{ij} , while $\delta\alpha_{ij}$ is measured on the circle of radius of $r_{ij} \cos\delta_{ij}$.

Finally, the misclosure vector W is composed of the subvectors

$$W_{ij} = \dot{X}_{j}^{0} - \dot{X}_{i}^{0} - \dot{X}_{ij}^{b}$$
 4.2 - 12

where "o" designates "evaluated at preliminary values" and "b" designates "evaluated at observed values."

4.212 Weighting of Observations.

The observed quantities in the optical case are considered as the topocentric declinations (δ) and right ascensions (α). The corresponding accuracy estimates resulting from a photographic plate adjustment or some other a priori estimate are σ_{δ}^2 and σ_{α}^2 , the variances, and $\sigma_{\alpha\delta} = \sigma_{\delta\alpha}$, the covariance. All units are arc seconds squared.

It is important to note that the weighting of the declinations and right ascensions is made on the basis of the estimates of variances of δ and α obtained from the plate adjustments and that it is assumed that the variance of δ and α do not vary according to the distance of the satellite from the particular observing ground station.

On the other hand, the weighted sum of squares of the residuals is conveniently chosen to have units of arc seconds squared; thus the weights are to have units of $(\operatorname{arc sec})^2 \operatorname{m}^{-2}$ since the units of the residuals have been stipulated (equation 4.2 - 11) to be meters. Therefore, it is necessary to transform σ_{δ}^2 , σ_{α}^2 , and $\sigma_{\delta\alpha}$ into linear units (meters) by the following formulas:

$$(\sigma_{\delta})^2 = \left| r \frac{\sigma_{\delta}^u}{\rho^u} \right|^2$$
 4.2 - 13

$$(\sigma_{\alpha})^2 = \left| r \frac{\sigma_{\alpha}^2}{\rho^2} \right|^2 \cos^2 \delta$$
 4.2 - 14

$$\sigma_{ij\alpha} = r^2 \frac{\sigma_{\delta\alpha}^{(")^2}}{(\rho^{"})^2} \cos \delta \qquad 4.2 - 15$$

where r is the approximate topocentric range and

$$\rho^{"} = \frac{1}{\sin 1}$$

With the estimated accuracy in linear units the following variancecovariance matrix is formulated:

$$\Sigma_{\delta,\alpha,r} = \begin{bmatrix} \sigma_{\delta}^{2} & \sigma_{\delta\alpha} & \sigma_{\delta r} \\ \sigma_{\delta}^{2} & \sigma_{\alpha}^{2} \\ same & \sigma_{\alpha}^{2} \\ as above & \sigma_{r}^{2} \\ diagonal \end{bmatrix}$$

where the new quantities σ_r^2 , $\sigma_{\delta r}$, and $\sigma_{\alpha r}$ are the variance of the range, covariance between the declination and range, and the covariance between the right ascension and range respectively. If the correlation coefficients

$$\rho_{\delta \mathbf{r}} = \frac{\sigma_{\delta \mathbf{r}}}{\sigma_{\delta} \sigma_{\mathbf{r}}} = 0$$
$$\rho_{\alpha \mathbf{r}} = \frac{\sigma_{\alpha \mathbf{r}}}{\sigma_{\alpha} \sigma_{\mathbf{r}}} = 0$$

and

 $\sigma_r \rightarrow \infty$

the weight matrix for a single direction is

$$P_{ij} = \sigma_{0}^{2} \begin{bmatrix} \sigma_{\delta}^{2} & \sigma_{\delta\alpha} \\ \sigma_{\alpha\delta} & \sigma_{\alpha}^{2} \end{bmatrix}^{-1} & 0 \\ \sigma_{\alpha\delta} & \sigma_{\alpha}^{2} \end{bmatrix} = 0$$

$$A.2 - 16$$

where σ_0^2 is the a priori variance of unit weight.

Corresponding to P_{ij} , P denotes the weight matrix for the observed topocentric directions of the adjustment. P has the characteristic of containing non-zero 3 x 3 matrices only along the diagonal since the individual directions are assumed to be independent.

The topocentric range is needed in equations 4.2 - 13 to 4.2 - 15 to convert the estimated accuracy of the directions from arc units into linear (meters) units. Four significant figures are required in the topocentric range. Equation 4.2 - 13 shows that the range need have no more significant figures than $\sigma_{\delta}^{"}$ or $\sigma_{\alpha}^{"}$.

The topocentric range from an arbitrary ground station i in a given simultaneous event j is computed from
$$r_{ij} = \left[\left(u_j^0 - u_i^0 \right)^2 + \left(v_j^0 - v_i^0 \right)^2 + \left(w_j^0 - w_i^0 \right)^2 \right]^{\frac{1}{2}}$$
 4.2 - 17

i = 1, 2, ..., m (number of stations in the event). u_i^0 , v_i^0 , w_i^0 are the preliminary rectangular coordinates of the ith ground station and are computed from

$$\mathbf{\tilde{X}}_{i}^{0} = \begin{bmatrix} \mathbf{u}_{i}^{0} \\ \mathbf{v}_{i}^{0} \\ \mathbf{w}_{i}^{0} \end{bmatrix} = \begin{bmatrix} (N+H) \cos \phi & \cos \lambda \\ (N+H) \cos \phi & \sin \lambda \\ [N(1-e^{2}) + H] \sin \phi \end{bmatrix}$$

$$4.2 - 18$$

 ϕ , λ , H, N, being the geodetic latitude and longitude, the ellipsoidal height, and prime vertical radius of curvature at point i, respectively, while e is the eccentricity of the reference ellipsoid. u_j^0 , v_j^0 , w_j^0 are the preliminary rectangular coordinates of the jth satellite position and are computed (note that these are needed only for the purpose of getting the approximate topocentric range) as follows:

(1) The ground vector \vec{X}_{ik} between the first two stations listed in the particular simultaneous event

$$\vec{X}_{ik} = \begin{bmatrix} u_k - u_i \\ v_k - v_i \\ w_k - w_i \end{bmatrix}$$
4.2 - 19

(2) The unit vector (direction) \vec{X}_{ij} from the ground station i to the satellite position j is computed from

$$\dot{\bar{X}}_{ij} = S \begin{bmatrix} \cos \delta_{ij} \cos \alpha_{ij} \\ \cos \delta_{ij} \sin \alpha_{ij} \\ \sin \delta_{ij} \end{bmatrix}$$

$$4.2 - 20$$

where S is the transformation matrix of the true celestial to the average terrestrial coordinate systems (section 4.13).

- (3) In the same way the direction \vec{X}_{kj} is computed.
- (4) The angle A_k at ground station k is computed from

$$\cos A_{k} = \frac{\vec{x}_{ki} \cdot \vec{x}_{kj}}{|\vec{x}_{kj}||\vec{x}_{kj}|} \qquad 4.2 - 21$$

(5) The angle ${\rm A}_{\rm j}$ at the satellite position is computed from

$$\cos A_{j} = \frac{\vec{x}_{ji} \cdot \vec{x}_{jk}}{|\vec{x}_{ij}| |\vec{x}_{kj}|}$$
 4.2 - 22

(6) Finally, the satellite position vector \vec{X}_{j}^{0} to be used in equation 4.2 - 17 is computed from (see Fig. 4.2-1)

$$\vec{X}_{j}^{0} = \vec{X}_{i}^{0} + r_{ij}\vec{X}_{ij} = \begin{bmatrix} u_{j}^{0} \\ v_{j}^{0} \\ v_{j}^{0} \\ w_{j}^{0} \end{bmatrix} \qquad 4.2 - 23$$

where

$$r_{ij} = |\vec{x}_{ik}| \frac{\sin A_k}{\sin A_j} \qquad 4.2 - 24$$

Fig. 4.2-2 The approximate satellite vector.

4.213 The Normal Equations.

The normal equations are derived by minimizing the quadratic form

$$V'PV + X'P_X$$

subject to the relation (equation 4.2 - 5)

$$AX + BV + W = 0$$

Upon introduction of Lagrange multipliers K, the variation function is

$$\Phi = V'PV + X'P_X X - 2K'(AX + BV + W)$$
 4.2 -25

where

V is the vector of residuals corresponding to the α 's and δ 's

X is the vector of corrections to the preliminary ground and satellite positions

P is the weight matrix for the α 's and δ 's

P, is the weight matrix for the ground and satellite positions

As described in section 4.211 A and B are the design matrices

and W is the constant vector.

Upon the differentiation of equation 4.2 - 25 for the minimum condition [Uotila, 1967, p. 81], the expanded form of the normal equations becomes

$$\begin{bmatrix} -P_{X} & 0 & A' \\ 0 & -P & B' \\ A & B & 0 \end{bmatrix} \begin{bmatrix} X \\ V \\ K \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ W \end{bmatrix} = 0 \qquad 4.2 - 26$$

By a row and column transformation, the residual vector V is eliminated and the normal equations become

$$\begin{bmatrix} BP^{-1}B' & A \\ A' & -P_{X} \end{bmatrix} \begin{bmatrix} K \\ X \end{bmatrix} + \begin{bmatrix} W \\ 0 \end{bmatrix} = 0 \qquad 4.2 - 27$$

Next, the correlates are eliminated resulting in

$$[A'(BP^{-1}B')^{-1}A + P_X]X + A'(BF^{-1}B')^{-1}W = 0 \qquad (3.2 - 29)$$

The following summation form of the non-zero 3×3 submatrices of the above equation is found by replacing the A, B, and P matrices with their expanded forms in terms of 3×3 submatrices (equations 4.2 - 6, 4.2 - 10, and 4.2 - 16):

$$\begin{bmatrix} \sum_{i} (B_{ij}P_{ij}^{-1}B_{ij}^{-1})^{-1} + P_{j} & -(B_{ij}P_{ij}^{-1}B_{ij}^{-1})^{-1} \\ -(B_{ij}P_{ij}^{-1}B_{ij}^{-1})^{-1} & \sum_{j} (B_{ij}P_{ij}^{-1}B_{ij}^{-1})^{-1} + P_{i} \end{bmatrix} \begin{bmatrix} X_{j} \\ X_{i} \end{bmatrix} + \begin{bmatrix} U_{j} = \sum_{i} (B_{ij}P_{ij}^{-1}B_{ij}^{-1})^{-1} W_{ij} \\ -(B_{ij}P_{ij}^{-1}B_{ij}^{-1})^{-1} W_{ij} \end{bmatrix} = 0 + 4.2 - 29$$

where the non-zero 3 x 3 submatrices occur only on the diagonal and those ij 3 x 3 positions corresponding to a ground-to-satellite observation; \sum_{i} indicates a summation over all ground stations observing satellite position j; \sum_{j} indicates a summation over all satellite positions observed from ground station i. All summations contain only 3; \sum_{j} ard/or 3 x 1 matrices.

Elimination of X_j , the corrections to the sateluite positions, from the above yields the following <u>reduced normal equations</u>:

$$N X + U = 0$$
 4.2 - 30

in which the X vector will always represent the unknown corrections to the preliminary rectangular coordinates of the ground stations only; U is the constant vector; N is the coefficient matrix.

The coefficient matrix N is made up of 3 x 3 matrices. By letting

$$M_{ij}^{-1} = (B_{ij}P_{ij}^{-1}B_{ij})^{-1}$$
 4.2 -31

$$= (B_{ij}^{-1})' P_{ij}B_{ij}^{-1}$$
 4.2 -32

in equation 4.2 - 29, the expression for the 3 x 3 diagonal matrix corresponding to the k^{th} ground station is given by [Krakiwsky and Pope, 1967]

$$N_{kk} = \sum_{j} M_{kj}^{-1} - \sum_{j} \{M_{kj}^{-1} (\sum_{i} M_{ij}^{-1})^{-1} M_{kj}^{-1}\} + P_{k}$$
4.2 - 33

Note the weight, P_j , for the jth satellite position has been dropped in the second term of the above equation. The expression for the off-diagonal 3 x 3 matrix corresponding to the kth and the 2^{th} ground stations is

$$N_{kl} = -\sum_{j} \{M_{kj}^{-1} (\sum_{j} M_{ij}^{-1})^{-1} M_{lj}^{-1}\}$$
4.2 - 34
summation \sum_{j} is performed over all satellite events observed

where the summation Σ is performed over all satellite events observed simultaneously from both ground stations k and ℓ .

The constant vector of the normal equations (equation 4.2 - 30) is made up of 3 x 1 vectors corresponding to each ground station. The vector U_k for the kth ground station is given by

$$U_{k} = -(\sum_{j} M_{kj}^{-1} W_{kj}) + \sum_{j} (M_{kj}^{-1} (\sum_{i} M_{ij}^{-1})^{-1} (\sum_{i} M_{ij}^{-1} W_{ij}))$$
4.2 - 35
where, according to equation 4.2 - 12,

$$W_{ij} = \vec{x}_{j}^{0} - \vec{x}_{i}^{0} - \vec{x}_{ij}^{b}$$
 4.2 - 36

or

$$W_{kj} = \vec{x}_{j}^{o} - \vec{x}_{kj}^{o} - \vec{x}_{kj}^{b}$$
 4.2 -37

At first sight it seems that the preliminary coordinates of each satellite position are required; however, substitution of equations 4.2 - 36 and 4.2 - 37 into equation 4.2 - 35 results in the cancellation or dropping out of terms containing \vec{x}_{j}^{0} and the observed vector \vec{x}_{ij}^{b} or \vec{x}_{kj}^{b} . Specifically,

$$U_{k} = -\sum_{j} \{M_{kj}^{-1} (\tilde{x}_{j}^{0} - \tilde{x}_{k}^{0} - \tilde{x}_{kj}^{b})\} +$$

$$+ \sum_{j} (M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} (\tilde{x}_{j}^{0} - \tilde{x}_{i}^{0} - \tilde{x}_{ij}^{b})]\}$$

$$= -\sum_{j} (M_{kj}^{-1} \tilde{x}_{j}^{0}) + (\sum M_{kj}^{-1}) \tilde{x}_{k}^{0} + \sum_{j} (M_{kj}^{-1} \tilde{x}_{kj}^{b})^{1} +$$

$$+ \sum_{j} (M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} \tilde{x}_{j}^{0})) -$$

$$- \sum_{j} \{M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} \tilde{x}_{j}^{0})\} -$$

$$- \sum_{j} \{M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} \tilde{x}_{j}^{0})\} -$$

$$+ 2\sum_{j} \{M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} \tilde{x}_{j}^{0})\} -$$

$$+ 2\sum_{j} \{M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} \tilde{x}_{j}^{0})\} -$$

$$+ 2\sum_{j} \{M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} \tilde{x}_{j}^{0})\} -$$

$$+ 2\sum_{j} \{M_{kj}^{-1} (\Sigma M_{ij}^{-1})^{-1} (\Sigma M_{ij}^{-1} \tilde{x}_{j}^{0})\} -$$

Terms 1 and 4 in the above expression cancel (i.e., \vec{X}_j^0 satellite coordinates drop out) because \vec{X}_j^0 can be factored out of ξ in term 4, i.e.,

$$\sum_{j} \{M_{kj}^{-1} (\sum_{i} M_{ij}^{-1})^{-1} (\sum_{i} M_{ij}^{-1}) \tilde{X}_{j}^{0}\} = (\sum_{j} M_{kj}^{-1} \tilde{X}_{j}^{0})$$
 4.2 - 40

which has an opposite sign to that of term 1. Terms 3 and 6 drop out because they are identically zero. This happens because both terms contain products like

$$B_{ij}^{-1} \vec{X}_{ij}^{b}$$
 or $B_{kj}^{-1} \vec{X}_{kj}^{b}$

where (taking into consideration the orthogonality property of the rotation matrices and S)

$$B_{ij}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1/\cos\delta_{ij} & 0 \\ 0 & 0 & -1 \end{bmatrix} R_2(90^\circ - \delta_{ij}) R_3(\alpha_{ij}) S'$$

and after elementary matrix operations we have

$$B_{ij}^{-1} \stackrel{\not\rightarrow b}{X_{ij}} = \begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix} r_{ij}^{b}$$

Since in the optical adjustment, P_{ij} has the form

$$P_{ij} = \begin{bmatrix} * & * \\ * & * \end{bmatrix}^{-1} & 0 \\ * & * \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

ar.d using 4.2 - 32

$$M_{ij}^{-1} \vec{X}_{ij}^{b} = 0$$
 4.2 - 41

the final expression for the constant column becomes

 $U_{k} = \sum_{j} M_{kj}^{-1} \{ \vec{x}_{k}^{o} - (\sum_{i} M_{ij}^{-1})^{-1} (\sum_{i} M_{ij}^{-1} \vec{x}_{i}^{o}) \}$ 4.2 - 42

In summary, the normal equations in the optical adjustment are formed by equations 4.2 - 33, 4.2 - 36, and 4.2 - 42.

4.22 Correlated Events [193]

4.221 The Mathematical Model.

The theory and the mathematical model for a generalized least squares adjustment for simultaneous directions <u>without</u> correlation has been described (section 4.21). In that case each simultaneously observed satellite image was taken as an independent event, thus the correlation between satellite directions on the same plate was not considered. The following is a description of how the mathematical model is manipulated to take care of possible correlations between directions, such as in the case of the NGS BC-4 Type II data, where each given event consists of 7 fictitious directions (Greenwich hour angle h and declination δ relative to the 1900-1905 CIO mean pole) per station and the full 14 x 14 variance-covariance matrix associated with the set.

68

The basic geometric figure to begin the mathematical development is that of a single ground station observing one satellite position shown in Fig. 4.2-1. Using vector notation, the mathematical model as we know can be written

$$F_{ij_m} = \vec{x}_{j_m} - \vec{x}_{i} - \vec{x}_{ij_m} = 0$$
 4.2 - 43

where now m will identify a fictitious satellite image within the event j, i.e., m = 1, 2 ... m_x (generally $4 \le m_x \le 7$).

The vector \vec{X}_{ij_m} with this type of data takes the form

$$X_{ij_{m}} = \begin{bmatrix} r_{ij_{m}} \cos \delta_{ij_{m}} \cos \delta_{ij_{m}} \\ -r_{ij_{m}} \cos \delta_{ij_{m}} \sin \delta_{ij_{m}} \\ r_{ij_{m}} \sin \delta_{ij_{m}} \end{bmatrix}$$

$$4.2 - 44$$

The linearized mathematical model can be written as follows

$$[A_{1}|A_{2}]\begin{bmatrix} x_{j} \\ x_{i} \end{bmatrix} + BV + W = 0 \qquad 4.2 - 45$$

Since all the observations from one station to all fictitious satellite directions on a given plate are correlated, it is necessary to build up the model using all these satellite directions. Thus the design matrix A is divided in submatrices of the form

$$A_{ij_{m}} = \frac{\partial F_{ij_{m}}}{\partial X_{j_{m}}, \partial X_{i}} = \begin{bmatrix} A_{1}_{ij_{m}} & A_{2}_{ij_{m}} \end{bmatrix} = \begin{bmatrix} -1_{3} & -1_{3} \\ -1_{3} & -1_{3} \\ 3m_{x} & -1_{3} \\ -3m_{x} & 3m_{x} & 3m_{x} & 3m_{x} \end{bmatrix}$$
 4.2 - 46

and the design matrix B is of the form:

$$B_{ij_{m}} = \begin{bmatrix} 3x3 \\ 3x3 \\ 3x3 \\ 3x3 \\ 3x3 \\ 0 \end{bmatrix}$$

$$4.2 - 47$$

$$4.2 - 47$$

After minimizing V'PV under the condition 4.2 - 45, the vector of Lagrangian multipliers can be expressed as

$$K = -(BP^{-1}B')^{-1} (A_1X_j + A_2X_i + W) \qquad 4.2 - 48$$

and the normal equations will take the form:

$$\begin{bmatrix} A_{1}^{\prime}(BP^{-1}B^{\prime})^{-1}A_{1} & A_{1}^{\prime}(BP^{-1}B^{\prime})^{-1}A_{2} \\ A_{2}^{\prime}(BP^{-1}B^{\prime})^{-1}A_{1} & A_{2}^{\prime}(BP^{-1}B^{\prime})^{-1}A_{2} \end{bmatrix} \begin{bmatrix} X_{j} \\ X_{i} \end{bmatrix} + \begin{bmatrix} A_{1}^{\prime}(BP^{-1}B^{\prime})^{-1}W \\ A_{2}^{\prime}(BP^{-1}B^{\prime})^{-1}W \end{bmatrix} = 0 \qquad 4.2 - 49$$

4.222 The Weighting Technique Using the Full Variance-Covariance

Matrix of the Observed Quantities.

Before proceeding further, it is necessary to explain how the above equations (4.2 - 48) are actually solved. For a particular station i and event j, the B matrix is dimensioned (21 x 21), but the original given P^{-1} matrix is (14 x 14). The P^{-1} matrix refers only to the actual observed quantities which are the Greenwich hour angle (h) and the declinations (δ) and therefore it has to be modified before it is substituted in equation 4.2 - 48. The easiest way to explain this is to look only at that part of B_{ii} that corresponds to observations on the first satellite position only:

$$B_{ij_{1}} \equiv B_{1} = \begin{pmatrix} \frac{\partial F_{1}}{\partial h_{1}} & \frac{\partial F_{1}}{\partial \delta_{1}} & \frac{\partial F_{1}}{\partial r_{1}} \\ \frac{\partial F_{2}}{\partial h_{1}} & \frac{\partial F_{2}}{\partial \delta_{1}} & \frac{\partial F_{2}}{\partial r_{1}} \\ \frac{\partial F_{3}}{\partial h_{1}} & \frac{\partial F_{3}}{\partial \delta_{1}} & \frac{\partial F_{3}}{\partial r_{1}} \\ \end{pmatrix}_{i,j_{1}} \qquad 4.2 - 50$$

The matrix P_1 (not P_1^{-1}) would have to be of the form

$$P_{ij_{1}} = P_{1} = \begin{bmatrix} \sigma_{h_{1}}^{2} & \sigma_{h_{1}\delta_{1}} & \sigma_{h_{1}r_{1}} \\ \sigma_{h_{1}\delta_{1}} & \sigma_{\delta_{1}}^{2} & \sigma_{\delta_{1}r_{1}} \\ \sigma_{h_{1}r_{1}} & \sigma_{\delta_{1}r_{1}} & \sigma_{r_{1}}^{2} \end{bmatrix}_{i,j_{1}}^{-1} \qquad 4.2 - 51$$

and for a single satellite image using 4.2 - 16 we can write

$$P_{1} = \begin{bmatrix} \begin{bmatrix} \sigma_{h_{1}}^{2} & \sigma_{h_{1}\delta_{1}} \\ \sigma_{h_{1}\delta_{1}} & \sigma_{\delta_{1}}^{2} \end{bmatrix}^{-1} & 0 \\ \sigma_{h_{1}\delta_{1}} & \sigma_{\delta_{1}}^{2} \end{bmatrix}^{-1} \\ 0 & 0 & 0 \end{bmatrix}_{i,j_{1}}$$
4.2 - 52

What is really needed is $(B_1P_1^{-1}B_1')^{-1}$, but $B_1P_1^{-1}B_1'$ is singular. However, the matrix B_1 is square and nonsingular. Knowing this, $(B_1P_1^{-1}B_1')^{-1}$ can be rearranged as follows:

$$(B_{1}P_{1}^{-1}B_{2}^{+})^{-1} = (B_{1}^{+})^{-1}P_{1}B_{1}^{-1} = (B_{1}^{-1})^{+}P_{1}B_{1}^{-1} = 4.2 - 53$$

where P_1 is defined by equation 4.2 - 52.

The preceding description applies to the case of one satellite position j_1 . For the seven satellite positions the dimension of the P^{-1} matrix is (14 x 14). The matrix P_1 in equation 1.2 - 53 has to be of dimensions (21 x 21) and of the form of equation 4.2 - 52. The matrix P_{ij} for the BC-4 observations can be written as follows:

Now the (21 x 21) version of equation 4.2 - 52 will be

ith P defined considering 4.2 - 55, the matrix M^{-1} can be formed using he technique shown in equation 4.2 - 53.

$$M^{-1} = (B P^{-1}B')^{-1} (B^{-1})'P B^{-1}$$
 4.2 - 56

4.223 The Reduced Normal Equations.

Equation 4.2 - 49 can be referred to as the conventional normal equation, where the satellite position X_j is among the parameters. Since the satellite position is of no interest, it is eliminated from the solution. This is done by solving for X_j in terms of the other parameters and substituting this into the remaining equations. After elimination of X_j from 4.2 - 49, we will obtain the reduced normal equations. The (3 x 3) and (3 x 1) block elements of the coefficient matrix and constant vector respectively can be obtained by expressions similar to equations 4.2 - 33, 4.2 - 34 and 4.2 - 35. The only difference being that now the term P_k in equation 4.2 - 33 will dr_{G_k} out because now we are only minimizing V'PV.

4.3 The Range Adjustment [86, 140]

4.31 The Mathematical Model

Fig. 4.3-1 shows the average terrestrial coordinate system uvw (section 4.12) with a ground station i and a satellite position j. The observed quantity is the topocentric range r_{ij} from ground station i to satellite position j. The parameters u_i , v_i , w_i and u_j , v_j , w_j are the Cartesian coordinates of the ground station i and the satellite position j respectively.

From Fig. 4.3-1 it can easily be seen that the mathematical model can be written as

$$r_{ij} = [(u_j - u_i)^2 + (v_j - v_i)^2 + (w_j - w_i)^2]^{\frac{1}{2}} \qquad 4.3 - 1$$

or

$$F_{ij} = [(u_j - u_i)^2 + (v_j - v_i)^2 + (w_j - w_i)^2]^{\frac{1}{2}} - r_{ij} = 0 \quad 4.3 - 2$$

The basic mathematical model above is extended to include simultaneous ranges from three or more ground stations. By increasing the number of simultaneous events along with the number of known and unknown ground stations, an adjustment is necessary.

The mathematica. model (equation 4.3 - 2) is linearized by a Taylor series expansion about the preliminary values of the ground stations and satellite institions and the observed value of the topocentric range. The expression for the linearized mathematical model as in the optical case has the form

$$AX + BV + W = 0$$
 4.3 - 3

Fig. 4.3-1 The uvw coordinate system.

where now the design matrix B is a negative unit matrix and the design matrix A is formed by submatricer of the form

$$A_{ij} = \frac{\partial F_{ij}}{\partial X_{j}^{0}, \ \partial X_{i}^{0}} = \left[\frac{u_{j}^{0} - u_{i}^{0}}{r_{ij}^{0}}, \frac{v_{j}^{0} - v_{i}^{0}}{r_{ij}^{0}}, \frac{w_{j}^{0} - w_{i}^{0}}{r_{ij}^{0}}, \frac{u_{j}^{0} - u_{i}^{0}}{r_{ij}^{0}}, \frac{v_{j}^{0} - v_{i}^{0}}{r_{ij}^{0}}, \frac{w_{j}^{0} - w_{i}^{0}}{r_{ij}^{0}} \right] = [a_{ij} - a_{ij}] \qquad 4.3 - 4$$

where r_{ij}^0 is computed from 4.3 - 1 using the initial approximate values for the state and satellite coordinates, the latest coordinates resulting from a preliminary least squares adjustment (for each event j) with the coobserving stations held fixed. The unknown vector X is make up of subvectors

$$\mathbf{x}_{ij} = \begin{bmatrix} \mathbf{x}_j \\ \mathbf{x}_i \end{bmatrix}$$
 4.3 - 5

where

$$X_{i} = \begin{bmatrix} du_{i} \\ dv_{i} \\ dw_{j} \end{bmatrix}$$

$$4.3 - 6$$

and

$$X_{j} = \begin{cases} du_{j} \\ dv_{j} \\ dw_{j} \end{cases}$$
4.3 - 7

The misclosure vector W is formed by the individual differences

$$W_{ij} = r_{ij}^{0} (computed) - r_{ij}^{b} (observed)$$
 4.3 - 8

The residual vector V is composed of the individual residuals V_{ij} (in meters) corresponding to the observed ranges r_{ij}^b .

Giving consideration to the characteristic of the design matrices, the final equation for the linearized model in the range adjustment can be written as

$$AX - V + W = 0$$
 4.3 - 9

4.32 Weighting of Observed Ranges

The weighting of the observed topocentric range from ground station i to satellite position j is achieved by the following:

$$p_{ij} = \frac{\sigma_0^2}{\sigma_{ij}^2}$$
 4.3 - 10

where σ_0^2 is the variance of unit weight and σ_{ij}^2 is the variance of the observed range in meters squared. P will denote the diagonal weight matrix containing all the independent weights f_{ij} to be considered in the adjustment.

4.33 The Normal Equations

The variation function for the range adjustment is similar to the optical case, namely,

$$\Phi = V'PV + X'P_X X - 2K'(AX - V + W)$$
 4.3 - 11

where

- V is the vector of residuals corresponding to the range observations
- X is the vector of corrections to the preliminary ground and satellite positions*
- P is the weight matrix for the ranges
- P_x is the weight matrix for the ground and satellite positions
- K is the vector of correlates

The differentiation of equation 4.3 - 11 for the minimum condition results in the following expanded form of the normal equations:

$$\begin{bmatrix} -P_{X} & 0 & A' \\ 0 & -P & -I \\ A & -I & 0 \end{bmatrix} \begin{bmatrix} X \\ V \\ K \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ W \end{bmatrix} = 0$$
 4.3 - 12

After the elimination of the correlates and residuals and the expansion of the A and P matrices, the following expression results

$$\begin{bmatrix} \sum_{i} a_{ij}^{i} p_{ij} a_{ij} + P_{j} & -a_{ij}^{i} p_{ij} a_{ij} \\ -a_{ij}^{i} p_{ij} a_{ij} & \sum_{j} a_{ij}^{i} p_{ij} a_{ij} + P_{i} \end{bmatrix} \begin{bmatrix} X_{j} \\ -A_{j} \end{bmatrix} + \begin{bmatrix} U_{j} = \sum_{i} a_{ij}^{i} p_{ij}^{i} u_{ij} \\ -A_{ij}^{i} p_{ij}^{i} u_{ij} \end{bmatrix} = 0$$

$$U_{j} = -\sum_{j} a_{ij}^{i} p_{ij}^{i} u_{ij} + A_{ij} $

^{*}As in the case of the optical adjustment, satellite positions will be considered "nuisance" parameters and therefore eliminated from the solution.

Elimination of the corrections to the preliminary coordinates of the satellite position, namely X_j from equation 4.3 - 13, results in the following three expressions: The 3 x 3 diagonal matrix corresponding to the kth ground station is given by

$$N_{kk} = \left(\sum_{j} a_{kj}^{\dagger} p_{kj} a_{kj}\right) - \sum_{j} \left\{a_{kj}^{\dagger} p_{kj} a_{kj} \left(\sum_{j} a_{jj}^{\dagger} p_{jj} a_{jj}\right)^{-1} a_{kj}^{\dagger} p_{kj} a_{kj}\right\} + P_{k}$$

$$(\sum_{j} a_{kj}^{\dagger} p_{kj} a_{kj}) - \sum_{j} \left\{a_{kj}^{\dagger} p_{kj} a_{kj} \left(\sum_{j} a_{jj}^{\dagger} p_{jj} a_{jj}\right)^{-1} a_{kj}^{\dagger} p_{kj} a_{kj}\right\} + P_{k}$$

$$(\sum_{j} a_{kj}^{\dagger} p_{kj} a_{kj}) - \sum_{j} \left\{a_{kj}^{\dagger} p_{kj} a_{kj} \left(\sum_{j} a_{jj}^{\dagger} p_{jj} a_{jj}\right)^{-1} a_{kj}^{\dagger} p_{kj} a_{kj}\right\} + P_{k}$$

The 3 x 3 off-diagonal matrix corresponding to the $k^{\mbox{th}}$ and the $\ell^{\mbox{th}}$ ground stations is given by

$$N_{k\ell} = -\sum_{j} \{a'_{kj} p_{kj} a_{kj} (\sum_{i} a'_{ij} p_{ij} a_{ij})^{-1} a'_{\ell j} p_{\ell j} a_{\ell j}\}$$

$$4.3 - 15$$

where the main summation $\frac{5}{j}$ is performed over all satellite positions observed simultaneously from both ground stations k and k; the constant vector of the kth ground station is

$$U_{k} = -\left(\sum_{j} a'_{kj} p_{kj} W_{kj}\right) + \sum_{j} \left[a'_{kj} p_{kj} a_{kj} \left(\sum_{i} a'_{ij} p_{ij} a_{ij}\right)^{-1} \sum_{i} a'_{ij} p_{ij} W_{ij}\right] \qquad 4.3 - 16$$

In the above expressions, the weight matrix P_{j} of each satellite position was set equal to zero as there is no independent external source from which to get a priori variance estimates which could be used to derive weights.

The equivalent expression for the constant column U_k can be shown to have the following form:

$$U_{k} = -\sum_{j} a_{kj}' p_{kj} \overline{v}_{kj}$$

$$4.3 - 17$$

where \overline{v}_{kj} is the residual of the particular observed range r_{kj} arising from a least squares adjustment of one simultaneous event with ground stations held fixed.

The quantities a_{kj} and \overline{v}_{kj} needed in the formation of the reduced normal equations (equations 4.3 - 14, 4.3 - 15 and 4.3 - 17) are a side product of the preliminary adjustment of each simultaneous event. Specifically, a_{kj} is contained in the A matrix given by equation 3.2 - 3, and \overline{v}_{kj} is an element of the \overline{V} vector of equation 3.2 - 5.

4.4 Addition of Normal Equations

Independent sets of normal equations formed from two or more batches of optical and/or range data can be added together. The basic idea of the combination of the normal equations is simply the algebraic addition of their corresponding terms. Letting n sets of normal equations be represented by

$$N_{1}X + U_{1} = 0$$

 $N_{2}X + U_{2} = 0$
 $N_{n}X + U_{n} = 0$
 $N_{n}X + U_{n} = 0$

and their corresponding variances of unit weight as σ_1^2 , σ_2^2 , ..., σ_n^2 ; the addition is

 $(N_1 + p_{12}N_2 + ... + p_{1n}N_n)X + (U_1 + p_{12}U_2 + ... p_{1n}U_n) = 0$ 4.4 - 2 In the above, the weights may be obtained as follows:

$$p_{12} = \frac{\sigma_1^2}{\sigma_2^2}$$

$$p_{1n} = \frac{\sigma_1^2}{\sigma_1^2}$$

$$q_{1n} = \frac{\sigma_1^2}{\sigma_1^2}$$

$$q_{1n} = \frac{\sigma_1^2}{\sigma_1^2}$$

where σ_1^2 , σ_2^2 , ..., σ_n^2 must have the same a priori variance of unit weight (see sections 4.212 and 4.32).

The advantage of the above is obvious, namely, batches of observed data may be adjusted separately or as a part of a combined adjustment. The same holds for the addition of two or more independent sets of range normal equations and for the addition of optical and range normal equations to each other.

The weighting of the two or more different sets of normal equations (e.g., N_{11} , U_{11} , and N_{22} , U_{22}) is a function of the goodness of the observations involved and the geometry existing between the unknown parameters and the respective observables. The first item is taken care of by proper weighting as a function of the estimated variance-covariance matrix of the observations, and this weighting is reflected in the quantities N_{11} , N_{22} , U_{11} , and U_{22} . The geometry aspect is implicit in the coefficient matrices A and B which enter into N_{11} , and so forth.

4.5 <u>Constraints' Contributions to the Normal Equations</u> [86, 140, 148]
4.51 <u>General</u>

Since the coefficient matrix of normal equations is singular, a unique least squares solution is not possible. A minimal set of constraints to the normal equations provides a unique solution [Blaha, 1971].

Two alternative definitions exist for the term "constraints:" the absolute constraints represent certain conditions which have to be fulfilled exactly and with no uncertainties. The relative constraints (or weighted constraints) have the same characteristics as the observations.

In general the contribution of the functional constraint equation

$$G(X, L_{C}) = 0$$

79

to the reduced normal equations $\overline{NX} + \overline{U} = 0$ can be found by bordering the normal equation matrix

$$\begin{bmatrix} \overline{N} & C' \\ C & -P^{-1} \\ C \end{bmatrix} \begin{bmatrix} X \\ -K \\ C \end{bmatrix} + \begin{bmatrix} \overline{U} \\ W^{C} \end{bmatrix} = 0$$

where

$$C = \frac{\partial G}{\partial X_i^0}$$

After elimination of K

$$K_{C} = -P_{C}(CX + W^{C})$$
 4.5 - 1

It is easy to find

$$[\overline{N} + C'P_{C}C]X + \overline{U} + C'P_{C}W^{C} = 0$$

$$[\overline{N} + N^{C}]X + \overline{U} + U^{C} = 0$$

4.5 - la

or

where N^{C} and U^{C} are the contributions to the coefficient matrix and constant vector of the normal equation due to the application of constraints. The quantities \overline{N} and \overline{U} represent the original normal equations (without constraints).

After the constraints are added the normal equations will take the usual form

N X + U = 0

and we are in the position to obtain the contribution from a new set of constraints.

Constraints can be applied between two stations k and ℓ or to a single station. The contribution of these constraints to the matrix (3 x 3 blocks) and \overline{U} (3 x 1 blocks) can be schematically expressed in two different ways.

(b) Contribution to the normals due to the constraint between stations

These blocks obtained as ir "cated above for the corresponding case will be the only ones computed and added to the original normal equations as expressed by formula 4.5 - 1.

4.52 Relative Position Constraints

Relative position constraints are used in order to combine the norma? equations obtained from various satellite nets and to constrain "double" stations or closely situated stations of the same net. The expression for the combination of normals can be written as follows.

$$\left[\overline{N} + N^{R}\right] X + \overline{U} + U^{R} = 0$$

where N^R and U^R , computed from 4.5 - 2a, 4.5 - 2b, are the contribution to the original combined normal equations ($\overline{N}X + \overline{U} = 0$).

If the relative position (Δu° , Δv° , Δw°) of two stations is known, along with the standard deviation of these relative positions, the constraints can be formed. In this case the functional constraint equations are

$$u_{k}^{\circ} - u_{\ell}^{\circ} = \Delta u^{\circ}$$
$$v_{k}^{\circ} - v_{\ell}^{\circ} = \Delta v^{\circ}$$
$$w_{k}^{\circ} - w_{\ell}^{\circ} = \Delta w^{\circ}$$

Therefore

$$\begin{matrix} \mathsf{R} \\ \mathsf{C}_{\mathbf{k}} \\ \mathsf{3\times3} \end{matrix} = \begin{matrix} \mathsf{I} \\ \mathsf{3\times3} \end{matrix} ; \quad \begin{matrix} \mathsf{R} \\ \mathsf{C}_{\mathbf{k}} \\ \mathsf{3\times3} \end{matrix} = \begin{matrix} -\mathsf{I} \\ \mathsf{3\times3} \end{matrix}$$

and

$$U_{k=1}^{R} = 0$$
; $U_{k}^{R} = 0$ because $W^{R} = G^{R}(X^{\circ}, L_{c}^{\circ}) = 0$
 3×1

where

$$P_{R} = \begin{bmatrix} \frac{1}{\sigma_{\Delta u}^{2}} & 0 & 0\\ 0 & \frac{1}{\sigma_{\Delta v}^{2}} & 0\\ 0 & 0 & \frac{1}{\sigma_{\Delta w}^{2}} \end{bmatrix}$$

and

$$N_{kk}^{R} = I P_{R} I = P_{R}$$

$$3 \times 3$$

$$N_{\ell,\ell}^{R} = I P_{R} I = P_{R}$$

$$3 \times 3$$

$$N_{k\ell,\ell}^{R} = N_{\ell,k}^{R} = I P_{R} (-I) = -P_{R}$$

$$3 \times 3$$

$$3 \times 3$$

Thus, the diagonal elements of P_R are added to each element of the diagonal of the blocks kk and LL of the coefficient matrix of the combined normals \overline{N} , and subtracted from the diagonal elements of the blocks kL and Lk of \overline{N} . There is no contribution to the vector \overline{U} .

4.53 Length (Chord) Constraints

Chord constraints are introduced when scalar information is available between ground stations (e.g., distances determined through high precision geodimeter traversing). The functional constraint equation in this case is

$$G^{C}(X, L_{C}) =$$

0

or

$$\begin{bmatrix} (u_{k} - u_{k})^{2} + (v_{k} - v_{k})^{2} + (w_{k} - w_{k})^{2} \end{bmatrix}^{\frac{1}{2}} = D_{kl} \qquad 4.5 - 3$$

$$C_{k}^{C} = \begin{bmatrix} \frac{u_{k}^{\circ} - u_{\ell}^{\circ}}{D_{kl}^{\circ}}, \frac{v_{k}^{\circ} - v_{\ell}^{\circ}}{D_{kl}^{\circ}}, \frac{w_{k}^{\circ} - w_{\ell}^{\circ}}{D_{kl}^{\circ}} \end{bmatrix}$$

$$C_{\ell}^{C} = \begin{bmatrix} \frac{u_{k}^{\circ} - u_{\ell}^{\circ}}{D_{kl}^{\circ}}, -\frac{v_{k}^{\circ} - v_{\ell}^{\circ}}{D_{kl}^{\circ}}, -\frac{w_{k}^{\circ} - w_{\ell}^{\circ}}{D_{kl}^{\circ}} \end{bmatrix}$$

$$P_{C} = \frac{\sigma_{\ell}^{2}}{\sigma_{kl}^{2}} = \frac{a \text{ priori variance of unit weight}}{variance of the chord}$$

and

and

Then the contribution to the normals are obtained by applying 4.5 - 2a and 4.5 - 2b

$$N_{kk}^{C} = (C_{k}^{C})' P_{C} C_{k}^{C}$$

$$N_{g,g}^{C} = (C_{g}^{C})' P_{C} C_{g}^{C}$$

$$N_{kg}^{C} = (C_{g}^{C})' P_{C} C_{g}^{C}$$

$$N_{kg}^{C} = (C_{k}^{C})' P_{C} C_{g}^{C}$$

$$U_{kg}^{C} = (C_{k}^{C})' P_{C} W^{C}$$

$$U_{g,3\times3}^{C} = (C_{g}^{C})' P_{C} W^{C}$$

The first three expressions in the above are added respectively to the blocks \overline{N}_{kk} , $\overline{N}_{\ell\ell}$ and $\overline{N}_{k\ell}$ of \overline{N} ; the last two expressions are added respectively to the constant subvectors \overline{U}_k and \overline{U}_ℓ of \overline{U} .

4.54 Station Position Constraint

Station position constraint is used for the purpose of defining the origin of the coordinate system. If the station coordinates $(u_k^\circ, v_k^\circ, w_k^\circ)$ of station k are to be constrained and if the computed (known) variances of its approximate coordinates are $\sigma_{u_k^\circ}^2$, $\sigma_{v_k^\circ}^2$, $\sigma_{w_k^\circ}^2$, then the equations given 'n section 4.52 are valid by merely deleting the terms with index ℓ , then $\Delta u^\circ = u_k^\circ$, $\Delta v^\circ = v_k^\circ$. Then

$$N_{kk}^{S} = I P_{S} I = P_{S}$$

3×3 3×3

where

$$P_{S} = \begin{bmatrix} \frac{1}{\sigma_{w_{k}}^{2}} & 0 & 0\\ 0 & \frac{1}{\sigma_{w_{k}}^{2}} & 0\\ 0 & 0 & \frac{1}{\sigma_{w_{k}}^{2}} \end{bmatrix}$$

4.55 Height Constraints

If the geodetic (ellipsoidal) height of the station k is to be constrained, then

$$N_{kk}^{H} = (C_{k}^{H})' P_{H} C_{k}^{H}$$

3×3

• •

where

$$C_k^H = [\cos \phi_k^\circ \cos \lambda_k^\circ, \cos \phi_k^\circ \sin \lambda_k^\circ, \sin \phi_k^\circ]$$

and

$$P_{H} = \frac{1}{\sigma_{H}^{2}}$$

where ϕ_k° and λ_k° are the approximate geodetic coordinates and σ_H^2 is the variance of the height for station k.

The constant vector U_k^H can be computed from

$$U_k^H = (C_k^H) \cdot P_H W^H$$

where

$$W^{H} = H_{k} - H_{k}^{\circ}$$

4.56 Directional Constraints

Directional constraints are introduced when the orientation of the coordinate system is not defined through the observations (e.g., in the case of a ranging network).

The directional constraint between two stations k and ℓ is accomplished by applying weights to two angles α° and β° defining the direction between them and computed from the approximate (u°, v°, w[°]) coordinates of the two stations as follows:

$$\alpha^{\circ} = \tan^{-1} \frac{\Delta v^{\circ}}{\Delta u^{\circ}}$$

$$\beta^{\circ} = \tan^{-1} \frac{\Delta w^{\circ}}{R^{\circ}}$$

where

$$\Delta u^{\circ} = u_{k}^{\circ} - u_{\ell}^{\circ}$$

$$\Delta v^{\circ} = v_{k}^{\circ} - v_{\ell}^{\circ}$$

$$\Delta w^{\circ} = w_{k}^{\circ} - w_{\ell}^{\circ}$$

and

$$R^{\circ} = (\Delta u^{\circ 2} + \Delta v^{\circ 2})^{\frac{1}{2}}$$

The matrix C^D of partial derivatives is then formed

$$C_{k}^{D} = \begin{bmatrix} \frac{\partial \alpha^{\circ}}{\partial \Delta u^{\circ}} & \frac{\partial \Delta u^{\circ}}{\partial u_{k}^{\circ}} & \frac{\partial \alpha^{\circ}}{\partial \Delta v^{\circ}} & \frac{\partial \Delta v^{\circ}}{\partial v_{k}^{\circ}} & \frac{\partial \alpha^{\circ}}{\partial \Delta w^{\circ}} & \frac{\partial \Delta w^{\circ}}{\partial w_{k}^{\circ}} \\ \frac{\partial \beta^{\circ}}{\partial \Delta u^{\circ}} & \frac{\partial \Lambda u^{\circ}}{\partial u_{k}^{\circ}} & \frac{\partial \beta^{\circ}}{\partial \Delta v^{\circ}} & \frac{\partial \beta^{\circ}}{\partial v_{k}^{\circ}} & \frac{\partial \beta^{\circ}}{\partial \Delta w^{\circ}} & \frac{\partial \Lambda w^{\circ}}{\partial w_{k}^{\circ}} \end{bmatrix}$$
where
$$\frac{\partial \alpha^{\circ}}{\partial \Delta u^{\circ}} = \cos^{2} \alpha^{\circ} \tan^{\circ} / \Delta u^{\circ}$$

$$\frac{\partial \alpha^{\circ}}{\partial \Delta V^{\circ}} = -\cos^{2} \alpha^{\circ} / \Delta u^{\circ}$$

$$\frac{\partial \alpha^{\circ}}{\partial \Delta W^{\circ}} = 0$$

$$\frac{\partial \beta^{\circ}}{\partial \Delta u^{\circ}} = \Delta u^{\circ} \cos^{2} \beta^{\circ} \tan^{2} \beta^{\circ} / R^{\circ 2}$$

$$\frac{\partial \beta^{\circ}}{\partial \Delta V^{\circ}} = \frac{\partial \beta^{\circ}}{\partial \Delta u^{\circ}} \tan^{2} \alpha^{\circ}$$

$$\frac{\partial \beta^{\circ}}{\partial \Delta W^{\circ}} = -\cos^{2} \beta^{\circ} / R^{\circ}$$
and clearly $C_{g}^{D} = -C_{k}^{D}$.
Then the matrix

$$N^{D} = (C^{D})' P_{D} C^{D}$$
 4.5 - 4

is formed according to 4.5 - 25 where P_{D} is the weight matrix estimated from the statistics of α^o and β^o in the customary way

$$\mathbf{P}_{\mathbf{D}} = \begin{bmatrix} \sigma_{\alpha}^{2} & \sigma_{\alpha} \bullet_{\beta} \bullet \\ \sigma_{\alpha} \bullet_{\beta} \bullet & \sigma_{\beta}^{2} \\ \sigma_{\alpha} \bullet_{\beta} \bullet & \sigma_{\beta}^{2} \end{bmatrix}^{-1}$$

The matrix N^D is then added to the block elements of the reduced normal equations which correspond to each of the ground stations, i.e., its

diagonal blocks will be added to \overline{N}_{kk} and $\overline{N}_{\ell\ell}$ and subtracted from the off-diagonal elements $\overline{N}_{k\ell}$ and $\overline{N}_{\ell k}$.

4.57 Inner Constraints (Free Adjustment)

Even though the selection of a coordinate system is arbitrary in the case of a minimum constraint adjustment, e.g., in the case of ranging, the selection of the six coordinates (at more than two stations) to be constrained is very critical, since one set of constraints would give a different solution than another set. The "best" solution is arrived at in a coordinate system defined through the use of a set of constraint equations called "inner" constraints [Rinner et al., 1967]. In this sense, "best" means resulting in the smallest covariance matrix for the unknowns. Covariance matrices may be compared by means of their traces, and the inner constraint equations are characterized by the property that the trace of the covariance matrix obtained with their use is a minimum among those obtained by adjusting a given set of observations augmented by a minimal set of constraint equations. This property also implies that the mean square uncertainty of the unknowns is smaller when the inner adjustment equations are used. The resulting adjustment is called a "free" one. The functional inner constraints equations can be written as

 $C^{1}X = 0$

where X is the set of corrections of the approximate coordinates of the unknown points and in the most general application when the "best" origin, orientation and scale are sought

87

The symbol, $(u_i^\circ, v_i^\circ, w_i^\circ)$ denote the approximate coordinates of the ith unknown point where both the ground points and the satellite positions are considered.

It is also possible to design a set of constraints that will result in the "best" solution for only a subset of the points. In the adjuctments reported here we were only interested in the ground station unknowns implying that the trace of only that portion of the covariance matrix corresponding to the ground station unknowns should be minimized, while the variances of the satellite position unknowns should not be included in the minimum sum. The constraint equations that will produce such a solution have the same form as those producing the "best" solution for all the points; however, 3×3 blocks of zeros are inserted into those positions of C^I which correspond to unknowns whose variances are not to be included in the minimum sum.

The inner adjustment constraint equations can be given a geometrical interpretation that appeals to intuition. Let X_i^o denote the set of approximate coordinates of the ith unknown point, dX_i denote the corrections to these coordinates, and X_i^a denote the adjusted coordinates, i.e.,

$$X_{i}^{a} = X_{i}^{o} + dX_{i}$$

The first set of constraint equations, $C_1^I X = 0$, is then equivalent to the set of conditions

88

The geometrical interpretation of these conditions is that the center of gravity of all the points will not change after adjustment, i.e.,

$$\sum_{i} X_{i}^{a} = \sum_{i} X_{i}^{o}$$

The second set of constraint equations, $C_2^I X = 0$, corresponds to the conditions

$$\sum_{i} X_{i}^{\circ} \times dX_{i} = 0$$

If the center of the system remains fixed, then the cross products $X_i^o \times dX_i$ reflect rotations of the points around the fixed center. These constraint equations insure that the sums of the rotations around all three coordinate axes are zero. The corresponding geometrical interpretation is that the mean orientation of the system of points will not change after adjustment either.

Thus, the respective equations $C_1^I X = 0$ and $C_2^I X = 0$ effectively specify the origin and the orientation of the adjustment coordinate system. A seventh "inner adjustment" equation $C_3^I X = 0$ specifies the scale of the system. However, this scale equation is only used when the observations themselves do not determine the scale.

A more complete description of the inner adjustment is described in [Blaha, 1971].

In summary, if the normal equations with the contribution of all the constraints (except inner constraints) are represented by

or $[\overline{N} + N^{R} + N^{C} + N^{S} + N^{H} + N^{D}]X + \overline{U} + U^{R} + U^{C} + U^{S} + U^{H} + U^{D} = 0 \quad 4.5 - 5$ NX + U = 0

then the inner adjustment can be obtained by bordering the coefficient matrix N of the normal equations as

$$\begin{bmatrix} \mathbf{N} & (\mathbf{C}^{\mathbf{I}})^{\mathsf{r}} \\ \mathbf{C}^{\mathbf{I}} & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ -\mathbf{K}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} -\mathbf{U} \\ \mathbf{O} \end{bmatrix}$$
 4.5 - 6

Upon the addition of any kind of constraint to the normal equations, it becomes necessary to consider also its contribution to $\Sigma V' PV$. The degrees of freedom change as well. In order to compute the proper variance of unit weight the latter must be taken into consideration.

4.6 <u>Solution of Normal Equations and Formation</u> of the Inverse Weight Matrix [86]

4.61 Introduction

The normal equations for the optical and range adjustments are given in the previous section. The general form of the normal equations is

$$NX + U = 0$$
 4.6 - 1

where N is the coefficient matrix, X is the vector of unknowns, and U is the constant vector.

The adjusted values of the Cartesian coordinates of the observing ground stations are obtained by adding the corrections X to the preliminary values X° , namely,

$$X^{a} = X^{o} + X$$
 4.6 - 2

Section 4.7 deals with obtaining the precision estimate of X^a through the inverse matrix N^{-1} . For this reason the method of formation of N^{-1} will be dealt with in section 4.64 along with the method of solving for X.

The procedure used to solve the normal equations is a Gauss reduction (section 4.62) and back solution (section 4.63) and computation of the inverse by the met.od established by Banachiewicz (section 4.64).

Two features which are peculiar to the specific procedure used here are:

- (1) The coefficient matrix N is broken down into 3×3 submatrices, and similarly the U vector is treated as composed of 3×1 vectors.
- (2) The coefficient matrix N is compacted so that 3 x 3 zero submatrices are neither stored nor used in the computation.

The first feature is achieved rather naturally; it is because of the form of the expressions given in sections 4.2 - 4.6 which are used to build up N and U. On the other hand, the second feature is achieved through programming logic. Specifically, a first matrix L is used to tag each 3 x 3 nonzero submatrix of N with a row and column number. A second matrix F with a one-to-one correspondence to the first is then employed to tag the storage assigned to the par' cular 3 x 3 submatrix. The individual elements of the 3 x 3 submatrices are all stored in one large linear array E.

The reduced elements of N are stored in the locations previously created for elements in N. During reduction additional 3 x 3 matrices arise in locations where there were none originally in N; thus "drag storage" must be assigned. In doing so the guide matrix L and the storage tagging matrix F are updated to account for these additional matrices. Similar "drag storage" is also determined during the formation of the inverse N^{-1} .

Once the "drag storage" is determined, the reduction, back solution and inverse determinations are guided by L, the storage located by F, and the elements to be used in the computation found in E.

4.62 Reduction

The coefficient matrix of the normal equations is written as

N = SR

4.6 - 3

where S is a lower triangular matrix with 3×3 identity matrices along the diagonal, and R is an upper triangular matrix. All matrices and vectors presented in this discussion are stipulated to be composed of 3×3 submatrices and 3×1 subvectors respectively.

The reduction is accomplished by computing

from

$$N = R - TR$$
 4.6 - 5

or

$$R = N + TR$$
 4.6 - 6

where R and T (thus S) are built up simultaneously. The augmented matrix

$$[N,U] = \begin{bmatrix} n_{011} & n_{012} & n_{013} & \cdots & n_{01n} & u_{01} \\ n_{012}' & n_{022} & n_{023}' & \cdots & n_{02n} & u_{02} \\ n_{013}' & n_{023}' & n_{033}' & \cdots & n_{03n}' & u_{03} \\ n_{014}' & \ddots & & & & \ddots & & \\ n_{01n}' & & & & & & & \ddots & & \\ n_{0nn}' & & & & & & & n_{0nn}' & u_{0n} \end{bmatrix}$$

$$4.6 - 7$$

is first reduced according to the algorithms

$$n_{k,i,j} = n_{k-1,i,j} - n_{k-1,k,i}^{-1} n_{k-1,k,k}^{-1} n_{k-1,k,j}^{-1}$$

$$k = 1,2, ..., n - 1$$

$$i = k+1, k+2, ..., n$$

$$j = i, i+1, ..., n$$

defining

$$R = \begin{bmatrix} {n_{011} & n_{012} & \cdots & n_{01n} \\ & {n_{122} & n_{123} & \cdots & n_{12n} \\ & & & & & & \\ zeros & & & & & & \\ below & & & & & & \\ diagonal & & & & n_{n-1,n,n} \\ 92 \end{bmatrix}$$

and

$$u_{k,i} = u_{k-1,i} - n_{k-1,k,i} n_{k-1,k,k}^{-1} u_{k-1,k}$$

$$k = 1, 2, ..., n-1$$

$$i = k+1, ..., n$$
defining
$$\widetilde{C} = \begin{bmatrix} u_{01} \\ u_{12} \\ u_{23} \\ \vdots \\ \vdots \\ u_{n-1,n} \end{bmatrix}$$
4.6 - 9

A second algorithm (performed as part of equation 4.6 - 8) namely,

$$\overline{n}_{k-1,k,j} = n_{k-1,k,k}^{-1} n_{k-1,k,j}$$

$$\overline{n}_{k-1,k,k} = I$$

$$\overline{n}_{k-1,k,k} = n_{k-1,k,k}^{-1} u_{k-1,k}$$

$$i = k+1, k+2, \dots, n$$

$$k = 1, 2, \dots, n-1$$

$$4.6 - 10$$

results in the following reduced matrices:

$$S' = \begin{bmatrix} I & \overline{n}_{012} & \overline{n}_{013} & \cdots & \overline{n}_{01n} \\ 0 & I & \overline{n}_{123} & \overline{n}_{12n} \\ 0 & 0 & I & & & \\ & & & & & \\ & & & & \\ & & & & & \\$$

$$-\overline{D} = \begin{vmatrix} \overline{u}_{12} \\ \overline{u}_{23} \\ \vdots \\ \vdots \\ \vdots \\ \overline{u}_{n-1,n} \end{vmatrix}$$
93

(S' and D are used to obtain solution vector X--section 4.63)

$$R^{-1} = \begin{bmatrix} n_{011}^{-1} & elements \\ n_{122}^{-1} & above \\ n_{233}^{-1} & diagonal \\ zeros & \cdots & n_{n-1,n,n}^{-1} \\ below & n_{n-1,n,n}^{-1} \end{bmatrix}$$
4.6 - 15

(used to obtain inverse--section 4.64)

4.63 Back Solution

The back solution involves the determination of the unknown vector X from elements of the reduced matrices S' and D. Without derivation [Uotila, 1967, p. 28],

$$X = T'X - \overline{D}$$
 4.6 - 16

recall

$$T = I - S'$$

or in summation form

$$X_i = \sum_{j=i+1}^{n} \bar{n}_{i-1,i,j} X_j + \bar{u}_{i-1,i}$$
 4.6 - 17

4.64 Formation of Inverse

The inverse matrix N^{-1} will be computed by the method associated with the name of Banachiewicz [Uotila, 1967, p. 31]. According to equation 4.6 - 3, N^{-1} can be computed from

$$N^{-1} \approx R^{-1} S^{-1}$$
 4.6 - 18

However, it turns out that N^{-1} can be formed without the aid of S^{-1} and further only the diagonal elements of R^{-1} are needed.

The diagonal elements of R^{-1} are readily available since the inverse of an upper triangular matrix has as its diagonal elements the reciprocal of the diagonal elements of the triangular matrix itself and the same result holds if "elements" is taken to mean 3 x 3. The diagonal elements of

 R^{-1} are computed by inverting the 3 x 3 diagonal matrices of R and for computer space saving reasons are stored along the diagonal of S' (equation 4.6 - 13).

From equation 4.6 - 18

$$R^{-1} = N^{-1}S$$
 4.6 - 19

and further substituting in for S from equation 4.6 - 4

$$R^{-1} = N^{-1}(I - T)$$
 4.6 - 20

$$= N^{-1} - N^{-1}T$$
 4.6 - 21

and finally

$$N^{-1} = R^{-1} + N^{-1}T \qquad 4.6 - 22$$

The corresponding summation equation for computing any 3 x 3 matrix of N^{-1} is

$$n^{ij} = \sum_{k=1+1}^{n} \bar{n}_{i-1,i,k} n^{k,i} + \delta_{ij} n^{-1}_{i-1,i,i}$$
 4.6 - 23

where $\boldsymbol{\delta}_{\mbox{ij}}$ is the Kronecker delta defined by

$$s_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 4.6 - 24

and

$$n^{ij} = (n^{ji})'$$
 4.6 -25

4.7 <u>Statistical Evaluation (Precision of Ground</u> <u>Stations After Adjustment)</u> [86]

4.71 Variance of Unit Weight

The variance of unit weight for the total adjustment is given by the following expression:

$$\sigma_0^2 = \frac{V'PV}{df} \qquad 4.7 - 1$$

where V'PV is the sum of the squares of the weighted residuals of all

observed quantities and df is the number of degrees of freedom in the least squares adjustment.

4.711 Optical Adjustment.

Equation 4.7 - 1 will now be considered for the optical adjustment. The linearized mathematical structure according to section 4.2 was shown to be of the form

$$AX + BV + W = 0$$

The general expression for the computation of V'PV is

$$V_{C}^{\prime}P_{C}V_{C} = -W^{\prime}K - \Sigma^{C}(W^{C})^{\prime}K_{C} \qquad 4.7 - 3$$

where the first term is the contribution from equation 4.7 - 2 and the second term is the contribution from the c constraints applied. Without taking into consideration the constraints' contribution

and considering an expression for K and X from equations 4.2 - 27 and 4.2 - 28 respectively,

$$V'PV = W'(BP^{-1}B')^{-1}(AX + W)$$
 4.7 - 5

and

$$X = -\{A'M^{-1}A + P_X\}^{-1}A'M^{-1}W \qquad 4.7 - 6$$

Denoting

$$M = BP^{-1}B' \qquad 4.7 - 6a$$

equation 4.7 - 5 with equations 4.2 - 29 and 4.7 - 6a gives

$$V'PV = W'M^{-1}W - [U_j U_j'] \begin{bmatrix} X_j \\ X_j \end{bmatrix}$$
 (A.7 - 7)

Let the partitioning of equation 4.2 - 29 be denoted as

$$\begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix} \begin{bmatrix} X_j \\ X_i \end{bmatrix} + \begin{bmatrix} U_j \\ U_j \end{bmatrix} = 0 \qquad 4.7 - 8$$

Then, using

$$\begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix}^{-1} = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} = \begin{bmatrix} N_{11}^{-1} + N_{11}^{-1}N_{12}E & N_{21}N_{11}^{-1} & -N_{11}^{-1}N_{12}E \\ -E & N_{21}N_{11}^{-1} & E \end{bmatrix}$$
 4.7 - 9

where

f,

$$E = (N_{22} - N_{21}N_{11}^{-1}N_{12})^{-1} \qquad 4.7 - 9a$$

equation 4.7 - 7 becomes

$$V'PV = W'M^{-1}W - [U'_{j} U'_{j}] \begin{bmatrix} Q_{11}U_{j} + Q_{12}U_{i} \\ Q_{21}U_{j} + Q_{22}U_{i} \end{bmatrix}$$

and after substituting the values from equation 4.7 - 9 and simplifying $V'PV = W'M^{-1}W - U'_jN_{11}^{-1}U_j + (U_j - N_{21}N_{11}^{-1}U_j)' E(U_j - N_{21}N_{11}^{-1}U_j)$ 4.7 - 10 but by elimination of X_j from 4.7 - 8 we get

$$X_{i} = -[N_{22} - N_{21}N_{11}^{-1}N_{12}]^{-1} [U_{i} - N_{21}N_{11}^{-1}U_{j}]$$

or, using the notation of 4.6 - 1,

$$X = -N^{-1}U$$

Thus we see that

$$E = N^{-1}$$

and

$$U = U_{i} - N_{21}N_{11}U_{j}$$

and finally

$$V'PV = W'M^{-1}W - U'_{j}N_{1}^{-1}U_{j} + U'X$$
 4.7 - 11

Denoting

$$Q = W'M^{-1}W - U'_{j}N_{11}^{-1}U_{j} \qquad 4.7 - 12$$

and considering equation 4.2 - 31 this becomes

$$Q = \sum_{ij} W_{ij}^{-1} W_{ij} - \sum_{j} \{\sum_{i} M_{ij}^{-1} W_{ij}\} \{\sum_{i} M_{ij}^{-1}\} - \{\sum_{i} M_{ij}^{-1} W_{ij}\}$$

$$4.7 - 13$$

Now using equations 4.2 - 38, 4.2 - 42 and factorization and cancellation analogous to that in equations 4.2 - 41 to 4.2 - 42, this becomes

$$Q = \sum_{ij} \vec{X}_{i} M_{ij} \vec{X}_{i} - \sum_{j} \{\sum_{i} M_{ij} \vec{X}_{i}\}' \{\sum_{i} M_{ij} j\}' \{\sum_{i} M_{ij} \vec{X}_{i}\}$$

$$4.7 - 14$$
which is easily shown to be identically equal to

$$Q = \sum_{ij} (\vec{x}_{i} - \vec{x}_{j}^{\circ}) M_{ij}^{-1} (\vec{x}_{i} - \vec{x}_{j}^{\circ})$$
with
$$\vec{x}_{j}^{\circ} = \{\sum_{i} M_{ij}^{-1}\}^{-1} \{\sum_{i} M_{ij}^{-1} \vec{x}_{i}\}$$

so that finally after the constraints are taken into consideration

$$V_{c}^{\prime}P_{c}V_{c} = \sum_{ij} (\dot{X}_{i} - \dot{X}_{j}^{\circ})' M_{ij}^{-1} (\dot{X}_{i} - \dot{X}_{j}^{\circ}) + U'X - \sum_{c}^{c} (W^{c})' K_{c}$$
 4.7 - 15

Note that the first term in the above is the quadratic form of all the residuals arising from all simultaneous event adjustments with ground stations held fixed and is computed and summed for each event by means of equation 3.2 - 1 for the purpose of blunder detection (section 3.222); the second term is found from

$$U'X = \overline{D'C} \qquad 4.7 - 16$$

where the vectors \overline{D} ' and \overline{C} , a byproduct in the solution of the normal equations, are defined by equations 4.6 - 14 and 4.6 - 9 respectively. K_C is obtained from 4.5 - 1 where X is the solution of equation 4.5 - 6.

The total number of degrees of freedom, df, to be used in equation 4.7 - 1 is

where 2n is the number of equations resulting from one simultaneous event (n = number of ground stations in a particular event j and the summation is performed over all simultaneous events; n_c is the number of constraint equations; 3s is the number of unknowns due to s number of satellite positions; 3g is the number of unknowns due to g number of unknown ground stations. In conclusion the "a posteriori" variance of unit weight for the optical adjustment will be

$$\sigma_0^2 = \frac{V_c^P V_c}{df} \qquad 4.7 - 18$$

4.712 Range Adjustment.

Equations 4.7 - 1 will now be discussed in the light of the range adjustment. Firstly, the expression for computing V'PV by an analogous argument to the optical case is

$$V'PV = \overline{V}'P\overline{V} - X'U$$
 4.7 - 19

where $\overline{V}'P\overline{V}$ is the quadratic form of the residuals arising from the adjustment of simultaneous events--holding the ground stations fixed. The second term

$$X'U = \overline{D'C}$$
 4.7 - 20

is computed according to equations 4.6 - 14 and 4.6 - 9 respectively.

The degrees of freedom, df, in the range adjustment is as usual

df = number of equations - num ber of unknowns

$$= (\sum_{j} n + n_{j}) - (3s + 3g) \qquad 4.7 - 21$$

where n is the number of ground stations, thus observed ranges, in a particular simultaneous event and the summation is performed over all simultaneous events; n_r again is the number of constraint equations in the range adjustment; 3s and 3g are the number of unknowns due to s number of satellite positions and g number of unknown ground stations respectively.

In summary,

$$\sigma_0^2 = \frac{V'PV}{df} \qquad 4.7 - 22$$

4.72 Variances and Covariances of Ground Stations

4.721 Cartesian Coordinates.

The variance-covariance matrix giving the accuracy of the adjusted rectangular ground station coordinates is

$$\sum_{v} = \sigma_{0}^{2} N^{-1}$$
 4.7 - 23

where σ_0^2 is the variance of unit weight arising from the adjustment (section 4.71) and N⁻¹ is the coefficient matrix discussed in section 4.64.

The units for the variance-covariance matrix for the optical and ...ange adjustments are meters squared.

The square root of the diagonal elements of the variance-covariance matrix yields the corresponding standard deviations in meters.

4.722 Geodetic (Curvilinear) Coordinates.

The propagation of variances and covariances from curvilinear coordinates (geodetic latitude ϕ and longitude λ and ellipsoidal height H) in meters to three dimensional rectangular coordinates (u,v,w) is achieved by the following matrix equation

$$\Sigma = G \Sigma G' \qquad 4.7 - 24$$

$$U \qquad \phi \qquad V \qquad \lambda$$

$$W$$

where

$$G = \begin{bmatrix} -\sin\phi \cos\lambda & -\cos\phi \sin\lambda & \cos\phi \cos\lambda \\ -\sin\phi \sin\lambda & \cos\phi \cos\lambda & \cos\phi \sin\lambda \\ \cos\phi & 0 & \sin\phi \end{bmatrix}$$
 $\pounds.7 - 25$

Reversing the transformation depicted by equation 4.7 - 24, the 3 x 3 variance-covariance matrix corresponding to ϕ , λ , H is

all in meters.

In order to obtain the units

$$\sigma_{\phi}^{2} \qquad (arc sec)^{2}$$

$$\sigma_{\lambda}^{2} \qquad "$$

$$\sigma_{\phi\lambda} \equiv \sigma_{\lambda\phi} \qquad "$$

$$\sigma_{\gamma}^{2} \qquad m^{2}$$

$$H \qquad m^{2}$$

$$\sigma_{\phi H} \equiv \sigma_{H\phi}; \quad \sigma_{H\lambda} \equiv \sigma_{\lambda H}, \quad arc sec \times meters$$

$$\sigma_{\phi H} \equiv \sigma_{H\phi}; \quad \sigma_{H\lambda} \equiv \sigma_{\lambda H}, \quad arc sec \times meters$$

the elements of equation 4.7 - 26 require the following modifications:

$$\sigma_{\phi}^{\mu 2} = \left(\frac{\rho^{\mu}}{R+H}\sigma_{\phi}\right)^{2}$$

$$\sigma_{\lambda}^{\mu 2} = \left(\frac{\rho^{\mu}}{R+H}\sigma_{\lambda}\right)^{2}$$

$$\sigma_{\phi\lambda} \equiv \sigma_{\lambda\phi} = \left(\frac{\rho^{\mu}}{R+H}\right)^{2}\sigma_{\phi\lambda}$$

$$4.7 - 28$$

$$\sigma_{H\phi} = \sigma_{\phi H} = \frac{\rho^{\mu}}{R+H}\sigma_{H\phi}$$

$$\sigma_{H\lambda} \equiv \sigma_{\lambda H} = \frac{\rho^{\mu}}{R+H}\sigma_{H\lambda}$$

where

$$\rho^{"} = \frac{1}{\sin 1^{"}}$$

R = 6,370,000 m

.

(Note: R replaces the radius of curvature N in the prime vertical plane in the rigorous case--justification for simplification is given by the fact that only three significant figures are meaningful in propagation of variances whose magnitudes in m^2 or (arc sec)² are in the units place.)

4.73 Correlation Between Ground Stations

The amount of correlation between the adjusted ground station coordinates is described in terms of the correlation coefficient. The correlation coefficient is defined as

$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j} \qquad 4.7 - 29$$

where i and j represent any two quantities associated with a variancecovariance matrix such as that of equation 4.7 - 23; σ_{ij} is the covariance, namely, the off-diagonal term of equation 4.7 - 23; σ_{i} and σ_{j} are the standard deviations or square root of the ith and jth variances (diagonal terms) respectively.

4.74 Error Ellipsoid Computation

Error ellipsoid cor station is made for each observing ground station considered as an unknown in the adjustment. The eigenvalues and eigenvectors are computed in a copocentric three-dimensional rectangular coordinate system with its origin at the particular ground station and its axes parallel to the mean terrestrial coordinate system (section 4.12). For each point there corresponds one eigenvalue (λ_{ii}) for each of the three mutually perpendicular axes of the ellipsoid; the direction of these three axes is given by their corresponding eigenvector (T^{i}) .

The actual computation is as follows. The particular 3 x 3 on-diagonal variance-covariance matrix Σ of equation 4.7 - 23 is subjected to an orthogonal transformation

$$T'\Sigma T = \Lambda \qquad 4.7 - 30$$

where Λ is a diagonal matrix and T is the orthogonal transformation matrix to be found which diagonalizes Σ . The transformation results in three homogeneous linear equations, namely,

$$[\Sigma - \lambda_{jj}I]T^{\prime} = 0$$
 4.7 - 31

which has a solution only if the determinant of the coefficient vanishes, i.e.,

$$|\Sigma - \lambda_{ij}I| = 0$$

or

Once the eigenvalues are obtained from equation 4.7 - 32, their corresponding eigenvectors are obtained from equation 4.7 - 31 after substitution of λ_{ij} .

The length of the axes of the error ellipsoid are the square-roots of the corresponding eigenvalues. The spherical coordinates (spherical latitude θ and longitude λ) which give the direction of each ellipsoidal axis are obtained from the components of the eigenvector

$$\mathbf{T}^{\mathbf{i}} = \begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \\ \mathbf{t}_3 \end{bmatrix}$$

namely

$$\tan \theta = \frac{t_3}{\sqrt{t_1^2 + t_2^2 + t_3^2}} \qquad 4.7 - 33$$

and

$$\tan \lambda = \frac{t_2}{t_1} \qquad 4.7 - 34$$

These angles can easily be converted to altitude and azimuth if so desired.

4.8 Computer Programming [87, 38, 190, 193]

Computer programs related to section 4 may be found in [Reilly et al., 1972] and in [Mueller et al., 1973a].

5. RESULTS (SOLUTION WN14) [187, 188, 193, 195, 196]

5.1 Reference Ellipsoid, Origin, Orientation and Scale

The least squares adjustment of the observations listed in Tables 3.2-3 is performed in terms of the Cartesian coordinates of the tracking stations. The results are also converted into geodetic coordinates (latitude, longitude, height) referenced to a rotational ellipsoid of the following parameters:

a = 6 378 155.00 m

b = 6 356 769.70 m

The corresponding flattening is

f = 1/298.2494985 = 0.003352897507

The origin of the coordinate system (or the center of the above <u>reference ellipsoid</u>) is free as determined through the "inner" constraints explained in section 4.57. The orientation of the system is inherent in the optical observations, through the star positions in the SAO catalog (referenced to the FK4 system) updated to their apparent positions at the epoch of the observation, and through UT1, x and y (coordinates of the true pole with respect to the CIO) as derived by the BIH. Thus the positive end of the axis u is in the direction of the reference ellipsoid); the positive w axis passes through the Conventional International Origin (and coincides with the minor axis of the reference ellipsoid). The axis v completes the right-handed coordinate system in the direction of the average terrestrial (geodetic) equator.

The scale in the solution is defined through the dominating nearly 30,000 SECOR range observations, through the lengths of eight EDM (Geodimeter or Tellurometer) and three C-Band baselines, and also through a special procedure using constrained ellipsoidal heights.

The SECOR observations have an a posteriori standard deviation of ± 4.1 m or approximately one part per million [Mueller et al., 1973b]. The scale is propagated into the network through thirteen optical stations whose relative positions with respect to the nearby SECOR stations are maintained in the adjustment with their survey coordinate-differences entered as weighted constraints (see Table 3.3-2).

The available EDM and C-Band baselines are listed in Table 3.3-4. The chord distances shown are entered in the adjustment as weighted constraints with weights computed from their estimated a priori standard deviations as listed in the table. The reasons for rejecting the east-west Australian tellurometer line (6032-6060) are explained in [Mueller et al., 1973a]. Three C-Band lines were also rejected because of suspected errors in the survey coordinates of the terminal stations (Kauai (4742) in Hawaii and Pretoria (4050) in South Africa) needed to tie them to the nearest optical stations (9012 and 9002, respectively). Though these four lines were not constrained, at the end of the analysis two of them (6032-6060 and 4082-4050) compared well with the lengths computed from the adjusted coordinates (see Table 5.3-1). Thus the only station with survey coordinates in definite error is Kauai.

The use of geodetic (ellipsoidal) hrights as weighted constraints as a contribution to the scale requires a more detailed explanation (Fig. 5.1-1). The height (H) above a <u>geocentric</u> reference ellipsoid has two

Fig. 5.1-1 Height components.

main components: the orthometric (mean sea level) height (MSL) and the geoid undulation (N). In this geocentric case, N consists of a long-wavelength component $N_{\mbox{REF}}$, a short-wave-length term $\delta N,$ and an additive part The term N generally corresponds to regional gravitational effects Δa. and can be computed, e.g., from a truncated spherical harmonic series. The short-wave-length part δN corresponds to local gravity or mass disturbances and is generally not contained in the spherical harmonic representation. The additive part Δa is the so-called zero-degree term which may exist due to the fact that the ellipsoid may not be of the same size (though it is of the same flattening) as the "best" (mean earth) level <u>ellipsoid</u> to which the undulation, N_{REF} , are referenced. Since the N_{REF} undulations are, within reasonable limits, insensitive to the semidiameter of the level ellipsoid, it is difficult to define a correct value for Δa . If the reference ellipsoid is nongeocentric, as is the case in this solution, an additional height term (dH) arises due to the "shift" of the origin (ellipsoidal center) with respect to the geocenter.

Thus the geodetic height may have the following components:

$$N = N + \delta N + \Delta N \qquad 5.1 - 2$$

where [Heiskanen and Moritz, 1967, p. 207]

refers

	۵N	=	$\Delta a + dH = \Delta a + u_0 \cos \phi \cos \lambda + v_0 \cos \phi \sin \lambda + w_0 \sin \phi 5.1-3$					
	۵۵	=	a (level ellipsoid) - a (reference ellipsoid)					
u _o , v _o ,	$v_o^{}, w_o^{}$ are the coordinates of the geocenter with respect							
			center of the reference ellipsoid (origin)					
¢	,λ		are the geodetic coordinates of the station to which H					

In practice at most satellite tracking stations, the quantity MSL + N_{REF} is well known, and generally it constitutes the largest portion of the total height above the level ellipsoid. The additive + shift term, ΔN , can be determined empirically through an iterative interpolation procedure as described later. Since MSL + N_{REF} + ΔN constitute the largest portion of the total height above the <u>reference ellipsoid</u>, it seems reasonable not to ignore this, admittedly partial, information on the height of the station and to include it in the adjustment as a constraint (H_{CONSTR} = MSL + N_{REF} + ΔN) with such a weight that the adjustment should be able to "pull out" the only remaining component, the short-wave-length term, δN , together with possible errors in H_{CONSTR}. In this solution the standard deviations used in computing the weights vary from ±2.5 m to ±8 m depending mostly on the location of the station, from the point of view of the extent of the available surface gravity observations in the area which

was included in the spherical harmonic expansion for N_{REF} [Rapp, 1973]. Table 3.3-3 lists these standard deviations and the quantities H CONSTR for ail the stations.

In trying to determine the "best" scale for the solution or, which is the same, the "best" additive term Δa , the first step is to establish the relationship between them. This problem differently stated is the determination of the relationship between the additive term and the semidiameter of the "best" level ellipsoid to which the quantity N_{REF} refers. The meaning of the term "best" will be elaborated on later in this section. This is accomplished empirically from a set of solutions with height constraints containing different additive terms, from $\Delta a = 0$ to 30 m. The shift term dH initially is estimated from comparisons with various dynamic solutions, resulting in the coordinates u_o , v_o and w_o needed in equations 5.1-3. These solutions result in sets of geodetic heights (H_{WNi}) above the reference ellipsoid and also in sets of undulations after subtracting the MSL:

These undulations thus refer to the reference ellipsoid of a = 6 378 155 m, whose origin is set by the inner constraint. Disregarding the short-wavelength term, the relationship between the undulations N_{WNi} and N_{REF} is given by equations 5.1-2 and 5.1-3, from where, for any station and for the solution WNi:

$$(N_{WNi} - N_{REF}) - (\Delta a_i + u_{oi} \cos\phi \cos\lambda + v_{oi} \cos\phi \sin\lambda + w_{oi} \sin\phi) = 0$$

Since the quantity $(N_{WNi} - N_{REF})$ is known at all stations, the parameters ^a, u_{oi}, v_{oi}, w_{oi} can be calculated (iterated) from least squares adjustments for each set "i." This is the same as determining the size (scale) and the origin of the level ellipsoid which fits best the geoid defined for a given set by the undulations N_{WNi} . Its size is

$$a_1 = 6 378 155 + \Delta a_1$$

and its origin with respect to the origin of the reference ellipsoid is defined by the coordinates u_{0i} , v_{0i} and w_{0i} . After some iterations these coordinates hardly change from solution (set) to solution (set), regardless of the initial selection of Δa ; thus the relationship between the input additive term and the resulting semidiameter, $a = f(\Delta a)$, becomes straightforward and linear.

This empirically determined relationship is shown in Fig. 5.1-2, as the dashed line drawn from the lower left corner towards the upper right. The corresponding ordinate is on the right-hand side of the diagram. The line now allows either to pick the correct initial additive term which when used in the height constraints would result in an a priori defined semidiameter (scale), or to determine which semidiameter (scale) would correspond to an a priori defined additive term. As an example, if the semidiameter of the level ellipsoid best fitting the geoid was to be 6 378 142 m, the WN solution would require height constraints computed with an additive term of -15 m.

The next question, of course, is just how big should this desired semidiameter be. Putting it differently, what criterion should be used to select the "best" scale? If the scale was to be determined only from the EDM and C-Band baselines and/or the SECOR observations, these questions would not arise since the scale would be inherently defined.

Fig. 5.1-2 Determination of scale.

The use of weighted height constraints, as explained above, provides a unique tool to select the scale to fit some criterion. There could be several noninclusive criteria, e.g.,

- (1) The lengths of the EDM baselines as computed from the adjusted coordinates of the terminal stations should be (a) exactly the same as the given lengths in Table 3.3-4, or (b) their differences should be within the limit of one (average) standard deviation, or (c) within a certain limit, e.g., 1:1,000,000, etc.
- (2) Same as (1) but for the C-Band baselines.
- (3) The scale difference as determined from the station coordinates of the WN solution and from the same coordinates of <u>some</u> dynamic solution should be (a) exactly zero, (b) within the limit of one standard deviation of the scale difference factor, (c) within 1:1,000,000, etc.
- (4) The scale difference as determined in (3) should be within a certain limit with respect to all the dynamic solutions.
- (5) The scale difference should be within a certain limit with respect to all the dynamic solutions <u>and</u> the EDM and C-Band baselines.

In order to be able to enforce any of the above criteria, first the relationship between the scale difference factor and the semidiameter has to be established. This is accomplished again empirically by determining the scale differences between the different WNi solutions (used to determine the function $a = f(\Delta a)$) and the EDM and C-Band baselines and the dynamic solutions NWL-9D [Anderle, 1973], SAO III [Gaposchkin et al., 1973], GEM 4 [Lerch et al., 1972], GSFC 73 [Marsh et al., 1973]. The method of calculating the scale-difference factor is described in [Kumar, 1972], and

the results are shown in Fig. 5.1-2 where, with the ordinate on the lefthand side, the scale differences are plotted against the semidiameters corresponding to the various Δa 's used in the height constraints. The numbers on the lines indicate relative weights based on the uncertainties of the scale-difference determinations. It can be seen that the lines representing the geometric (EDM and C-Band) scale differences are much less well determined than the dynamic ones. As an example, the scale-difference factor, between the WNi solution computed with $\Delta a = -15$ m (a = 6 378 142 m), and the solutions NWL-9D is -0.18 x 10⁻⁶; the GEM 4 is -0.68 x 10⁻⁶ (the dynamic scales are larger). Also, the lengths of the EDM baselines from the adjustment differ from their directly measured values by 1.38 x 10⁻⁶ (the measured values are smaller).

The diagram is used by recognising the importance of the various intersection points, marked by numbers. For example, point 1 illustrates the fact that if the semidiameter of the level ellipsoid was 6 378 125 m, the difference between the adjusted chord lengths and their given values would be zero; point 4 s ows that with an a = 6 378 143 m there would be no scale difference between WNi and NWL-9D. Fourteen similar intersection points are listed in Table 5.1-1 with weights and interpretation.

From the table it is immediately clear that taking the weighted mean of the intersection points from the "geometric" scalars (points 1 and 2), the "best" semidiameter is 6 378 125.8 m, while from the "dynamic" lines (points 3 - 6) it is 6 378 142.0 m. The difference of some 16 m, or about 2.5 parts in a million, seems to be real but unexplained at this time. The combined weighted mean from points 1 - 6 is 6 378 141.7 m; while from all the points (1 - 14), it is 6 378 142.7 m.

Point	Interpretation	Weight	a (m)	Weighted Mean a (m)
1	WN = EDM	10	6 378 125.0	6 279 125 9
2	WN = C-Band	1	6 378 133.7	(from points 1 and 2)
3	WN = SAO III	278	6 378 140.8	
4	WN = NWL 9D	69	6 378 143.0	(from points 1 - 6)
5	WN = GSFC 73	66	6 378 144.9	6 378 142.11 (from points 3 - 6)
6	WN = GEM 4	48	6 378 144.1	
7	C-Band = SAO III	1	6 378 143.6	6 979 149 7
8	C-Band = GSFC 73	1	6 378 146.8	6 378 142.7 (from points 1 - 14)
9	C-Band ≈ NWL 9D	1	6 378 147.1	
10	$C-Band \approx GEM 4$	1	6 378 147.8	
11	EDM = SAO III	10	6 378 153.7	
12	EDM = GSFC 73	8	6 378 154.0	
13	EDM = GEM 4	9	6 378 155.2	
14	EDM = NWL 9D	9	6 378 160.5	

Table	5.	1-1
-------	----	-----

Determination of Scale

For the solution reported here (WN14), the criterion for the scale is (5) above, i.e., that the scale should correspond well to all geometric and dynamic information available at present. Based on the above numbers and on previously published parameters, a = 6 378 142 m was <u>selected</u>. This then requires an adjustment in which the scale is defined, in addition to the SECOR, EDM and C-Band observations, through height constraints with the initial additive constant $\Delta a = -15$ m. As can be seen from Fig. 5.1-2, at this semidiameter the maximum scale difference expected between WN14 and any of the dynamic solutions is about 0.8×10^{-6} , and with respect to the EDM about 1.4×10^{-6} or 1:700,000 which is about the average standard deviation of the EDM baselines. Using this scale the resulting geoid undulations

$$N = H - MSL - \Delta N \qquad 5.? - 4$$
WN14

with

 ΔN (meters) = -13 - 23.2 $\cos \phi \cos \lambda$ - 2.9 $\cos \phi \sin \lambda$ + 2.7 $\sin \phi$ are consistent with dynamically computed ones when the following set of constants defining the gravity field of the level ellipsoid are used [Heiskanen and Moritz, 1967, p. 64]:

f = 1/298.25 (flattening) $\omega = 0.72921151467 \times 10^{-4} rad.sec^{-1}$ (rotational velocity) a = 6 378 142 m $W_0 = 6 263 688.00 kgal m$ (geopotential on the geoid)

Derived from these are the following parameters:

k ² M =	$3.98600922 \times 10^{14} \text{ m}^3 \text{ sec}^{-2}$	(gravitational constant x earth mass)
٢	978.03226 cm sec ⁻²	(equatorial normal gravity)
J ₂ =	1 082.6863 x 10 ⁻⁶	(second-degree harmonic)

All the above constants are in good agreement with their current best estimates. The parameters in equation 5.1 - 4 ($\Delta a = -13 \pm 0.7 \text{ m}$, $u_0 = -23.2 \pm 0.9 \text{ m}$, $v_0 = -2.9 \pm 0.8 \text{ m}$, $w_0 = 2.7 \pm 1.2 \text{ m}$) are the result of fitting an ellipsoid to the WN14 geoid as explained earlier in this section, and they represent the size and the position of the best fitting level ellipsoid with respect to the reference ellipsoid (of the same flattening). In case of a good global station distribution the center of this level ellipsoid is the "geometric" center of the geoid. If this point is assumed to be identical with the center of mass than the above coordinates may be viewed as its coordinates with respect to the origin of the reference ellipsoid, and with opposite signs they can be used to shift the WN14 coordinates to the geocenter:

u (geocentric) =
$$u_{WN14}$$
 + 23.2 m
v (geocentric) = v_{WN14} + 2.9 m 5.1 - 5
w (geocentric) = w_{WN14} - 2.7 m

5.2 Cartesian and Geodetic Coordinates

The Cartesian and geodetic coordinates resulting from the WN14 solution are listed in Table 5.2-2. Standard deviations of both types of coordinates are also given together with the parameters of the error ellipsoid (see section 4.74). The first page of the table explains the format and the units used. Table 5.2-1 is a summary of the average standard deviations. The values are also broken down to the constituent networks. The notation is explained on the first page of Table 5.2-2, except for the average standard deviation which is $\sigma = \sqrt{(\sigma_u^2 + \sigma_v^2 + \sigma_w^2)/3}$. As can be seen, the weakest portion of the network is the MPS, and the strongest is the SECOR. The average standard deviation in a Cartesian coordinate is ± 3.9 m. See Table 5.3-2 for comparison with solutions without the weighted height constraints.

The full variance-covariance matrix cannot be presented here due to lack of space; however, the correlation coefficients ρ_{ij} (see equation 4.7 - 29) between the u,v,w coordinates of stations i and j (the offdiagonal 3 x 3 matrices) are listed in Table 5.2-3 when $\rho_{ij} > 0.75$.

Table 5.2-1

Average	Cons	600 T A			
Deviations	BC	BC SECOR MPS		SA	MIN 1 4
σ u (m)	3.3	2.5	4.9	4.0	3.5
σ (m) V	3.3	2.6	5.1	3.4	3.9
σ (m) ₩	3.9	3.2	4.4	4.7	4.0
σ_{ϕ} (arcsec)	0.1	0.1	0.2	0.2	0.1
σ_{λ} (arcsec)	0.2	0.1	0.3	0.1	0.2
σ (m)	3.2	2.4	2.9	3.0	2.9
σ (m)	3.5	2.8	4.8	4.1	3.9
		i	1	1	1

Average Standard Deviations (Solution WN14)

The 3 x 3 correlation coefficient matrices with any element greater than 0.925 are marked by asterisks. Comparison with Table 3.3-2 reveals that all of these station pairs have their relative positions constrained; thus such correlations are expected. Table 5.2-4 contains the correlation coefficients between the u,v,w coordinates of a given station, i.e., the 3 x 3 matrices along the diagonal of the full correlation coefficient matrix.

Table 5.2-2

Cartesian and Geodetic Coordinates (Solution WN14)

Sta, No	u	σ.	v	σ.	w	σ.
	Ø	σφ	λ	σλ	Н	σ
		a	A	r.		
ł		ab	Aъ	гъ		
L		ac	Ac	<u> </u>		

- u, v, w Cartesian coordinates in meters (Orientation: u = the Greenwichmeridian as defined by the B. I. H.; $v = \lambda = 90^{\circ}$ (E); w = Conven-tional International Origin).
- φ, λ Geodetic latitude and longitude in angular units (degrees, minutes and seconds of arc) computed from the Cartesian coordinates and referred to a rotational ellipsoid of a = 6378155.00 m and b = 6356769.70 m.
- H Geodetic (ellipsoidal) height in meters referred to the same ellipsoid.
- $\sigma_{us}\sigma_{vs}\sigma_{v}$ Standard deviations of the Cartesian coordinates in meters.
- $\sigma_{\varphi}, \sigma_{\lambda}$ Standard deviations of the geodetic coordinates in seconds of arc.
- $\sigma_{\rm H}$ Standard deviations of the geodetic height in meters.
- a, A, r, Altitude (elevation angle), azimuth and magnitude of the major
 semi axis of the error ellipsoid, respectively. Angles in degrees,
 magnitude in meters. Altitude is positive above the horizon.
 Azimuth is positive east reckoned from the north (see section
 4.74).

 \mathbf{a}_{b} , \mathbf{A}_{b} , \mathbf{r}_{b} Same as above for the mean axis of the error ellipsoid.

a_c, A_c, r_c Same as above for the minor axis of the error ellipsoid.

1021	1118023.12	2.84	-4876323.36	2.61	3942963.91	2.83
	38 25 49.56	0.10	282 54 48.07	0.12	-47.77	2.05
		A AA	14 31	3 75		
		0.08	10.31	3.27		
		-2.59	106.30	2.00		
	-	57.41	-11.00	2.04		•
1022	80.7951 01	2.25	-5651989.58	1.94	2833500-22	2.32
1022	26 32 52 94	0.08	278 8 3.56	0.08	-32.58	1.92
	20 32 32 474			••••		
		6.37	-26.03	2.39		
		11.15	65.23	2.20		
	-	77,12	34.75	1.90		
1030	-2357242.91	5.62	-4646338.51	3.30	3668306.76	3.24
	35 19 47.44	0.10	243 5 59.26	0.23	889.58	2.84
				_		
		-0.27	79.87	5.97		
		30.63	-9.97	3.16		
	-	59.37	-10.59	2.11		
1032	2602688.61	39.33	-3419228.93	46.69	4697637.28	13.76
	47 44 28.60	0.65	307 16 41.12	2.84	60,96	4.05
		-0-33	73-10	61-68		
		-1.46	163-11	.9.76		
		88.51	150.35	4.03		
1033	-2299282 -59	6.92	-1445693.70	9.72	5751811.65	5.67
	64 52 17.50	0.24	212 9 35.93	0.74	170.23	5.15
		-1.11	-71-88	9_98		
		4.10	18-04	6.97		
		85.75	-146.90	5.14		
			-			
1034	-521704.47	3.09	-4242064.34	2.95	4718716.8 -	2.69
	48 1 20.63	0.11	262 59 19.55	0.15	217.55	1.97
		0.01	120.01	3 88		
		1-65	48-01	2.57		
		88.35	-131,79	1.97		
		100000	-77612	A . / /		

Table 5.2-2 (cont'd)

1042	647497.49	2.77	-5177935.64	2.43	3656705.89	2.84
	35 12 7.07	0.09	277 7 40.08	0.11	863.40	2.42
		8.15	-32.33	2.99		
		21.12	60.84	2.66		
		67.22	37.74	2.37		
3106	2881838.31	3.72	-5372164-61	3.32	1868538_63	4-25
	17 8 54.85	0.13	298 12 39.03	0.13	-58.68	3.35
		18.24	-31.23	4.45		
		17.20	ن4.62	3.62		
		64.49	15.09	3.17		
3334	-84963.76	13.62	-5327974.93	6.79	3493428.28	8.96
	33 25 31.00	0.34	269 5 11.03	0.53	-2.60	3.90
		-2.81	71.02	13.96		
		0.27	-18.96	10.11		
	-	87.18	-103.43	3.84		
3400	-1275207-22	9.06	-4798029.30	5-11	3994208-30	5.67
	39 0 21.73	0.23	255 6 58.20	0.38	2160.40	2.50
		-3.41	77,30	9.15		
		-1.14	-12.77	7.12		
		86.41	-121.20	2.45		
3401	1513136-10	3-18	-4463576-80	3.44	4283055-82	2-99
	42 27 17.69	0.12	288 43 35.29	0.15	34.52	2.23
		-5.50	38.05	4.08		
		-0.81	128.13	3.07		
	1	84.44	46,50	2.20		
3402	167259.66	3.91	-5481970.99	2.81	3245036.99	3.46
	30 46 49.95	0.11	271 44 51.37	0.15	27.89	2.78
		10.37	74.47	3.96		
		9.33	-17.25	3.48		
	-	75.98	31.59	2.71		

3404	642491.44	4.70	-6053940.27	3.73	1895688.60	4.89
	17 24 19.15	0.16	276 3 28.80	0.16	-1.41	3.78
		13.00	40.70	5.32		
		12.19	133.56	4.28		
	-	72.03	85.31	3.64		
3405	1919482.89	3.30	-5621088-11	3.47	2315775.25	3.05
	21 25 48.55	0.13	288 51 14.23	0.12	-67.11	3.39
		16.02	4.06	3.96		
	-	37.11	81.52	3.58		
		48.44	112.95	3.17		
3406	2251800.21	2.41	-5816912.95	2.07	1327191-09	3, 37
	12 5 25.86	0.11	291 9 43.37	0.08	-37.08	2.02
		8.37	-21.06	3.51		
		-5.58	68.11	2.30		
	-	79.92	-55+22	1.98		
3407	2979891.14	4.67	-5513530.88	3.36	.1181129.32	5,25
	10 44 34.89	0.17	298 23 23.41	0.16	186.66	3.11
		7.22	-41.79	6.26		
		23.36,	51.35	3.61		
		65,42	32.14	2.91		
3413	5186348.44	2.15	-3654222.39	2.22	-653018-86	2.67
	- 5 54 57.54	0.09	324 49 55.40	0.08	-0.16	2.02
	-:	10.20	5.19	2.68		
		4.99	94.29	2.35		
		78.62	-21.40	2.00		
3414	4114977.82	7.65	-4554142.51	6.11	-1732153.99	7.24
	-15 51 37.38	0.24	312 5 59.86	0.28	1016.74	5.00
		1.84	51.81	9.40		
		0.35	-38.20	5.91		
	-8	88.12	41.00	4.99		

3431	3093045.37	7.59	-4870081.66	6.52	-2710823.02	10,84
•	-25 18 57.42	0.38	302 25 12.37	0.27	145.11	5.06
		. 2 . 0.1	10 40	11 70		
		-2.01	12.02	11.79		
		-4.34	102.19	1.31		
		84.99	78.99	5.03		
3476	3673777-34	2.20	-5214210.74	2.03	601515.27	2.97
3410	5 26 52.73	0.10	304 47 41.50	0.07	-36.82	1.95
		1.89	-9.70	2.99		
		4.74	80.46	2.24		
	-	84.90	58.64	1.94		
3/77	1747450 10	10.19	-411/206 71	4 4 3	622200 42	0 64
2411	4.40.0.35	10.10	705 55 22 72	0.03	2555 02	7.00
	449 0.23	0.51	203 33 32.03	0.55	2000-00	2021
		-2.04	49.78	13.43		
	-	51.04	142.31	5.74		
	-	38.86	-41.86	5.07		
2/70	3105777 03	10 70	- 551/505 05	.,	2/3702 10	25 12
3410	3183///•03	10.12		14+40	-241102+19	32.12
	- 3 8 47.13	1+12	300 0 34.12	U+14	73078	2441
		0.31	-32.05	41.22		
	-	25.68	57.80	8.05		
		64.32	58.59	5.37		
					10000 60	
3499	1280834.24	3.59	-6250955.94	3.43	-10800-58	4.11
	- 0 5 51.49	0.13	281 34 47.08	0.12	2683.81	3.36
		22.05	-0.15	4.24		
	-	15.59	83.36	3.69		
	-	62.50	-39.06	3.14		
						_
3648	832566.24	3.56	-5349540.70	Z•49	3360585.27	3.62
	32 0 6.28	0.13	278 50 45.17	0.14	-36.10	1.67
		2.59	22.92	4.07		
		-5.52	112.67	3.57		
	-	83.90	-42.00	1.64		

3657	1186787.14	3.14	-4785193.13	3.05	4032882.32	2.98
	39 28 19.01	0.11	283 55 44.44	0.14	-44 • 57	2.22
		-4.73	33.47	3.69		
		-2,52	123.68	3.09		
		84.64	61.63	2.20		
3861	961767.93	2.97	-5679,56,55	2.33	2729883.49	2.61
	25 30 26.08	0.08	279 36 42.74	0.11	-43,47	2.50
		-9.63	116.13	3.08		
		56.43	40.95	2.58		
		-31.81	20.09	2.21		
3902	-1234700-68	8,59	-4651242-77	6.25	4174758-60	6.26
	41 7 57.30	0.27	255 8 C.09	0.37	1859.36	2.53
		-1.99	105.25	8.74		
		-3.73	15.12	8.35		
		-85.78	-136.72	2.46		
2002	100000 7/		(0) 0005 00			• • •
3903	1088989.14	12.11	-4843005.39	8.71	3991770.02	0+91
	38 59 34.10	0.36	282 40 21.55	0.50	110.47	2+01
		0.38	120.87	12.59		
		-5.48	30.91	10.42		
		84.51	26.96	5.60		
4050	5051609.05	2 19	2726603.29	2.10	-2776166.82	4.35
4050	-25 56 37.89	0 16	2120003420	0 12	1575 01	2.01
	-29 90 97+00	0.14	20 21 20.51	0.12	1313071	2071
		-9.93	1.93	4.46		
		-13.22	94.29	3.38		
		73.36	56.07	2.82		
4061	2881592-34	3.76	-5372523-89	3.47	1868024-39	4.35
	17 8 36.95	0.14	298 12 25.95	0.13	-18.85	3.49
		20.20	-26.66	4.48		
		11.03	67.45	3.76		
		-66.75	4.42	3.31		

(08 1	1020410-93	3.32	-5619417-80	3.57	2319128.45	4.00
4081	21 27 45 25	0.13	288 52 3.48	0.12	-33.03	3.47
	1	0.81	17.91	4.05		
	-4	7.10	96.05	3.64		
	4	0.87	117.42	3.18		
				2.24	2017045 20	2.80
4082	910567.21	2.64	->>39113.24	2.30	-25 47	2.25
	28 25 28.69	0.09	219 20 1.51	0.10	-32641	2023
		4.20	-14.50	2.91		
		1.40	75.60	2.62		
	-8	5.57	4.05	2.24		
4 200	-2671973.96	3.83	-4521210-51	3.32	3607490.37	3.57
4280	36 39 56.78	0.13	239 25 6.35	0.16	85.34	2.65
	54 57 50 10					•
		0.76	75.54	4,06		
		2.23	-14.49	3.87		
	-8	17.65	4.40	2,65		
A740	2308887.30	3.35	-4874298.20	3.14	3393082.09	3.77
4740	32 20 52.79	0.13	295 20 46.55	0.13	-40.55	2.60
		1.12	-14.90	4.19		
	-1	10.00	74.90	3.32		
	•	79 . 94	81.43	2.58		
5001	1088849.37	3.64	-4842948.67	3.00	3991840.18	3.69
2000	38 59 37.46	0.13	282 40 16.38	0.15	83.52	2.48
		12.35	37.45	4.41		
		12.94	130.56	3.36		
		71.21	87.39	2.26		
	-					
		a aa'	-2705011-52	2.20	4656012-10	2.44
5201	-212/802.21	2.20	240 30 45-4A	0.11	341_28	2.14
	47 11 2.12	0.08	640 37 42040	~~~~	2.2020	
		18.51	20.45	2.56		
		-4.92	-67.90	2.24		
	-	70.81	36.41	2.08		

E / 10	-5618754-08	2.29	-258237.50	2.76	2997250.19	3.62
2410	28 12 43.31	0.12	182 37 53.25	0.10	21.73	2.38
		17.94	-6.80	3.68		
		12.06	-100.76	2.79		
	-	68.14	-42.96	2.16		
F / / 0	70/401 02	2.59	-5360051-05	2.51	3353082.41	3.65
7040 ·	31 55 18.82	0.13	278 26 0.03	0.14	-19.05	1.68
		2.34	23.32	4.11		
		-6.03	113.08	3.60		
		-83.53	-45.56	1.64		
5712	3623289-81	2.06	-5214168.02	1.95	601673.22	2.91
5112	5 26 57.88	0.10	304 47 42.25	0.07	-23.31	1.87
		1.26	-5.25	2.92		
		1.18	84.78	2.12		
		-88,27	37.82	1.87		
E 71 3	4433637.79	1.98	-7268153.21	2.19	3971656.80	2.46
5115	38 45 36 52	0.08	332 54 24.11	0.10	91.71	1.82
		17.42	-22.37	2.58		
		6.62	69.72	2.27		
		71.29	179.77	1.72		
6716	5994468.78	1.60	-1853580-06	1.96	1612760.09	2.33
2112	14 44 39.23	0.08	342 30 56.94	0.07	31.00	1.52
		6.24	-7.11	2.35		
		4.07	83.34	2.01		
		82.54	-153.76	1.50		
E 717	6073610 73	2-00	1617946-48	2.04	1331655.76	2.68
5 (1 (12 7 52.22	0.09	15 2 7.09	0.07	284.13	1.96
		-3.82	-6.72	2.74		
		14.20	82.31	2.01		
		75.28	-82.00	1.95		

5720	4900749.06	2.03	3968252.96	2.06	966354.69	2.86
	8 46 13.32	0.09	38 59 52.49	0.07	1853.32	1.94
		2.64	-0.20	2.87		
		-0.51	89.78	2.14		
		87.31	168.84	1.94		
5721	2604404.77	2.05	4444122.35	2.13	3750344.33	2.65
	36 14 26.73	0.09	59 37 41.76	0.09	952.30	1.91
		11.32	-2.43	2.79		
		12.51	90.12	2.14		
		73.01	-133.34	1.85		
5722	1905127.03	3.49	6032287.50	4.05	-810716.17	4.30
	- 7 21 6.16	0+13	72 28 21.92	0.11	-91.66	4.23
		-46.43	5.87	4.79		
		32.30	54.23	3.66		
		25.81	-53.57	3.28		
5723	-941709.38	2.54	5967444.99	2.31	2039322.91	3.46
	18 46 11.15	0.11	98.58 3.96	0.09	252.51	2.48
		20.63	9.18	3.48		
		5.06	-82.73	2.53		
		68.70	174.16	2.30		
5726	-3361946.83	2.29	5365837.02	2.20	763627.83	3.16
	6 55 20.64	0.10	122 4 8.62	0.08	85.43	2.10
		14.84	-0.73	3.18		
		5.92	-92.31	2.44		
		73.97	156.56	1.99		
5730	-5858574.55	2.06	1394467.24	2.51	2093847.41	3.14
	19 17 29.46	0.10	166 36 41.38	0.09	24.96	2.22
		17.68	1.19	3.14		
		16.86	-94.35	2.51		
		-65.17	-45+28	2.05		

£ 72 2	-6099970-46	3.56	-997355.27	3.54	-1568570+89	4.15
5152	-14 19 53.84	0.13	189 17 8.85	0.12	38.64	3.64
	-	24.28	33.76	4.47		
	-	62.75	-175.08	3.46		
	-	11.61	-61.56	3.23		
	-5005333 04	2 75	-2668380-66	2,91	221670-69	3.86
5 (35	2 0 18.39	0.13	202 35 16.75	0.09	25.88	2.77
		8.46	17.66	3.97		
		12.89	-74.29	2.77		
	-	74.50	-39.91	2.74		
E 77 /	-2051709 01	2.72	396609-29	3.31	5051342.05	3.90
5124	52 42 48.32	0.11	174 7 26.66	0.17	51.71	3.45
		35.90	29.49	4.03		
		42.09	-101.36	3.35		
	-	27.04	-38.82	2.47		
5725	5186350.63	2.02	-3654223.69	2.06	-653018.90	2.54
1155	- 5 54 57.54	0.08	24 49 55.41	0.07	2.36	1.93
	-	-14.68	-5.18	2.55		
		2.64	84.13	2.16		
		75.08	-15.82	1.88		
6774	4110260 29	2.30	-1571761-88	2.25	-878553.62	2.74
5150	- 7 58 13.62	0.09	345 35 33.46	0.08	56.48	2.26
		-14.58	3.92	2.75		
		35.15	83.37	2.41		
		-51.08	112.70	2.11		
5720	6637670 - 73	1-98	-2268186-23	2.20	3971646.99	2.47
5159	38 45 36.11	0.08	332 54 22.73	0.10	91.43	1.83
		17.59	-22.26	2.58		
		6.31	69.75	2.29		
		71.24	178.75	1.73		

5744	4896437.74	1.82	1316125.03	2.16	3856626.21	2.28
	37 26 37.31	0.08	15 2 42.23	0.09	18.41	1.65
		3.13	-20.27	2.54		
		16.86	70.68	2.04		
		72.83	-120.48	1.60		
5907	-449417-54	4,17	-4600905-48	3-18	4380288-13	4.54
	43 38 57.03	6.17	264 25 15.72	0.18	444.85	2.26
		8.60	27.67	5.61		
	-	11.78	115.86	3.54		
	-	75.34	-27.02	2.04		
5911	2307991-25	2.56	-4873773-25	2-34	3394463-39	2.96
	32 21 45.57	0.09	295 20 24.17	0.10	-26.09	2.40
		21.55	33.67	3.18		
		28.27	135.92	2 • 42		
	-	53.18	91.83	2.19		
5912	1142644.48	3.06	-6196109.11	3.45	988336.58	4.06
. –	8 58 26.82	0.14	280 26 55.35	0.10	-5.02	3,28
	-	24.25	0.41	4.45		
		37.82	69.95	3.12		
	-	42,44	114.73	2.88		
5914	2349456.86	10.50	-5576027.12	7.01	2010342.57	6.44
	18 29 39.35	0.24	292 50 53.18	0.37	-9.38	5.38
		4.84	88.74	10.84		
	-	27.05	1.21	8.04		
		62.45	-10.60	4.33		
5915	-744091.08	3.84	-5465238.69	3.80	3192467.45	4.73
	30 13 45.90	0.19	262 14 48.71	0.14	170.93	2.25
		-8.00	11.70	5.83		
		-5.64	102.50	3.62		
	-	-80.19	-132.69	2.09		

5923	4363332.16	1.68	2862254.91	2.07	3655380.73	2.44
	35 11 30.32	0.09	33 15 50.54	0.08	170.07	1.77
		5.75	-9.41	2.63		
		15.87	82.23	1.96		
		73.07	-118.73	1.74		
5924	5093556 . 18	1.87	-565322.26	2.61	3784268.29	2.93
	36 37 36.90	0.09	353 40 0.45	0.10	19.25	1.99
		22.12	-10.48	3.00		
		1.36	80.07	2.60		
		67.83	173.41	1.76		
5925	6237366.27	2.27	-1140241.51	2.56	687740.16	3.01
	6 13 54.17	0.10	349 38 24.92	0.08	15.82	2.21
	-	-17.07	-2.36	3.15		
	-	-14.31	92.13	2,56		
		67.43	40.01	2.07		
5930	-1542549.36	2.61	6185956.66	2.67	151833-76	3.42
	1 22 23.73	0.11	103 59 58.99	0.09	18.73	2.57
		9,95	3.46	3.44		
		33.76	-93.28	2.86		
	-	-54.41	-72.35	2.37		
5931	-2423914.92	2.49	5388250.32	2.52	2394869-19	3.64
	22 11 55.70	0.11	114 13 14.49	0.09	140.80	2.91
		34.18	1.63	3.69		
		54.97	167.23	2.48		
		6.78	-93.00	2.47		
5933	-4071568.36	3.16	4714253.33	3.24	-1366528,34	3.75
	-12 27 15.12	0.12	130 48 58.51	0.10	76.62	3.28
	-	15.03	4.38	3.75		
		66-67	-47.11	3.25		
	-	17.41	-90.45	3.14		

5934	-5367663.14	2.+6	3437869.92	2.55	-225415.97	3. 28
	- 2 2 20.34	0.11	147 21 40.80	0.09	82.38	2.38
		8.39	0+77 -0(0)	3.31		
		3.83	-84.02	2.60		
	-	80-10	~18+32	2.30		
5935	-5059825-71	2.08	3591185-96	2.22	1472762-50	2.84
	13 26 22.08	0.09	144 38 5.87	0.08	97.15	2.05
		9.68	9.47	2.86		
		7.47	-81.81	2.26		
	-	77.73	-28.90	2.02		
5937	-4433463.64	2.77	4512930-31	2.23	809958-73	3.17
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7 20 40.34	0.10	134 29 27.89	0.08	135.86	2.06
		11.68	4.19	3.18		
		3.10	-86.45	2.42		
	-	77.90	-11.10	2.00		
5938	-5915096-47	7.96	2146860-80	7-97	-1037909-46	3.49
5730	- 9 25 40.94	0.11	160 3 6.61	0.10	80.95	2.97
		-1.29	5.77	3.51		
		55.71	-82.34	3.00		
	-	34.26	-85.11	2.90		
5941	-5467757.28	2.52	-2381246-70	2.79	2254033-75	3.78
2742	20 49 54.72	0.12	203 32 0.47	0.09	59.12	2.59
		11.30	7.83	3.83		
	-	28.47	-75.95	2.79		
	-	58.98	78.43	2.44		
6001	546568-68	2.57	-1389993-74	2-44	61 802 36 - 66	3.40
	76 30 4.71	0.07	291 27 56.08	0.38	211.60	3.39
		76.47	40.98	3.42		
		11.64	72.10	2.84		
		-6.80	-19.31	2-10		

6002	1130764.85	2.04	-4830831.87	1.71	3994704.05	1.92
	39 1 39.35	0.07	283 10 27.05	0.08	-6.70	1.52
		3.64	-36.38	2.13		
		3-11	53.82	1.98		
		85.21	4.20	1.51		
6003	-2127832.13	2.11	-3785862.99	2.^_	4656037.23	2.30
	47 11 6.30	0.07	240 39 43.11	J.10	340.92	2.02
	:	23.12	23.42	2.41		
	•	-1.56	-65.92	2.07		
		56.83	27.72	1.94		
6004	-3851797.46	2.74	396409.38	3.30	5051340.48	3.91
	52 42 48.33	0.11	174 7 26.64	0.17	49.54	3.45
	:	34.79	28.69	4.05		
	4	43.25	-102.14	3.37		
	-:	26.91	-40.66	2.45		
6006	2102927.39	2.36	721668.52	2.92	5958180.80	2.89
	69 39 45.17	0.09	18 56 27.07	0.25	111.31	2.81
	-	18.55	137.52	3.14		
		68.66	106.71	2.79		
		10.18	-135.93	2.20		
6007	4433637.30	2.04	-2268151.36	2.17	3971655.01	2.49
	38 45 36.50	0.08	332 54 24-17	0.10	89-60	1.88
		17.05	-22.41	2.62		
		7.87	70.03	2.24		
		71.11	-176.12	1.78		
6008	3623241.00	2.13	-5214233.74	1.96	601536.05	2.93
	5 26 53.40	0.10	304 47 40.10	0.07	-36.69	1.89
		1.99	-8.96	2.95		
		4.43	81.19	2.17		
	-	85.14	56.94	1.68		

	1 2000 24 . 24	3.58	-6250955-94	3.43	-10800.59	4.10
0004	1200034+24	0.13	281 34 47.08	0.12	2683.81	3.36
	- 0 9 94.447				•	
		22.07	-0.16	4.24		
	-	15.60	83.34	3.69		
	-	62.48	-39.07	3.14		
					2262226 . 36	3_34
6011	-5466018.63	3.02	-2404431+72	2.00	3074.38	2-86
	20 42 26.97	0.10	203 44 30.00	0.11	501 (050	
		8.35	42.07	3.79		
	-	62.48	115.71	2.94		
	-	26.02	-43.83	2.36		
6012	-5858569.26	2.14	1394508.74	2.60	2093820.34	3.17
OULL	· 19 17 28.58	0.10	166 36 39.96	0.09	20.23	2.30
		10 21	3.06	3,17		
		17 09	-92.74	2.60		
	_	11.00	-43.08	2-13		
		04.00	43200			
	254 5002 77	3 20	4120713-58	4.43	3303428.26	4.93
0013	-3707076+11	0.16	130 52 17.54	0.16	93.70	3.68
	51 25 42000					
		9.78	33.58	5.53		
		56.25	-71.37	3.80		
	-	-31.94	-50.25	3.11		
6015	2604353.27	2.06	4444166.00	2.18	3750320.52	2.64
	36 14 25.88	0.09	59 37 44.42	0.09	947.60	1.71
		10.34	-3.33	2.79		
		15.69	89.61	2.19		
		71.06	-125.44	1.84		
						_
6016	4896388.34	1.81	1316172.12	2.19	3856668.20	2.24
	37 26 39.09	0.08	15 2 44.60	0.09	15.77	1.00
		2.05	-24.93	2.51		
		17.19	65.71	2.05		
		72.68	-121.51	1.62		

6019	2280627.09	2.37	-4914543.17	2.71	-3355402.77	3.67
	-31 56 34.93	0.12	294 53 38.32	0.09	606.20	2.00
	-1	11.54	-1.78	3.81		
	-9	54.22	104.68	2.54		
	3	33.33	80.51	2.34		
6020	-1888614-27	5.37	-5354894.35	4.50	-2895749.01	5.53
	-27 10 35.94	0.16	250 34 22.07	0.18	217.23	5.41
		58.94	24.67	5.79		
		-7.72	127.67	5.42		
	-:	29.88	-137.86	4.10		
6022	-6099961.67	3.42	-997362.18	3.56	-1568585.49	4.66
	-14.19 54.37	0.15	189 17 9.12	0.12	34.93	3.48
	-	10.68	25.44	4.93		
	-	77.02	170.33	3.42		
		-7.29	-65.94	3.18		
6023	-4955366-85	3.24	3842247.62	3.04	-1163847.43	3.97
0020	-10 35 2.97	0.13	142 12 40.14	0.11	120.39	2.64
		6.82	21.74	4.17		
		-5.41	-67.61	3.37		
		81.28	-119.52	2.60		
6031	-4313825-29	3-41	891333-91	3.91	~4597265 •83	3.84
0051	-46 24 57.86	0.12	168 19 32.46	0.19	-0.11	3.43
	-	11.19	-106.82	4.17		
	-	37.93	-7.95	3.86		
	-	49.86	149.61	3.06		
6032	-2375420-64	3.29	4875546.73	3.21	-3345411.07	3.90
0.001	-31 50 25.25	0.12	115 58 33.09	0.13	-6.10	3.13
	-	21.80	-2.12	3.93		
		13.36	-86.66	3.50		
		64.06	32.57	2.94		
6038	-2160980-91	2.52	-5642710.55	2.80	2035367.82	3.83
------	--------------	-------	--------------	------	-------------	------
0000	18 43 58.27	0.13	249 2 41.03	0.09	-15.49	2.62
		6.05	-7.29	3.89		
	-4	42.31	-91.76	2.79		
	-4	47.05	76.18	2.43		
4020	-3724765-86	6-17	-4421237-60	5.42	-2686084-74	5.55
0037	-25 4 6.38	0.16	229 53 12.56	0.21	316.49	6.20
	-(65.27	61.40	6.38	•	
	+	15.82	-66.56	6.01		
	-1	18.50	-162.00	4.63		
4040	-741981-69	6.50	6190792-95	3.69	-1338546.30	4.16
6040	-12 11 43.94	0.13	96 50 3.98	0.15	-49.01	3.77
		1.81	-81.59	4.54		
	-	32.17	7.28	4.23		
	!	57.76	11.28	3.57		
6047	4900750 .71	2.04	3968252.68	2.08	966325.28	2.86
0042	8 46 12.37	0.09	38 59 52.45	0.07	1849.93	1.94
		2.48	-0.62	2.87		
	•	-1.20	89.33	2.17		
	1	87.25	153.48	1.94		
6063	1371375-89	3,30	-3614750-34	3.84	-5055927+83	4.77
0043	-52 46 52.54	0.17	290 46 33.27	0.16	71.89	3.52
	-	17.66	5.08	5.36		
	-	68.07	-137.21	3.29		
	-	12.57	99.15	2.96		
6044	1098897-91	6-82	3684606-64	6.17	-5071873.13	7.78
0044	-53 1 9.71	0.25	73 23 35.89	0.38	24.18	5.98
	-	25.82	17.19	8.32		
	-	14.04	~79.76	7.05		
		60.10	-15.53	5.12		

4 0 / E	3223432.02	3.16	5045336-27	3.15	-2191805.72	3.94
0()43	-20 13 53.35	0.13	57 25 32.73	0.11	114.46	3.13
	-1	9-28	1.28	3.94		
	-1	0.91	-92.59	3.30		
	6	7.63	-30.53	3.00		
			F2(F0)] 00	2 20	763624-74	3.23
6047	-3361976•90 6 55 20•56	2.37	122 4 9.88	0.08	79.76	2.21
	1	4.53	-1.10	3.25		
		6.31	-92.75	2.51		
	7	4.10	154.41	2.11		
(05 0	1102678 77	4.86	-2451015-64	6.15	-5747034.19	6.09
6050	-64 46 26.04	0.25	295 56 52.19	0.33	7.95	4.57
	1	6.30	-178.22	7.90		
	-2	24.63	99.49	4.39		
	- !	59.83	-118.43	4.10		
6051	1111336-13	4.89	2169262.66	3.72	-5874334.05	4.44
0091	-67 36 5.21	0.14	62 52 24.45	0.39	21.81	4.09
	-1	16.78	-47.12	5.12		
		45.30	60.62	4.20		
	:	39.90	28.28	3.02		
6052	-902608-85	4.44	2409522.13	3.95	-5816551.79	5.45
0072	-66 16 45.03	0.14	110 32 9.56	0.34	-5.35	5.41
		75.06	12.80	5.49		
	-	11.85	-129.08	4.52		
		8.96	-40.97	3.81		
6053	-1310852.27	4.63	311257.54	4.53	-6213276.48	4.33
0000	-77 50 41.09	0.15	166 38 33.62	0.69	-51.41	4.19
		22.34	157.08	4.95		
	-	11.26	-117.61	4.48		
	-	64.71	127.48	4.02		

4055	A118334-19	2.35	-1571748.31	2.34	-878596.53	2.82
0000	- 7 58 15.04	0.09	345 35 33.84	0.08	53.25	2.29
	-1	2.50	3.22	2.82		
		31.06	85.55	2.51		
	-	55.98	112.39	2.16		
	-5005222 51	2.71	-2468379-00	2.86	221671.07	3.84
0024	2 0 18.41	0.13	202 35 16.72	0.09	24.95	2.72
		8.72	16.80	3.94		
		18.01	-76.05	2.75		
	-	69.86	-48.46	2.68		
6060	-4751649.95	3.27	2792058.10	3.27	-3200163.95	3.66
	-30 18 34.11	0.12	149 33 41.79	0.13	233.02	2.79
		-4.36	32.86	3.85		
	-	15.01	-58.31	3.55		
	-	74.34	138.63	2 • 12		
6061	2999915-62	3.66	-2219369.35	5.66	-5155245.98	5.32
0001	-54 17 1.10	0.15	323 30 20.06	0.31	-6.94	4.39
		13.73	125.85	6.13		
	-	43.95	49.47	5.02		
		42.82.	22.76	3,30		
6063	5884467-41	1.73	-1853495.77	2.05	1612855.09	2.46
0005	14 44 42.44	0.08	342 30 59.62	0.07	29.43	1.65
		6.88	-5.34	2.47		
		5.69	85.35	2.11		
		81.06	-145.36	1.63		
6066	6023386-68	2.73	1617931.85	2.59	1331733.18	3.24
0004	12 7 54.86	0.11	15 2 6.83	0.09	273.97	2.73
		-2.20	-0.39	3.27		
		80.49	76.34	2.73		
		-9.25	89.97	2.55		

4.045	4213564.60	2.02	820829.99	2.44	4702784.39	2.35
0.007	47 48 4.49	0.08	11 1 24.71	0.12	959.58	1.86
		8.80	-34.04	2.69		
		14.81	58.31	2.25		
		72.67	-153.77	1.80		
4044	-5858571-20	2.14	1394466.40	2.60	2093846.01	3.17
8000	19 17 29.45	0.10	166 36 41.39	0.09	21.23	2.30
		18.20	3.07	3.17		
		17.08	-92.72	2.60		
	-	64.61	-43.07	2.14		
6067	5186397.12	2.08	-3653933.25	2.15	-654276.92	2.61
0001	- 5 55 38.70	0.09	324 50 4.00	0.07	3.57	1.96
	-	10.64	5.08	2.62		
		5.06	94.12	2.20		
		78.19	-20.94	1.93		
6068	5084830.42	2.99	2670341.23	2.93	-2768095.23	4.18
	-25 52 59.53	0.14	27 42 23.71	0.11	1516.09	2.77
	-	11.23	1.97	4.26		
		17.98	-84.34	3-13		
		68.59	61.55	2.64		
6069	4978421 .74	6.50	-1086874.04	6.44	-3823167.78	8.08
	-37 3 53.78	0.26	347 41 4.53	0.27	18.79	6.22
	-	16.86	-0.53	8.33		
		25.74	81.06	6.81		
		58.51	-60.86	5.76		
6072	-941702-05	5.74	5967455.05	3.96	2039311.64	4.25
	18 46 10.71	0.13	98 55 3.66	0.19	257.21	4.26
		-0.82	-73.76	5.83		
		59.89	14.83	4.46		
		30.10	-163.28	3.57		

6073	1905134.13 - 7 21 6.70	3.43 0.14	6032282.45 72 28 21.65	3.72 0.12	-810732.67 -92.21	4.19 3.62
	_	15 47	-13.67	4.23		
		44 67	-13401	3.76		
		44.02	-80 60	3 34		
		4100	-07,00	J+J+		
6075	3602820.62	3.75	5238240.67	3.58	-515948.29	4.02
	- 4 40 14.71	0.13	55 28 48.41	0.12	518.71	3.77
	-	29.52	-18.96	4.24		
		43.81	-76.08	3.77		
		31.83	50.46	3.30		
6078	-5952303.44	9.70	1231904.93	8.02	-1925972.50	12.38
••••	-17 41 ,31.46	0.46	168 18 25.18	0.26	79.53	7.18
		18.89	-8.89	15.06		
	-	12.67	-94.48	7.43		
	-	66.98	27.46	5.44		
6111	-2448853-28	2.56	-4667985.83	2.11	3582754.93	2.36
	34 22 54.30	0.08	242 19 5.62	0.11	2251.54	1.73
		5.18	77.41	2.75		
		7.60	-13,29	2.47		
	-	80.79	21.41	1.70		
6123	-1881799-41	4.61	-812438.96	4.39	6019590.66	4.46
	71 18 47.70	0.14	203 21 5.60	0.50	4.04	4-21
		-1.38	62.03	5.25		
		53.91	-26.08	4.55		
	-	36.05	-28.07	3.49		
6134	-2448907-01	2.56	-4668075-88	2.11	3582449-61	2.36
	34 22 44.21	0.08	242 19 5.40	0.11	2165.54	1.73
		5.18	77.46	2.75		
		7.59	-13.23	2.47		
	-	80.79	21.45	1.71		

7036	-828486.97	3.47	-5657471.26	2.44	2816816.00	2.95
1010	26 22 46.30	0.09	261 40 7.52	0.13	34.35	2.53
		7.05	67.30	3,59		
	-	25.78	-26.56	2.81		
	-4	2.54	-6.90	2.43		
	-(02.04				
7037	- 191291-02	2.88	-4967293-86	2.15	3983252.57	2.42
1051	38 53 35.51	0.09	267 47 40.64	0.12	232.83	1.82
		0.13	124.91	3.11		
		7.61	34.89	2.42		
	-8	32.39	35.87	1.81		
7020		2 21	-4873508.29	3.07	3394558.48	3-63
1039	2300213+41	0 13	295 20 34.72	0.13	-28.44	2.54
	32 21 47 . 20	0.13		0.10		
		1.38	-15.89	4.03		
		-8.95	73.90	3.32		
	ł	80.94	82.79	2.52		
7040	2465049-46	3.69	-5534929-97	3.20	1985513.10	4.01
1040	18 15 28.38	1.13	294 0 23.01	0.13	-8.68	3.20
		15 02	-44.27	6.76		
	_	12.72	-54 3	3.04		
	-	-2 92	44.92	2.87		
		-2.02	44072	2001		
7043	1130708-65	2.05	-4831331.29	1.72	3994135.53	1.91
	39 1 15.36	0.07	283 10 20.04	0.09	3.15	1.52
		-2.98	141.75	2.14		
		2-53	51.88	1.99		
	-	86.09	2.07	1.52		
7045	-1240470-24	4.15	-4760242.12	2.76	4048985.26	2.88
	39 38 47.63	0.10	255 23 38.90	0.18	1767.76	2.11
		-0.61	100.92	4.32		
		4.15	10.07	3.16		
	-	85.80	1.71	2.11		

	-55 1-75
	••••
7.46 -28.42 2.39	
-0.71 61.49 2.09	
-82.50 -33.92 1.74	
7075 692620.68 3.74 -4347076.48 3.81 4600475	.43 3.45
46 27 20.82 0.15 279 3 10.28 0.18 230	•94 2•27
-2.83 13.39 4.61	
-1.69 103.47 3.75	
86.71 44.29 2.26	
7076 1384158.71 4.13 -5905362.00 4.44 1966545	.66 5.31
18 4 34.63 0.17 283 11 26.83 0.14 410	•95 4•55
19.91 -26.78 5.59	
-67.02 4.56 4.42	
11.01 67.26 3.76	
8009 3923397.43 8.48 299869.39 10.07 5002975	.49 6.86
52 0 6.51 0.34 4 22 14.44 0.52 44	•12 3•84
-0.72 139.13 11.46	
-5.58 49.06 8.65	
84.37 56.47 3.76	
8010 4331306-98 5.71 567490.82 8.28 4633108	.30 5.44
46 52 36.97 0.25 7 27 51.89 0.39 920	•89 2•26
-0.12 119.88 8.51	
0.46 -150.12 7.30	
89.52 43.97 2.26	
8011 3920153.49 8.86 -134804.48 14.27 5012734	.75 6.95
52 8 36.27 0.34 358 1 49.85 0.76 138	.88 3.84
-0.31 115.65 15.38	
2.38 -154.37 8.90	

	(570227 1)	4.19	457936.54	8.00	4403195.29	4.38
8015	4710322	0.19	5 42 42.79	0.35	679.03	2.23
	43 77 71.002					
	-	0.72	109.93	8.21		
	-	1.37	19,91	5.33		
	8	8.46	47.83	2.23		
			60/873 63	7 01	4386419-17	4.31
en19	4579463.17	4.12	2002/3.24	0 35	394-39	2.17
	43 43 33.30	0.18	1 11 20.93	0.55		
		80.0	110.52	8.11		
	-	1.33	20.52	5.26		
	8	8.67	16.92	2.17		
			142462 28	9.66	4776540.59	5.80
8030	4205626.92	6.46		0 47	182-83	2.37
	48 48 22.24	0.27	2 13 43.19	0.47		
		-1.15	117,70	10.06		
		1.16	-152.32	7.88		
	1	88.35	72.00	2.35		
			-5167016.28	2 . 8 1	3401039.43	2.70
9001	-1535750.66	4.17		0.17	1623.61	2.65
	32 25 24.39	0.08	275 20 40.00			
		1-24	98.65	4.42		
		59.41	6.55	2.75		
	-	30.56	9.38	2.33		
	5054100 42	2.01	2716508-67	2.98	-2775768.77	4.21
9002	5056108.42	0 14	28 14 52 52	0.11	1536.20	2.77
	-25 51 30 . 14	0.14				
	-	10.82	2.06	4.31		
	-	15.92	95.19	3.18		
		70.59	59.23	2.66		
		a / a	-555771 44	9.96	3769675.97	3.97
90 04	5105581.46	5.42	362 67 34-93	0.40	51.52	2.82
	36 27 46.98	0.19	210 TF 210			
		-6.73	87.80	9.97		
		-0.33	-2.24	4.54		
		83.26	ê4 . 99	2.58		

2005	-3946730-47	9.20	3366286.15	8.99	3698822.94	7.51
4005	35 40 22.02	0.27	139 32 17.28	0.45	`94,06	5.29
		-1.55	-79.69	11.28		
		3.04	10.23	8.18		
		36.58	-142.70	5.27		
0004	1019166 53	12.37	5471108-70	5.48	3109625.60	5.96
9006	20 21 34.71	0.19	79 27 28.60	0.47	1861.67	4.96
	27 21 34014					
		-2.35	-91.67	12.60		
		14.93	-2.29	6.00		
		74.88	-172.95	4.86		
		2 50	- 5904099 74	2.88	-1796900-88	4.38
9007	1942100+95	2.50	298 30 23.66	0.09	2469-27	2.72
	-10 21 00+11	0.17	200 30 23000		2.00.02.	
		-2-85	-8.78	4.50		
	-	78.35	95.21	2.72		
		11.28	80.65	2.48		
0000	3376875.17	6.75	4403976-17	6.11	3136257.32	6.09
9000	29 38 13.87	0.20	52 31 11.20	0.29	1553.30	4.75
	27 30 23801					
		5.39	-74.43	7.81		
		8.26	16.35	6.08		
		80.12	162.78	4.69		
		~ ~ ~	- 501/017 57	2 07	1227163-64	3-37
9009	2251810.73	2.40		0.08	-34.94	2.02
	12 5 24.93	0+11	291 9 43.04	0.00	- 24624	
		8.47	-21-00	3-50		
		-6.32	68.06	2.29		
		-79.44	-58.40	1.97		
9010	976276-17	2-14	-5601402.23	1.81	2880234.50	2.26
	27 1 13.84	0.07	279 53 12.65	0.08	-29.59	1.74
		7.47	-27.81	2.38		
		.0.22	62.16	2.07		
	-	-82.52	-29.48	1.73		

	3 20 05 75 30	2.37	-4914580.22	2.72	-3355383.71	3.70
9014	-31 56 34-20	0.12	294 53 35.94	0.09	606-19	2.56
	-31 90 31020		-			
	-	11.45	-2.47	3.84		
	-	54.53	104.05	2.55		
	:	33.04	79.96	2.34		
		2.04	-2404212 68	2,92	2242188.45	3. 35
9012	-5466067.81	3.04	2404512.00	0.11	3059.03	2.87
	20 42 23.91	0.10	203 44 34624			
		7.79	42.85	3.52		
	-	62.21	117.81	2.96		
	-	26.49	-43.24	2.38		
			- 5077714 74	5 34	3331922.70	5.30
9021	-1936789.30	7.11		0 30	2349-90	3.25
	31 41 2.94	0.19	249 1 10.00	0.50		
		0.72	113.76	8.28		
		1.22	23.74	5.30		
	-	88.58	54.04	3.25		
					CANTO FE	2 96
9028	4903726.56	2.06	3965206-29	2.10	903079.77	2.00
	8 44 51.11	0.09	38 57 33.76	0.07	1000+75	1. 70
		2.55	-0.59	2.89		
		-0.88	89.37	2.18		
		87.31	160.38	1.95		
					-454214 14	2.67
9029	5186441.45	2.14	-3653871.87	2.22	-024517+17	2.02
	- 5 55 39.91	C•09	324 50 6.40	0.00	0.27	
		-10.14	5.92	2.68		
		4.56	95.10	2.34		
		78.86	-18.80	2.0		
			(1) 2262 08	6 75	-4556621-98	11-18
9031	1693797.28	8.28	-4112575+00	0.33	177.97	6.32
	-45 53 11.72	0.43	272 23 5.01			
		-6.68	10.74	13.68		
		8.70	99.71	6.73		
		-79.00	137.78	6.15		

9051	4606861.50	4.19	2029692.20	10.29	3903562.20	4.42
	37 58 37.26	0.18	23 46 38.43	0.41	192.42	3.34
		6.15	108.28	10.52		
		-2.74	18.58	4.72		
		83.26	-47.49	3.15		
9091	4595158.88	4.16	2039417.60	10.27	3912670.58	4.39
	38 4 45.20	Q.18	23 55 57.16	0.41	471.05	3.31
		6.26	108.39	10.51		
		-2.72	18.69	4.69		
		83.17	-47.93	3.12		
9424	-1264831.95	4.75	-3466915.40	5.54	5185450.92	4.32
	54 44 33.04	0.21	249 57 23.60	0.27	669.87	Z.39
		0.79	-7.27	6.60		
		-0.26	82.73	4.76		
		89.17	154.71	2.39		
9425	-2450012.65	2.64	-4624431.57	2.17	3635036.58	2.43
	34 57 50.43	0.08	242 5 7.68	0.11	752.76	1.78
		4.51	76.25	2.83		
		7.40	-14.34	2.56		
	-	-81.32	17.38	1.75		
9426	3121261 -30	8.63	592605-66	9-36	5512722.95	5.77
	60 12 39 .83	0.34	10 45 1.00	0.58	588.48	2.46
		-0.81	151.36	11.01		
		1.29	61.38	8.25		
		88.47	-150.80	2.44		
9427	-6007428.66	8.87	-1111852.47	19.80	1825733.94	8.62
	16 44 38.39	0.30	190 29 8.26	0.71	25.36	5.10
		4.74	-111.38	22.43		
		51.86	-15.32	5.30		
	-	-37.74	-25.05	3.72		

9431	3183897.57 56 56 55.73	12.32 0.39	1421426.70 24 3 28.83	9.36 0.69	5322814.69 8.09	7.01 2.38
		-0.46	-137.19	14.53		
		~0.58	132.81	8.47		
		89.27	171.15	2.38		
9432	3907419.17	7.93	1602378.59	10.36	4763922.08	5,86
	48 38 2.34	Q.27	22 17 52.28	0.55	202.70	2.44
		-0.00	75.84	11.46		
		-0.05	165.84	8.19		
		89.92	116.63	2.44		

Table 5.2-3

Station to Station Correlation Coefficients $\rho_{ij} > 0.75$ (Solution WN14)

* STA .NC. 3106	WITH STA.NO	2.4061
0.952	0.143	-0.121
0.141	0.942	-0.130
-0.116	-0.128	0.963
* STA .NO. 3406	WITH STA.NO	.9009
0.971	0.156	-0.290
0.157	0.961	-0.057
-0.292	-0.058	0.985
* STA .NO. 3413	WITH STA.NO	.6067
0.962	0.157	-0.021
0.157	0.965	0.047
-0.022	0.048	0.976
STA .NO. 3476	WITH STA.NO	.5712
0.857	0.120	-0.103
0.119	0.838	-0.014
-0.088	0,008	0.923
* STA .N(1, 3499	WITH STA.NO	.6009
1,000	0.107	0.063
0.107	1.000	-0.184
0.063	-0.184	1.000
* 31A .NU .4020	WITH STANK	1.0000
0.910	+0.124	0.178
-V.1/2	0,308	0.052
C110U	0.130 UTU CTA NG	0.952
31A 01U 04U02	MIII 31A-IN	~0 113
0.020	0.442	-0.159
	0.161	0.756
STA ND 5001	UTTU CTA M	1.5907
0.844	0.307	0.313
-0.059	0.761	0.497
0.420	0.643	0-806
STA .NO. 5001	WITH STA NO	1.5915
0.767	0-306	0.395
-0.225	0.565	0.477
0.273	0.657	0.777
STA.ND.5410	WITH STALNO	.5730
0.778	0.133	0.098
-0.099	0.745	-0.064
0.129	-0.069	0.814
STA .ND. 5410	WITH STA.NO	.6012
0.695	0,116	0,091
-0.079	0,699	-0.066
0.114	-0.072	0.778
STA-ND-5712	WITH STA.NO	•5912
0.686	-0.002	-0.118
-0.112	0.489	0.045
0.132	0.104	0.809
STA.NO.5713	WITH STA.NO	•5715
0,591	0+189	~0.331
0.216	0.772	0.013
-0.340	0.075	0.651

ł.

+ STA.ND.3405	WITH STA.N	n.4081
0.939	0.119	0.029
0.119	0.946	0.037
0.041	0.034	0.957
STA-NO-3413	WITH STA.N	0.5735
0.853	0.145	-0.040
0.138	0.861	0.038
-0.064	0.032	0.905
* STA.NO.3413	WITH STA.N	0.9029
0.926	0.154	-0.019
0.153	0.930	0.047
-0.018	0.047	0.952
*STA.ND.3476	WITH STA.N	0.6008
0.964	0.129	-0.107
0.129	0,958	-0,021
-0.107	-0.019	0.980
* STA.NO.3648	WITH STA.N	0.5648
0.987	0.275	0.002
0.273	0.973	0.617
0.003	0.617	n . 987
STA.NO.4050	WITH STA.N	0.9002
0.931	-0.126	0.180
-0.127	0.930	0.140
0.180	0.142	0.963
+ STA.NO.4740	WITH STA.N	0.7039
0.940	0.060	-0.281
0.061	0.931	0.290
-0.275	0.283	0.951
STA.NO.5001	WITH STA-N	0•5911
0.809	-0.055	0.314
0.108	0.857	0.273
0.237	0.320	0.784
STA.ND.5201	WITH STA.N	0.6003
0.899	-0.019	0.156
-0.023	0.890	0.083
0+155	0.080	0.912
STA.NO.5410	WITH STA.N	0,5941
0.716	-0.259	0.136
0.052	0.755	-0,016
0.253	-0.044	0.834
STA-NU-5410	WITH STA-N	0.6066
0.695	0.116	0.041
-0.079	0.698	-0.066
0.113	-0.072	0.777
* \$1A.NU.5/1/	WITH STAPN	0.0008
0.884	0.119	-0.088
0.121	0.8/5	0.008
-U.1U3	-V.VIZ	U.941
= STA-NU-5/13	WIIM STA.N	V.)//
U. 774	0.200	~0.250
0.207	0.777	0.015
-0.250	0.016	U•996

*°ij^{>0.925}

*

1

STA-NC-5713	WITH STA.	N0.5924	STA .NO .5713	WITH STA.	ND+6007
0.747	0.126	-0.275	0.886	0.190	-0.253
0.329	0.565	-0.063	0.204	0.904	0.005
-0.272	0.067	0.491	-0.244	0.014	0.921
STA.NO.5715	WITH STA.	NO.5736	STA.NO.5715	WITH STA-	N2.5739
0.412	0.240	0.121	0.593	0.215	-0.340
0.145	0.765	-0.031	0.190	0.770	0.075
0.142	0.017	0.699	-0.330	0.015	0.650
STA.NO.5715	WITH STA.	NC.5925	STA-NO-5715	WITH STA.	ND.6063
0.642	0.116	-0.022	0.838	0.194	-0.123
0.131	0.722	0.020	0.183	0.901	0.002
-0.036	-0.023	0.784	-0.117	-0.004	0.918
STA.NO.5717	WITH STA.	NC - 5720	STA-NC-5717	WITH STA.	ND+6042
0.649	-0.130	-0.032	0.610	-0.176	-0.033
0.019	0.751	0.015	0.007	0.706	0.010
0.029	-0.085	0.776	0.022	-0.082	0.751
STA.NU.5720	WITH STA.	NO.6047	+ STA-NO-5720	WITH STA.	ND.9028
0.932	-0.096	-0.06?	0.931	-0.095	-0.062
-0.097	0.934	-0+054	-0.095	0.934	+0.054
-0.060	-0.056	0.965	-0.060	-0.055	0.965
STA.NO.5721	WITH STA.	NC • 5923	* STA.ND.5721	WITH STA.	NO.6015
0.855	0.133	-0.194	0.892	-0.068	-0.151
-0.128	0.814	-0.260	-0.074	0.899	-0.256
-0.194	-0.320	0.715	-0.154	-0.246	0.931
STA .NO. 5723	WITH STA.	NO.5726	STA+N0+5723	WITH STA.	ND.5930
0.821	0.057	-0.00	0.817	0.191	-0.044
0.300	0.713	0.027	0.183	0.702	0.105
0.008	0.035	0.782	-0.039	-0.034	0.820
STA .NP. 5723	WITH STA.	NO.5931	STA+N0+5723	HITH STA.	ND.6047
0.897	-0.121	-0.057	0.750	0.057	-0.001
0.186	0.863	0.018	0.278	0.646	0.025
-0.062	0.075	0.P91	0.004	0.031	0.745
STA.ND.5726	WITH STA.	NO • 59 30	STA.NO.5726	WITH STA.	10.5931
0.899	0.307	-0.024	0.838	0.179	0.002
0.044	0.773	0.127	0.149	0.711	-0.00R
-0.119	0.083	0.831	0.010	0.024	0.823
STA .ND. 5726	WITH STA.	NO•5933	STA.NC.5726	WITH STA.	NO.5934
0.755	0.153	-0.118	0.792	0.109	-0.126
0.234	0.710	0,149	0.337	0.762	0.051
-0.082	0.142	0.822	-0.055	0.104	0.806
STA .NO .5726	WITH STA.	NO •5°35	+ STA.ND.5726	WITH STA.	10.5937
0.665	0.108	-0,093	0.962	0.132	-0.086
0.291	0.751	0,004	0.246	0.870	0.062
-0.024	-0.072	0.831	-0.050	0.044	0.893
STA .NO. 5726	WITH STA.	NO.6047	STA-NO-5730	WITH STA.	10.5935
3.909	0.169	-0.056	0.772	0.120	0.084
0.171	0.903	0.101	-0.030	0.905	-0.112
-0.052	0.096	0.951	0.033	-0.067	0.782
STA .NO. 5730	WITH STA.	ND.6012	* STA-NO-5730	WITH STA.M	10.6066
0.890	-0.029	0.015	0.869	-0.029	0.015
-0.023	0.926	-0.018	-0.023	0.925	-0.018
0.008	-0.016	0.950	0.008	-0.017	0.950

STA .NO.5732	WITH STA.N	0.5733
0.627	-0.199	0.084
0.003	0.780	-0.301
-0.160	-0.125	0.790
STA .ND . 5732	WITH STA.N	0.6059
0.582	-0.187	0.075
0.000	0.731	-0.294
-0.153	-0.129	0.764
+ STA .NO .5733	WITH STA.N	0.6059
0.933	-0.018	-0.000
-0.021	0.940	-0.217
-0.001	-0.219	0.966
STA .NO. 5735	WITH STA.N	0.5736
0.763	0.058	0.028
0.258	0.804	0.049
-0.029	-0.049	0.760
STA .NO .5735	WITH STA.N	0.9029
0.853	0.136	-0.064
0.142	0.861	0.033
-0.038	0.040	0.905
STA.NO.5739	WITH STA.N	0.5924
0.801	0.125	-0.274
0.329	0.564	-0.062
-0.271	0.067	0.491
STA .NO. 5744	WITH STA.N	0.5923
0.926	0.015	-0.291
0.158	0.932	-0.228
-0.307	-0.199	0.612
STA .NO.5744	WITH STA.N	0.6016
0.868	0.132	-0.337
0.117	0.903	-0.167
-0.315	-0.168	0.909
STA.ND.5907	WITH STA.N	0.5915
0,902	0.387	0.458
0.120	0.859	0.717
0.203	0.793	0.894
STA.NO.5912	WITH STA.N	3009+0
0.600	-0.085	0.120
0.005	0.422	0.094
-0.127	0.019	0.762
STA .ND. 5923	WITH STA.N	0.6016
0.810	0.156	-0.306
0.036	0.849	-0.197
-0.275	-0.224	0.750
STA .ND. 5930	WITH STA.N	U.6047
0.816	0.044	-0.113
0.281	0.697	0.081
-0.022	0.115	0.792
STA .NO. 5931	WITH STA.N	0.5937
0.794	0.119	0.065
0.237	U.562	-0.034
0.006	~0. 029	0.681

STA.NO.5732	WITH STA.	NO.5938
0.750	0.043	-0.071
-0.298	0.814	-0.070
0.041	-0.276	0.760
STA.NO.5733	WITH STA.	NO.5941
0.751	-0.061	0.146
-0.041	0.765	-0.231
-0-111	-9-060	0.886
+ STA-NO-5734	WITH STAN	ND-6004
0.934	-0.281	440.0
-0.287	0 054	-0 159
0.055	-0 153	-0.130
ACTA NO 6726	UITU CTA I	04701
* 31A+NU+7127	W1151 31A+	NU-0001
0.887	0.139	-0.007
0.146	0.843	0.033
-0.043	0.041	0,928
* STA.NO.5736	WITH STA.	ND.6055
0.911	0.137	-0.038
0.130	0.911	0.045
-0.037	0.038	0.938
STA-NO-5739	WITH STA.	NO.6007
0.880	0.190	-0.253
0.203	0.899	0.002
-0.243	0.013	0.917
STA-NO-5744	WITH STAR	ND-5924
0_849	0.155	-0.313
0.044	0.750	-0.074
-0.396	-0.110	0.676
STA NO 5007		0.024
0 743	-0 202	1049711 0 495
0.034	-0.202	0.572
0.250	0.008	0.575
0.250	0.409	0.599
STA+NU+5911	WITH STAT	10-5912
0.587	0.116	0.367
-0.329	0.273	0+150
-0.040	0.288	0.802
STA-ND-5923	WITH STA.	10.6015
0.793	-0.117	-0.195
0.107	0.746	-0.316
-0.204	-0.250	0.689
STA.NO.5930	WITH STA.M	10.5937
0.822	0.102	-0.153
0.370	0.584	0.065
-0.015	0.075	0.708
STA-ND-5931	WITH STA-M	ND. 5935
0.798	0,033	0_078
0.232	0.560	-0-043
-0.005	-0-085	0.445
STA.NO. 5021	UTTU CTA A	10.6047
51X44U4J734 A 747	MAIN 31845	000 A AAA
0 140	0.140	0.009
0.100	V.047	0.032
0.000	-0.005	0•782

Table 5.2-3	(cont'd)
-------------	----------

STA .NO. 5933	WITH STA.	NU. 5934
0.645	-0,031	-0.179
0.174	0.837	0.005
-0.093	0.066	0.853
STA.NO.5933	WITH STA.	NC+5938
0.743	-0.118	-0.180
0.144	0.786	-0.048
-0.056	0.091	0.731
STA .NC . 5934	WITH STA.	NC • 5935
0.807	0.168	-0,133
0.155	0.816	0.018
-0.072	-0.052	0.899
STA .NO. 5924	WITH STA.	NO.5938
0.905	-0.044	-0.149
0.107	0.925	-0.025
-0.102	0.052	0.893
STA.ND. 5935	WITH STA.	NO.5937
0.920	0.187	-0.025
0.097	0.884	-0.076
-0.079	-0.025	0.881
STA .ND. 5935	WITH STA.	NG-6012
0.652	-0.026	0.026
0.113	0.839	-0.072
0.057	-0.106	0.737
STA-NO-5925	WITH STA.	ND-6066
0.682	-0.026	0.026
0.113	0.839	-0.072
0.057	-0.106	0.737
STA -NG - 5941	WITH STA.	ND-6059
0.709	-0.043	-0.107
-0.066	0.724	-0.065
0.135	-0.231	0.858
STA-N0-6011	WITH STA.	NC+6059
0.441	-0.254	0.002
-0.133	0.756	-0.158
0.037	-0.277	0.219
* STA .NO.6012	WITH STA.	NO.6066
0.999	-0.026	0.004
-0.025	0.995	-0.021
0.004	-0.021	0,999
+ STA .NO. 6019	WITH STA.	NC.9011
0.970	-0.027	0.120
-0.024	0.977	-0.254
0.117	-0.256	0.987
STA .ND. 6031	WITH STA.	ND.6060
0.847	0.311	-0.166
0.385	0.605	-0.137
-0.108	0.021	0.634
STA .NC . 603P	WITH STA.	ND.6134
0.808	-0.179	0.211
-0.052	0.293	-0.032
0.167	-0.112	0.233

STA-NO-5933	WITH STA.	10+5937
0.754	0.141	-0.169
0.190	0.678	0.113
-0.110	0.070	0.783
STA.ND.5933	WITH STA.N	1.6047
0.662	0.212	-9.077
0.139	0.639	0.137
-0.102	0.138	0.782
STA+NC+5934	WITH STA.N	0.5937
0,856	0.216	-0.113
0.102	0.863	0.075
-0.124	0.015	0.857
STA-NO-5934	WITH STAN	0.6047
0.71B	0.304	-0.052
0.103	0.658	0.103
-0.108	0.052	0.765
STA .NO.5935	WITH STA.N	0.5938
0.583	0.099	-0.093
0.152	0.669	-0.047
-0.158	0.074	0.780
STA-NO-5935	WITH STA-N	C.6047
0.792	0.266	-0.023
0.103	0.682	-0.065
-0.079	0.009	0.789
STA-NO-5957	WITH STA-N	0.6047
0.876	0.225	-0-048
0.125	0.787	0.045
-0.074	0.060	0.849
+ STA-ND-6002	WITH STAIN	0.7043
0.959	0.030	-0.116
0.031	0.943	0.264
-0.116	0.264	0.954
+ STA-N0-6011	WITH STA-N	0.9012
0.981	-0-242	0.114
-0.747	0.980	-0.365
0.116	-0.365	0.955
STA-ND-6016	WITH STAN	0.6065
0.697	0.106	-0.407
0.077	0.790	-0.227
-0-436	-0.240	0.686
STA-N0-6023	WITH STAR	0.6060
0.829	0.329	-0-199
0.283	6.802	0.039
-0.267	-0.095	0.707
STA-NO-6028	WITH STALN	0.6111
0_807	-0,180	0.211
-0.052	0.292	-0.031
0-167	-0,111	0.233
STA-ND-AD3R	WITH STA-N	0.9425
0.770	-0.177	0.208
-0-054	0.270	-0.025
0.162	-0.099	0.220

+ STA .NO . 6042	WITH STA.N	0.9028
0.965	-0.102	-0.060
-0.102	0.966	-0.057
-0.060	-0.055	0.982
+ STA .ND.6067	WITH STA.N	0.9029
0.962	0.155	-0.022
0.154	0.965	0.049
-0.019	0.049	0.976
+ STA NO 4111	WITH STA N	n 4134
- 31441040111	_0 212	0 157
	-0.512	0.107
-0.312	0.777	0.107
0.157	0.187	0.999
STA .NU.6134	WITH STA-N	0.9425
0.953	-0.304	0.158
-0.308	0.937	0.191
0.159	0.195	0.945
STA .NO. 8009	WITH STA.N	D .8010
0.619	0.149	-0.610
0.047	0.794	-0.168
-0.593	-0.217	0.602
STA -ND - 8009	WITH STA-N	0.8019
0,551	0.173	-0.550
0,092	0.777	-0.242
-0.537	-0.232	0.544
-0+337 674 NO 6010	-U4232	0.004
5 IA 6NU 6010	M111 31A M	-0 400
0.120	0.000	-0.002
0.079	0.936	-0.303
-0.701	-0.261	0.768
STA . NO . 8015	WITH STA.N	0.8030
0.591	0.125	-0.561
0.124	0.787	-0.186
-0.560	-0.273	0,592
STA .ND.E019	WITH STA.N	D.8030
0.578	0.123	-0.551
0.118	0.179	-0.179
-0.553	-0.274	0.581
STA - ND - 9004	WITH STA N	0.9051
0-551	0-197	-0.518
0,305	0.136	-0.224
-0.263	-0.433	0.812
STA .NO.9004	WITH STA.N	0.6426
0. 372	-0.003	-0.267
0 440		~0.639
0.460	0.121	-0.930
-U.204	-0.131	0.211
* 5 IA .NU. 9051	WITH STAN	0.9091
0.490	-0.299	-0.208
-0.301	0.998	-0.383
-0.207	-0.381	0,991
STA .ND.9051	WITH STA.N	0.9432
0.598	-0.196	-0,530
-0,470	0.809	0.047
-0,151	-0.334	0.371
STA NO 0001		0432
3 TR 6 NU 6 7071	-0 104	- 4 535
	-0.140	-0.53
-0.471	0.810	0.047
-0.152	-0.335	0.374

STA-NO-6050	WITH STAR	140.6061
0.109	-0.358	0.106
0.222	0.840	-0.153
-0 116	-0.429	-0.155
-U+110	964-0-	V+314
* STA-NU-0008	WIN SIA.	10.9002
0.977	-0.125	0.175
-0.125	0.977	0.140
0.177	0.142	0.988
* STA.NO.6111	WITH STA.	ND.9425
0.954	-0.304	0.158
-0.308	0.933	0.191
0.159	0.195	0.946
+ STA-ND-7072	WITH STAN	ND.9010
0.964	0.034	-0.140
0.035	0.040	0.156
-0.141	0 157	0.150
141 -U-141	U+127	
STA-NU-8009	WITH SIA.	10.8012
0.545	0.182	-0.545
0.095	0.778	-0.236
-0.532	-0.242	0.559
STA.ND.8010	WITH STA.	ND.8015
0.717	0.093	-0.679
0.083	0.931	-0.296
-0.695	-0.268	0.762
* STA-NO-8015	WITH STAN	ND-8019
0.950	0-095	-0.707
0 000	0.996	-0.221
-0 700	-0 310	-0.571
	-0.510	0,704
214 NU-8015	WITH STAT	10.9004
0.593	0.386	-0.335
0.059	0.788	-0.313
-0.436	-0.532	0,556
STA.ND.8019	WITH STA.	10.9004
0.615	0.391	-0.328
0.064	0.786	-0.322
-0.437	-0.540	0,581
STA.ND.9004	WITH STA.	10.9091
0.555	0.198	-0.521
0.307	0.137	-0.225
-0.264	-0.433	0.818
STA-NO-9007	WITH STAR	10.9011
0.752	-0.080	0.167
-0.004	0.376	-0.049
-0.000	0.051	-0.047
0.070 57. NO 005.		0.0(2)
214+NU+4021	WIIM SIA-	10.7431
0.540	-0.152	-0.528
-0.523	0.826	0.283
-0.102	-0+354	0.250
STA.NO.9091	WITH STA .N	10.9431
0.543	-0.152	-0.531
-0.523	0.828	0.283
-0.103	-0.355	0.252
STA-NU-9431	WITH STA.	NU.9432
0.808	-0.451	-0.617
-0.373	0.847	-0.085
-0.750	0.180	0.721

Table 5.2-4

Station Correlation Coefficients $\rho_{ij} > 0.75$ (Solution WN14)

* STA .ND .1032			STA.NO.3478		
1.000	0.967	0.779	1.000	0.875	-0.919
0,967	1.000	083.0	0.875	1.000	-0.837
0.779	0.880	1.000	-0.919	-0.837	1.000
STA.ND.3902			STA.ND.8010		
1.000	-0.155	0.087	1.000	0.027	-0.817
-0.155	1.000	0.813	0.027	1.000	-0,206
0.067	0.813	1.000	-0.817	-0.206	1.000
STA.NO.8011			STA.ND.8030		
1.000	0.408	-0.752	1.000	0.139	-0.845
0.408	1.000	-0.382	0.139	1.000	-0.241
-0.752	-0.382	1.000	-0.845	-0.241	1.000
STA .NO. 9426			STA.ND.9427		
1.000	0.230	-0.857	1.000	-9.858	0.636
0.230	1.000	-0.353	-0.858	1.000	-0.813
-0.857	-0.353	1.000	0.636	-0.813	1.000
STA.NO.9431					
1.000	-0.441	-0.870			
-0.441	1.000	0.129			
-0.870	0.129	1.000			

*°ij > 0.925

5.3 Comparisons with Geometric Information

In addition to solution WN14, two other adjustments were also performed with the same data. The only differences were that in one of them (WN12) the weighted height constraints were not applied; thus the scale is defined through the SECOR, EDM and C-Band data. In the other (WN16), the EDM and C-Band lengths were not entered as weighted constraints; thus the scale is through the SECOR and the weighted height constraints. Coordinates from solution WN16 are not given, only some revealing information in a summary form which can be compared to the WN14 results.

Table 5.3-1 contains the differences between the adjusted and given chord lengths (Table 3.3-4) from the three solutions. The lines originating

Table 5.3-1

		Adjusted - Given Length					
2	Line	WN12		WN14		WN16	
Ľ		m	ppM	m	PPM	m	ррМ
	6002 - 6003	8.3 ± 2.5	2.38	2.7 ± 2.3	0.78	5.9±3.0	1.70
	6003 - 6111	2.7 ± 1,4	1,90	2.3 ± 1.4	1.60	11.4 ± 3.1	8,00
1.	6006 ~ 6065	7.7 ± 2.1	3, 13	6.1±2.0	2.47	19.9±3.5	8.13
{	6016 ~ 6065	- 2.8 ± 1.3	2.30	-2.9 ± 1.3	2.47	-18.9 ± 3.4	15.87
M	6006 ~ 6016	2.7 ± 2.2	0.77	1.3 ± 2.1	0.37	1.6±3.3	0.46
ы ш	6063 - 6064	13.7 ± 2.4	3.94	10.6 ± 2.3	3.03	15.2 ± 2.8	4.37
	6023 - 6060	7.9±3.1	3.42	5.9±3.0	2.55	9.6±3.8	4.16
	6032 - 6060*	- 2.4 ± 3.9	0,76	-4.5 ± 3.6	1.42	- 2.9 ± 3,7	0, 92
	3861 - 7043	2.2 ± 1.8	1.44	1.5 ± 1.8	0, 99	7.6±3.7	5,00
Γ	4082 - 4050	26.5 ± 6.9	2.42	- 5.2 + 3.9	0.48	- 4.2 ± 4.0	0.39
P	4082 - 4740	2.0 ± 2.7	1.25	1.3 ± 2.7	1.90	6.6±5.0	4.13
	4082 - 4081	3.0 ± 2.3	2.40	2.3 ± 2.3	0.79	17.9±6.2	14, 49
	4082 - 4061	- 0.4 ± 3.6	0.19	-1.5 ± 3.6	0,65	2, 1 ± 6. 1	0, 93
6	EDM		2.22	,	1.74		5,40
	C-Band		1.56		0,96		4, 98
۶.	All		2. 02		1.50		5.27

Chord Length Comparisons (Solutions WN12, 14 and 16)

*Not constrained in WN12 and WN14.

from Sta. 4742 (Kauai) are not listed for reasons explained earlier. Comparing solutions WN14 and WN12 the effect of including the heights is not very significant. The average length discrepancy decreases 0.48×10^{-6} in case of the EDM, and 0.60×10^{-6} in the C-Band case, both numbers being within the noise level. At first glance the difference between WN14 and WN16 seems to be significant since the average length discrepancy increases by about 4×10^{-6} or 1:250,000 for both types of observations. Close inspection, however, reveals that though the inclusion of the EDM and C-Band chords in the solution improves the positions of stations 6111 (Wrightwood J),6065 (H. Peissenberg) and 4081 (Grand Turk), it does not otherwise contribute to the overall scale determination significantly. If the above-mentioned stations are left out from the comparison, the average length discrepancies in the WN16 solution decrease to 2.76 x 10^{-6} for the EDM and 1.81×10^{-6} for the C-Band, both within noise level from WN14 (about $^{1} \times 10^{-6}$).

The above conclusion is also strenothened by the content of Table 5.3-2 where the average standard deviations of the coordinates and the heights

Ta	Ы	e	5.	3-	2
----	---	---	----	----	---

Standard Deviation Comparisons (Solutions WN12, 14 and 16)

		Constituent Networks									
Solucion	B	BC		SECOR		rs .	S	4	11	'i	
	σ	σΗ	σ	αH	σ	٥H	σ	σH	σ	σH	
WN12	4.4	5.0	4.2	4.8	6.9	7.6	5.2	5.9	5.5	6.2	
WN14	3.5	3.2	2.8	2.4	4.8	2.9	4.1	3.0	3.9	2.9	
WN16	3.5	3.2	2.8	2.4	4.9	2.9	4.1	3.0	4.0	2.9	

All units in meters.

are compared from the three solutions. It is seen that while the inclusion of the weighted heights decreases the standard deviations significantly, the exclusion of the geometric scalars hardly changes the results.

Table 5.3-3 shows the results of a coordinate transformation between solutions WN14 and WN16. Inspection of the residuals on the second and third pages of the table shows that they are insignificant except probably at the stations already mentioned, though even there the discrepancies are within or near the noise level. The fact that the chords 6003-6111 and 6016-6065 improve the positions of stations 6111 and 6065 (while the other chords have very little effect on their terminal stations) is not surprising once it is recognized that these lines are too short to be determined well from observations on PAGEOS.

Table 5.3-4 contains the results of the transformation between WN14 and WN12. The effect of the missing height constraints is well recognizable both in the scale and in the residuals.

In the tables the rotations ω , ψ and ε are about the w, v and u axes respectively. The unit in the variance-covariance matrix, for the elements corresponding to the rotations, is radian squared.

154

Table 5.3-3

Transformation: WN16 - WN14

SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS

(USING VARIANCES ONLY)

DU	DV	DW	DELTA	OMEGA	PSI	EPSILON
METER S	METERS	METERS	(X1+D+6)	SECONDS	SECONDS	SECONDS
0.08	0,57	0.04	0.06	0.00	-0.00	-0.01

VARIANCE - COVARIANCE MATRIX

σ²= 0.22

D	-01	0.39	90-04	-0.118D-03	-0.1160-10	0.6330-10	0.186D-09	-0.356D-11
D	-04	0.64	50-01	0.1940-03	0.1590-10	0.728D-10	-0.3610-11	-0.1940-00
D	-03	0.19	4D-03	0.9300-01	-0.2190-10	0.6820-11	-0,1020-09	-0.1470-09
D	-10	0.15	90-10	-0.2190-10	0.1410-16	0.63RD-20	-0.5830-20	0.2720-19
D	-10	0.72	80-10	0.682D-11	0.638D-20	0.993D-16	-0.1140-16	0.1550-17
D	-09	-0.36	10-11	-0.1020-09	-0.5830-20	-0.1140-16	0.1400-15	-0.3430-17
D	-11	-0.19	4D-09	-0.1470-09	0.2720-19	0.1550-17	-0.3430-17	0.134D-15

COEFFICIENTS OF CORRELATION

-0.1210-02	0.6210-01	0.2510-01	-0.1225-01	-0.1530-02	0.6190-03	0.1000+01
-0.6590-01	-0.1200-02	0.2880-01	0.1670-01	0.2500-02	0.1000+01	0.6190-03
-0.4160-01	-0.2820-01	0.2240-02	-0.1910-01	0.1000+01	0.2500-02	-0.1530-02
0.6230-03	-0.1310-03	0.1700-03	0,1000+01	-0.1910-01	0.1670-01	-0.1220-01
0.1340-01	-0.9620-01	0.1000+01	0.1~00-03	0.2240-02	0.2880-01	0.2510-01
-0.2490-01	0.1000+01	-0.9620-01	-0.1310-03	-0.2820-01	-0.1200-02	0.6210-01
0.100D+01	-0.2490-01	0.1340-01	0.6230-03	-0.416D-01	-0.6590-01	-0.1210-02

Table 5.3-3 (cont'd)

RESIDUALS V

	V16	WN14)		V26 W	N16 }		V1	- 72	
			-		******					
3861	0.2	-0.9	-1.6	3861	-0.2	1.0	2.7	0.5	-1.8	-4.3
4061	0.4	-0.4	-1.0	4061	-0.7	0.4	1.4	1.1	-0.9	-2.4
4081	3.2	-0.2	~3.9	1081	-6.7	0.2	7.1	9.9	-0.4	-11.0
4082	-0.8	-0.5	-0.3	4082	1.0	0.5	0.4	-1.9	-1.0	-0.7
4740	1.3	0.4	-0.6	4740	-2.1	-0.5	0.6	3,3	0.7	-1.2
6001	-0.7	0.6	-0.1	6001	0.7	-0.7	0.1	-1.4	1.3	-0.1
6002	0.6	0.4	0.5	6002	-0.7	-0.4	-0.6	1.2	0.8	1.0
6003	-0.4	1.3	1.4	6003	C.5	-1.4	-1.6	-0.9	2.7	3.0
6004	-0.2	0.3	0.5	£004	0.2	-0.3	-0.6	-0.3	0.6	1.1
6006	-1.0	0.8	0.7	6006	1.2	-0.8	-0.8	-2.1	1.6	1.5
6007	-0.1	-0.3	n.4	6007	0.1	0.3	-0.4	-0.2	-0.6	0.8
6008	. 0.1	-0.1	0.4	6008	-0.1	0.1	-0.4	0.1	-0.3	0.9
6009	0.1	-0.1	0.2	6009	-0.1	0.1	-0.2	0.2	-0.2	0.4
6011	-0.7	0.3	-0.5	6011	0.7	-0.3	0.5	-1.4	0.5	-0.9
6012	0.2	0.1	0.2	6012	-0.2	· 0.1	-0.2	0.3	0.2	0.4
6013	`.2	-0.1	0.3	6013	-0.2	0.1	-0.3	0.4	-0.2	0.6
6015	۰. 2	0.2	0.4	6015	-0.2	-0.2	-0.4	0.3	0.3	0.9
6016	-0.5	0.0	1.1	6016	0.6	-0.0	-1.3	-1.1	0.1	2.4
6019	0.0	-0.4	0.5	6019	-0.0	0.4	-0.5	C-1	-0.9	0.9
6020	-0.7	-0•5	0.5	6020	0.7	0.2	-0.5	-1.3	-0.4	1.0
6022	-0.1	-0.0	0.6	6022	0.1	0+0	-0.6	-0.1	-0.0	1.2
6023	-0.1	-0.1	1.4	6023	0+1	0.1	-1.6	-0.3	-0.1	3.1
6031	-0.1	-0.4	0.1	6031	0.1	0.4	-0.1	~0.3	-0.8	0.3
6032	0.3	-0.1	0 • Z	6032	-0.3	0.1	-0.2	0.6	-0.1	0.4
60 38	~1.0	0.1	-0.1	6038	1.1	-0.1	e.1	-2+0	0.2	-0.1
6039	~0.5	0.0	0.6	6039	0.5	-0.0	-0.6	-1.0	0.0	1.3
6040	0.3	-0.2	0.6	6040	-0.3	0.2	-06	0.6	-0.4	1.1
6042	-0.3	-0.1	0.5	6042	0.3	0.1	-6.5	-0.5	-0.2	0.9
6043	-0.0	-0.3	0.3	6043	0.0	0.3	-0.3	-0.1	-0.7	0.7
6044	0.0	0.0	0.5	6044	-0.0	-0.0	-0.5	0.1	0.0	1.0
6045	0.0	-0.2	9.0	6045	-0.0	0.2	-0.8	0.1	-0.4	1.6
6047	0.4	-0.3	0.3	6047	-0.4	0.3	-0.3	0.7	-0.5	0.6
6050	~0,0	-0.4	0.4	6050	0.0	0.4	-0.4	-0.0	-0-8	0.7
6051	0.1	-0.1	0.5	6051	-0.1	0.1	-0.5	0.1	-0.2	1.0
6052	0.1	-0.3	0.3	6052	-0.1	0.3	-0+3	0.2	-0.5	0.7
6053	-0,0	-0.4	0.3	6053	0.0	0.4	-0.3	-0.0	-0.8	0.7
6055	-0.3	-0.5	0.5	6055	0.3	0.6	-0.5	-0.7	-1.1	1.0

Table 5.3-3 (cont'd)

RESIDUALS V

	V11	WN 14)		V2(W	N16)		V1	- 45	
4050	-0.2	0.2	0.6	6059	0.2	-0.2	-0.6	-0.4	0-5	1.3
6060	-0.1	+0.7	-0.1	6060	0.1	0.7	0.1	-0.1	-1.5	-0-2
4041		_0 4		60.00	_0 0	0 4	-0.4	0.0	-0.7	0.8
6001		-0.4	0.4		-0.0	0.4	-0.4	- 0 . 0	-0.1	
0063	-0.4	-0.7	0.0	0003	0.4	e. /	-0.7	-0.8	-1.4	1.3
6064	-0.1	1.3	0.6	6064	0.1	-1.6	-0.6	-0.1	2.9	1.Z
6065	2.5	2.5	-4.3	6065	-3.3	-2.9	7.3	5.8	5.4	-11.6
6066	0.2	0.1	0.2	6066	-0+2	-0.1	-0.2	0.3	0.2	0.4
6067	-0.1	-0.5	0.6	6067	0.1	0.5	-0.6	-0.1	-0.9	1.3
6068	-0.2	0.4	1.2	5068	0.2	-0.4	-1+2	-0.4	0.7	2.3
6069	-0.1	-0.6	0.4	6069	0.1	0.6	-0.4	-0.2	-1.2	0.9
5072	0.3	-0.3	0.3	6072	-0.3	0.3	-0.3	0.6	-0.5	0.7
6073	0.1	-0.3	0.7	6073	-0.1	0.3	-0.7	0.2	-0.6	1.3
6075	-0.0	-0.2	0.6	6075	0.0	0.2	-0.6	-0.1	-0.5	1.3
6078	-0.2	-0.3	1.2	607R	0.2	0.4	-1.2	-0.5	-0.7	2.3
6111	-0.9	-1.1	-1.8	6111	0.9	1.3	2.6	-1.8	-2.4	-4.5
6123	-0.5	0.0	0.0	6123	0.5	-0.5	-0.0	-1.0	1.2	0.1
6134	-0.9	-1.1	-1.8	6134	0.9	1.3	2.6	-1.8	-2.4	-4.5
7043	0.6	0.4	0.5	7043	-0.7	-0.5	-0.6	1.2	0.9	1.1

Table 5.3-4

Transformation: WN12 - WN14

SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS

(USING VARIANCES ONLY)

DU	DV	DW	DELTA	OMEGA	PS1	EPSIL(M
METERS	METFRS	MFTERS	(X1.9+6)	SECONDS	SFCONDS	SECONDS
-1.02	1.87	-4.53	1.94	0.04	0.05	0.05

VARIANCE - COVARIANCE MATRIX

0.6P

0.2460+00 0.6520-04 -0.2850-63 -0.1750-09 0.2840-09 0.7570-09 -0.1550-10 0.6520-04 0.2700+00 0.416D-03 0.187D-09 0.2550-09 -0.1390-10 -0.7050-09 -0.2850-03 0.4160-63 0.3840+00 -0.3200-09 0.2890-10 -0.3820-09 -0.4990-09 -0.175D-09 0.1870-09 -0.3200-09 0.715D-15 0.677D-19 -0.6770-19 0.346D-18 0.2840-09 0.2550-09 0.2890-10 0.6220-19 0.3780-15 -0.4720-16 0.6110-17 0.7517-09 -0.1390-10 -0.3820-09 -0.677D-19 -0.4720-16 0.5340-15 -0.1400-16 -0.1550-10 -0.7050-09 -0.4990-09 0.346D-18 0.6110-17 -0.1400-16 0.5230-15

COEFFICIENTS OF CORRELATION

0.1000+01	0.2530-03	-0.9270-03	-0.2410-01	0.2940-01	0.6610-01	-0.1370-02
0.2530-03	0.1000+01	0.1790-0?	0.2460-01	0.7520-01	-0.1160-0?	-0.5930-01
-0.927 D-03	0.1290-02	0.1000+01	-0,3530-01	n.240 <u>0</u> -02	-0.2679-01	-0.3520-01
-0.2410-01	0.2460-01	-0.3530-01	0.1000+01	0.2100-03	-0.2007-03	0.1030-02
0.2940-01	0.2520-01	0.2400-07	0.2180-03	0.1000+01	-0.1050+00	0.1370-01
0.66 ID-01	-0.1160-02	-0.2670-01	-0.2009-03	-0.1050+00	0.1007+01	-0.2650-01
-0.1370-02	-0.5930-01	-0.3520-01	0.103D-02	0.1370-01	-0.2659-01	0,100D+01

Table 5.3-4 (cont'd)

RESIDUALS V

			-							
3861	-0.2	-1.5	2.7	386.1	0.2	4.0	-5.4	-0.5	-5.5	P.0
4061	-0.5	-2.8	3.8	4061	4.0	5.1	-5.0	-1.0	-7.9	P P
4081	-1.0	9.1	1.7	4051	1.2	-0.2	-1.9	-2.2	0.3	3.2
4082	0.7	-2.5	2.4	4082	-0.9	6.3	-4.2	1.6	-9.A	6.7
4740	-0.2	-2.4	2.2	4740	0.7	7.2	-4.0	-0.5	-0.6	6.2
6001	-0.3	-0.2	-0.7	6001	n.3	0.2	1.2	-0.5	-0.4	-2.0
6002	-0.7	0.2	0.3	6092	0.0	-0.6	-0.9	-1.5	0.2	1.3
6003	-0.4	1.0	-1.4	6003	0.6	-1.7	3.2	-1.0	2.7	-4.1
6004	0.1	1.0	-1.1	6004	-0.1	-1.3	1.7	0.2	2.2	-2.8
6006	0,5	0.5	-1.9	6006	-0.7	-0.7	4.4	1.2	1.3	-6.3
6007	3.5	-1.3	3.4	60C7	-6.4	2.0	-7.9	9.9	-3.3	11.?
8008	3.2	1.5	-0.:	14	-8.2	-4.1	0.0	11.4	5.5	-0.1
6009	-0.3	0.0	-1.0	6	0.3	-0.0	1.2	-0.7	0.0	-2.2
6011	-2.6	1.5	0.5	6011	۴.7	-2.0	-0.7	-8.3	3.4	1.2
6012	1.0	0.7	-0.3	£01?	-1.9	-1.0	0.4	~. 8	1.7	-0.6
6013	-0.3	-0.6	-0.5	6013	C_F	0.2	0.7	-೧.୧	-1.4	-1.2
6015	-0.6	-2.8	-0.4	6015	1.0	4.5	0.6	-1.6	-7.6	-1.0
6016	-0.5	-0.1	-0.4	6016	0.9	0.2	0.R	-1.3	-0.3	-1.2
6019	0.1	1.5	-2.0	£019	-0.1	-2.7	4.0	0.2	4.2	-6.0
6020	-1.1	1.7	-1+6	6020	1.4	-3.1	2.5	-2.5	4.7	-4.1
6072	-0.6	1.8	0.3	6022	1.3	-7.7	-0.3	-1.9	4.0	0.5
6023	1.7	-0.7	0.4	5027	-3.4	1.1	-0.5	5.1	-1.F	0.9
6031	1.0	1.7	0.9	6031	-1.7	-2.0	-1.7	2.7	3.6	2.6
6032	-0.7	0.1	-0.3	£032	0.P	-0.2	0.5	-1.5	0.3	-0.°
6038	-0.9	0.2	-0.0	6039	1.3	-0.4	0.0	-2.2	°.7	-0.0
6039	-0.4	3.6	-0.1	e203	0.7	-6.3	0.1	-1.1	0.P	-0.2
6040	-1.6	-1.0	-0.9	604 C	1.7	1.7	1.1	-3.3	-?.7	-2.0
6042	-2.7	-2.2	-1.6	6042	4.8	4.2	2.3	-7.5	-6.4	-?.6
6043	-0.8	2.8	-2.0	£043	0.9	-3.4	4.4	-1.7	6.2	-6.5
6044	-1.2	1.4	-4.0	604.4	1.2	-1.6	P.2	-2.4	3-0	-12.2
6045	-1.7	-1.1	-1.3	6045	2.1	1.9	1.8	-3.A	-3-0	-3.2
6047	0.0	-1.3	0.4	6047	-0.1	2.7	-0.5	0.1	-4.0	0.9
6050	-0.9	3.3	-1.0	6050	0.9	-3.5	2.7	-1.8	6.0	-3.7
6051	-1.0	1.4	-1.4	6051	1.0	-1.E	3.8	-2.0	2.2	-5.2
6052	-0.8	1.2	-0.6	£052	0.9	-1.5	1.1	-1.8	2.9	-1.7
6053	-0.3	2.0	-0+3	f053	0.4	-2.2	0.8	-0.7	4.3	-1.1

Table 5.3-4 (cont'd)

RESIDUALS V

	V1 (WN14	1		V21 W	N12)		V1	- V2	
						~~~~~				
6059	-1.2	2.6	-1.0	6059	3.0	-3.8	1.5	-4.1	A.5	-2.5
0303	1.3	0.2	0.8	6060	-7.4	-0.3	-1.4	3.7	0.5	2.2
6061	-0.0	3.5	-2.4	6061	0.0	-3.7	5.5	-0.1	7.2	-9.1
6063	0.8	0.6	1.2	6063	-1.6	-1.0	-2.0	2.4	1.7	2.2
6064	-1.1	9.0-	-0.3	6064	1.6	1.1	0.3	-2.7	-1.9	-0.6
6065	-0.2	-0.0	-0.9	6065	0.3	0.0	2.3	-0.4	-0.1	-3.2
6066	1.0	0.7	-0.3	6966	-1.9	-1.0	0.4	2.P	1.7	-0.6
6067	2.6	1.3	-0.1	6067	-6.8	-2.2	0.1	9.4	3.5	-0.2
9909	-1.1	-0.0	-1.9	8008	2.1	0.0	3.0	-3.2	-0.1	-4.9
6069	-0.0	2.4	-3.7	6069	0.1	-2.6	6.1	-0.1	5.0	-9.7
6072	-1.7	-2.4	-0.8	4072	1.0	3.9	1.1	-3.5	-6.3	-1.9
6073	-1.7	-1.2	-1.2	6073	1.9	2.0	1.4	-3.6	-2.7	-2.6
6075	-1.3	-1.3	-1.6	6075	1.7	2.1	2.0	~3.0	-3.5	-3.6
6078	1.4	0.4	-0.5	607A	-5.9	-0.6	0.9	7.?	1.0	-1.2
6111	-0.9	-C.2	0.5	6111	1.3	0.5	-1.2	-2.2	-0.7	1.7
6123	-0.9	0.8	0.5	6123	1.0	3.0-	-1.4	-1.9	1.6	2.0
6134	-0.9	-0.2	0.5	6134	1.3	0.5	-1.2	-2.2	-0.7	1.7
7043	-0.7	0.2	0.4	7043	0.R	-0.5	-0.9	-1.5	0.7	1.2

Table 5.3-5 is a height analysis computed for the purpose of inspecting the height residuals from solution WN14 which, according to the explanation offered in section 5.1, are mostly the short-wave-length components ( $\delta N$ ) of the geoid undulation. In the table, NOSUGC denctes the quantity  $H_{\text{WNIA}}$  -MSL - dH, where dH is computed with  $u_0 = -23.2 \text{ m}$ ,  $v_0 = -2.9 \text{ m}$  and  $w_0 = 2.7 \text{ m}$ . In case of a uniform global station distribution, the average value of NOSUGC -  $N_{RFF}$  should be equal to the additive terms from the best fit,  $\Delta a = -13$  m. As it is seen on the !ast page of the table, this number is -12.94 m. The root mean square value of the residuals is ±6.42 m. The respective numbers from the WN12 solution (no weighted height constraints) are -1.24 and  $\pm 13.45$  m. From this it seems that the semidiameter of the level ellipsoid best fitting the geoid (defined through the  $N_{\text{WN12}}$  undulations) is 6 378 153.8 ±13.5 m, opposed to the WN14 solution's 6 378 142.1 ±6.4 m. The proximity of these values and their noise level are only indications that the "best" semidiameter of the level ellipsoid still needs to be determined; at the present time it can only be defined to fit some criteria as in section 5.1.

Table 5.3-6 contains the results of an independent height comparison where undulations (N) from the WN14 solution referenced to the defined level ellipsoid are compared with those from [Vincent et al., 1972] ( $N_y$ ). The quantity

$$N = H_{WN14} - MSL - \Delta N = NOSUGC - \Delta a$$

The average difference  $N - N_V$  taken over the stations where  $N_V$  is available is -0.3 m, and the rms of the residuals is ±6.1 m. Similar comparisons with the WN12 solution show an average difference of -0.2 m and the rms of the residuals of ±16.1 m.

## Table 5.3-5

## Height Residuals (Solution WN14)

STN. NO.	NOSUGC	N REF	NOSUGC-N REF	RESIDUALS
1021	-53, 33	-37.32	-16-01	-3.07
1022	-38.20	-31.5P	-6-62	6.33
1030	-51.74	-30.00	~21 - 74	-6-79
1032	-2.17	11.57	-13.69	-0.75
1033	-3.91	9.11	-13.02	-0.08
1034	-40.84	-25.47	-15-37	-2.42
1042	-47.53	-34.38	~13.15	-0.20
3106	-53.30	-49.83	-3.47	9.47
3334	-45.79	-31.54	-14.25	-1.30
3400	-32.19	-18.42	-13.77	-0.82
3401	-46.81	-30.59	-16.22	-3.28
3402	-48.34	-29.04	-19.20	-6.36
3404	-43.00	-6.69	-28.31	-23.36
3405	-65.84	-49.77	-16.07	-3.12
3406	-38.89	-29.19	-9.70	3.24
3407	-60.27	-38.57	-21-70	-8.76
3413	-19,55	-12.03	-7.52	5.43
3414	-27.84	-9.88	-17.96	-5.02
3431	5.59	11.98	-6.39	6.56
3476	-44.50	-28.31	-16.19	-3.25
3477	0.51	10.71	-10.20	2.74
3478	-20.75	-7.17	-13.58	-0.64
3499	3.87	16.73	-12.86	0.09
3648	-48.91	-35.70	-13.21	-0.26
3657	-49.62	-36.55	-13.07	-0.13
3861	-43.88	-33.70	-10.18	2.76
3902	-31.19	-16.53	-14.66	-1.72
3903	-57.45	-36.87	-20.58	-7.63
5001	-44.20	-36.87	-7.33	5.62
5201	-39.05	-17.65	-21.45	-8.46
5410	-6.20	-4.13	- 1.07	10.88
5648	-47.90	-35.07	-12-83	0.12
5712	-44.27	-28.31	15.91	-2.97
5713	49.11	54.00	-4-89	8.05
5715	23,59	27.20	-3.41	9.33

## Table 5.3-5 (cont'd)

STN. ND.	NCSUGC	N REF	NOSUGC-N REF	RESIDUALS
5717	7.70	10.35	-2.65	10.30
5720	-16.89	-5.78	-11.11	1.84
5721	-32.25	-20.67	-11.58	1.37
5722	-87.78	-73.64	-14.14	-1.19
5723	-59.91	-40.39	-19.52	-6.58
5726	61.98	62.16	-0.18	12.76
5730	-4.72	13.75	-18.47	-5.53
5732	8.67	27.35	-18.68	-5.73
5733	-0.23	16.07	-16.30	-3.35
5734	-3.56	6.77	-9.78	3.17
5735	-19.53	-12.03	-7.50	5.45
5736	4.41	16.26	-11.85	1.10
5739	48.73	54.00	-5.27	7.67
5744	23.35	37.43	-14.08	-1.14
5907	-42.61	-28.11	-14.50	-1.56
5911	-43.33	-43.44	0.11	£3+05
5912	-13.16	6.16	-19.32	6 38
5914	-67.99	-50.08	-17.91	-4.97
5915	-41.79	-26.32	-15.47	-2.52
5923	22.05	24.64	-2.59	10.35
5924	23.49	54.48	~30.99	-18.04
5925	26.11	33.75	-7.64	5.31
5930	9.73	8+28	1.45	14.39
5931	-28.03	2.32	-30.35	-17.40
5933	48.80	50+66	-1.86	11.09
5934	58,59	74.75	-16.16	-3.22
5935	42.62	48.15	-5.53	7.42
5937	51.60	69,93	-18.33	-5.38
5938	49.03	59.97	-10.94	2.01
5941	4.87	2.05	2.82	15.76
6001	4.33	11,66	-7.33	5.61
6002	-50.76	-36.90	-13.86	· <b>-</b> 0•92
6003	-39.73	-17.65	-21.58	-8.64
6004	-3.23	6.22	-9.45	3.50
6006	11.02	27.06	-16.04	-3.09

STN. NO.	NOSUGC	N REF	NOSUGC-N REF	RESIDUALS
6007	49.70	54.00	-4.30	8.64
5008	-44.48	-28.31	-16.17	-3.23
6009	3.57	16.73	-13.16	-0.21
6011	3.20	1.75	1.45	14.40
6012	-4.85	13.75	-18.60	66
6013	15.27	34.27	-19.00	•06
6015	-32.55	-20.67	-12.88	0.07
6016	23.27	37.43	-14.16	-1.2?
6019	5.60	22.80	-17.20	-4.25
6020	-21.60	-4.75	-16.85	-3.90
6022	7.62	27.35	-19.73	-6.78
6023	44.08	67.94	-23.86	-10.92
6031	-14.32	8.68	-23.00	-10,05
6032	-37.42	-30,51	-6.91	6.03
6038	-49.95	-35.47	-14.48	-1.54
6039	-37.29	-16.68	-20.61	-7.66
6040	-52.86	-38.11	-14.75	-1.81
6042	-17,34	-5.78	-11.56	1.39
6043	-3.29	15.60	-18.89	-5+95
6044	28,18	36.61	-8.43	4.52
6045	-20.02	-6.07	-13.95	-1.00
6047	60,22	62.17	-1.95	10.99
6050	-2,81	15.70	-18.51	-5.56
6051	18.02	29.20	-11.18	1.76
6053	-72.38	-56.10	-16.28	-3.33
6055	4.24	16.26	-12.02	0.93
6059	-0.41	16.07	-16.48	-3.53
6060	7.28	27.33	-20.05	-7.10
6061	0.96	11.28	-10.32	2.62
6063	23.02	27.20	-4.18	8.76
6064	0.64	10.35	-9.71	3.23
6065	30.04	44.23	-14.19	-1.24
6066	~5.65	13.74	-19.39	-6.45
6067	-19.55	-12+03	-7.52	5.43
8068	13.16	24.65	-11,49	1.45

# Table 5.3-5 (cont'd)

STN. NO.	NOSUGC	N REF	NDSUGC-N REF	RESIDUALS
6069	13,23	25.52	-12.29	0.66
6072	-63.61	-40.39	-23.22	-10.28
6073	-86.13	-73.64	-12.49	0.46
6075	-54.59	-44.40	-10.19	2.75
6078	44.05	63.10	-19.05	-6.10
6111	-45.28	-33.18	-12.10	0.65
6123	-14.02	-1.40	-12.62	0.33
6134	-45.38	-33.19	-12.19	0.75
7036	-31.99	-19.78	-12.21	0.73
7037	-44.47	-33.87	-10.60	2.34
7039	-54.88	-43.43	-11.45	1.49
<b>704</b> 0	-52.74	-50.55	-2.19	10.75
7043	-50.11	-36.91	-13.20	-0.26
7045	-30.24	-18.10	-12.14	0.81
7072	-44.94	-36.04	-8.90	4.04
7075	-52.35	-39.20	-13.15	-0+21
7076	-33.40	-26.62	-6.78	6.16
8009	31.67	42.33	-10.66	2.28
8010	31.46	44.77	-13.31	-0.37
8011	37.72	47.43	-9.71	3.23
8015	34.99	46.38	-11.30	1.55
8019	32.00	45.91	-13.91	~0.97
8030	30.64	44.64	-14.00	-1.06
9001	-37.07	-22.93	-14.14	-1.19
9002	12.89	24.27	-11.38	1.56
9004	42.32	*4.57	-12.25	0.69
9005	19.87	30.20	-10.33	2.62
9006	-60.51	-48.12	-12.39	0.56
<b>90</b> 07	22.60	31,82	-9.22	3.73
9008	-31.19	-10.91	-20.28	-7.34
9009	-38.62	-29,19	-9.43	3.51
9010	-44.91	-36.04	-8.87	4.07
9011	5.71	22.80	-17.09	-4.14
9012	2,98	1.76	1.22	14.17
9021	-42.84	-27.00	-15.84	-2.89

## Table 5.3-5 (cont'd)

STN. ND.	NOSUGC	N REF	NOSUGC-N REF	RESIDUALS
9028	-39.07	-5.78	-33.29	-20.34
9029	-19.54	-12-03	-7.51	5.44
9031	-2.31	13.43	-15.74	-2.80
9051	20,50	32.81	-12.31	0.64
9091	19,99	32.84	-12.85	0.10
9424	-43.09	-26.21	-16.88	-3.93
9425	-44.00	-32.39	-11.61	1.34
9426	21.80	36.39	-14.59	-1.64
9427	-2.77	8.83	-11.60	1.34
9431	10.01	25.67	-15.66	-2.71
9432	26.58	39.71	-13.13	-0.12

AVERAGE	SIGMA
-0.12940+02	0.6420D+01

SEMI-MAJOR AXIS

6378142.06

## Table 5.3-6

# Undulation Comparison (Solution WN14)

Sta .	N _{RE P}	MSL	-dH	Hunas	N	Nv	Diff.
1021	-37.32	5.76	0.20	-47.77	-40.39	-34.50	-5.09
1072	-31.58	4.81	-0.81	-?2.58	-25.25	-29.50	4.25
1030	-30.00	929.10	-12.22	889.58	-38.79	-31.90	-6.89
1032	11.57	69.00	5.92	60.96	10.82	12.50	-1+68
1034	-25.47	252.58	-5.81	217.55	-27,89	-26.70	-1.19
1042	-34.38	909.40	-1.53	863.40	-34.58	-30.30	-4.28
3106	-49.83	1.90	7.28	-58.68	-40.36	-54.80	14.44
3334	-31.54	39.00	-4.19	-7.60	-32.84	-28.70	-4.14
3400	-18.42	2184.10	-8.49	2160.40	-19.24	-17.50	-1.74
3401	-30.59	83.00	1.67	34.52	-33.87	-28.40	-5.47
3402	-29.04	73.00	-3.23	27.89	-35.40	-30.40	-5.00
3405	-49.77	2.20	3.47	-67.11	-52.89	-53.30	0.41
3406	-29,19	6.83	5.02	-37.08	-25.95	-35.50	9.55
3407	-38.57	254.80	7.87	186.66	-47.33	-46.20	-1.13
3648	-35,70	12.00	-0.81	-36.10	-35.96	-31.70	-4.26
3657	-36.55	5.50	0.45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-36.68	-33.90	-2.78
3861	-33.70	0.20	-0.21	-43.47	-30.94	-31.00	0.00
3902	-10+23	1002.00	-0.37	1027.30	-10+20	-10.40	-10 50
5703	-20+01	100.00	0.08	93.57	-44,50	-34.00	2.75
5201	-30.01	340.02	-11.61	741.29	-26 11	~20.00	-5.21
5668	-1.00	-100 + 72	-11.41	-19.05	~34.95	-30.90	-2.05
5715	27.20	27.30	19.89	31.00	36.53	25.50	11.03
5739	54.00	56.10	13.40	91.43	61.67	60.30	1.37
5744	37.43	11.80	16.74	18-41	36.29	40.20	-4.51
5907	-28.11	481.90	-5.56	444.85	-79.67	-27,90	-1.77
5911	-43.44	22.00	4.76	-26.09	-30.39	-39.20	8.81
5912	6.16	9.10	0.96	-5.02	-0.22	1.10	-1.32
5914	~50.08	63.80	5.19	-9.38	-55.05	-55.90	0.65
5915	-26.32	206.20	-6.52	170.93	-28.94	-27.10	-1.74
5924	54.48	12.40	16.64	19.25	36.44	48.60	-12.16
6002	~56.90	44.30	C.24	-6.70	-37.82	-34.00	-3.82
6003	-17.65	368.74	-11.41	340.92	-26.29	-20,00	-5+39
6006	27.06	105.70	5.41	111.31	23.97	26.00	-2.03
6007	54.00	53.30	13.40	84.60	02.04	60.30	2.34
0010	31.43	9.24	10+14	17.11	30.21	41.80	-4.77
6023	67.94	50.50	-12+01	120.39	-24 69	-21 50	-14+20
4040	-30.51	20.50	-14 66	233.02	-24.40	21 40	-11.27
6060	27.20	26.50	10.60	29.43	35.96	25	10.46
6065	44.23	943.20	13.66	959.58	42.99	44.50	-1.51
6111	-33.18	2284.30	-12.52	2251.54	-32.33	-34.50	2.17
7036	-19.78	59.59	-6.75	34.35	-19.05	-24.00	4.95
7037	-33.87	272.68	-4.62	232.83	-31.53	-32.30	0.77
7040	-50,55	49.70	5.64	-8.68	-39.80	-52.30	12.50
7045	18.10	1789.63	-8.37	1767.76	-17.29	-18.40	1.11
7072	-36.04	14.20	-0.19	-30.55	-32.00	-36.30	4.30
7075	-39.20	281.90	-1.39	220.94	-39.41	-36.90	-2.51
7076	-26.62	445.90	1.55	410.95	-20.46	-32.00	11.54
9001	-22.93	1651.33	-9.35	1623.61	-24.12	-22.80	-1.32
9004	54.57	25.90	16.70	51.52	55.26	48.40	6.86
9009	-29.19	8.70	5.02	-34.94	-25.68	-35.70	10.02
4010	-36.04	15.13	-0,19	-24.59	-31.97	-30+30	4,23
A051	-77.00	2382.00	-10.14	2344.40	76494	-20+1U	-1+(7
4021	52 • MI	191.40	10 JE DA	176+46 171 AF	23.47 23 84	40+0U 40 40	-1.17
4041	26+04	-01+01	15924	711002	26 074		-100

Sta.	N _{RE7}	MSL	-dH	Huras	N	Nv	Diff.
9424	-26.21	704.60	-8.36	669.87	-30.14	-20.20	-9,94
9425	-32.39	784.23	-12.53	752.76	-31.05	-33.90	2.85
9426	36.39	575.92	9.24	588.48	34.75	36.60	-1.85
6134	-33.19	2198.40	-12.52	2165.54	-32.44	-34.50	2.06
8009	42.33	24.70	12.25	44.12	44.61	41.60	3.01
8010	44.77	903.44	14.01	970.89	44.40	46.10	-1.70
8011	47.43	113.20	12.04	138.88	50.66	47.00	3.66
8015	46.38	647.00	14.96	679.03	59.93	49.30	10.63
8019	45.91	377.42	15.03	394.39	44.94	47.30	-2.36
8030	44.64	165.50	13.31	182.83	43.58	43.60	-0.02
9431	25.67	8.00	9.92	8.09	22.96	16.80	6.16
9432	39.71	189,00	12.88	202.70	39.52	41.10	-1.58

#### 5.4 Comparisons with Dynamic Solutions

Table 5.4-1 is a compilation of transformation parameters between the WN coordinates and those from the dynamic solutions NWL-9D, SAO III, GEM-4 and GSFC-73. The method of computing the parameters is described in [Kumar, 1972]. In the table the positive angles  $\omega$ ,  $\psi$  and  $\varepsilon$  are counterclockwise rotations about the w, v and u axes respectively, as viewed from the end of the pusitive axis. The scale difference factor  $\Delta$  is in units of ppM. In the transformations the variances of both sets of the coordinates are taken into account. Taking the variances of the WN solutions as standard, those of the dynamic solutions are scaled by the weight factors indicated. These numbers are also indicative of the overoptimism over the quality of some of the published solutions. For example, a weight factor of 25 would indicate that the published standard deviations of a given solution weed to be multiplied by  $\sqrt{25} = 5$ .

Tables 5.4-2 to 5.4-5 contain the variance-covariance matrices, the correlation coefficients, and the residuals after transformation for the solumes mentioned above.

an be observed that there is a good agreement between the translation? ele incs  $\Delta u$ -s and  $\Delta v$ -s of the main (all stations inclusive) dynamic solutions and a discrepancy of about 8.5 ± 1.7 m with respect to the geometric values (see equation 5.1 - 5). The largest discrepancy occurs in the  $\Delta w$  components, where there seems to be a 12.3 ± 2.1 m difference between the SAO III and the GEM-4 solutions. Eliminating the SAO III value, all  $\Delta w's$ , including the geometric one, are within the noise level. The weighted mean shifts from the main dynam solutions (excluding  $\Delta w$  from SAO III), or the coordinates of the geocenter
Ŧ-	۰.	1 -			1
'đ	D	ıe	- 5	• 4	- 1

# Relationships Between Various Dynamic and the WN Systems (Dynamic - WN14)

Solution	NWI-9D **				SAO III **		GEM-4**	GSFC-73**
S.a. Considered	5000	6000	all	6000	9000	all	all	al]
No. Stations	12	22	32	47	22	73	30	26
Weight Factor*	1,5	7.75	~ 4	2	2	2	50	22
Δu (m)	15.6 ±1.6	16, 8 ±1, 1	15,9 ±1.0	16,8 ±1,5	10,7 ±2,1	13,9 ±1.3	14,5 ±1,6	13,7 ±1,5
Δv (m)	13.1 ±1.5	9,6 ±1,1	10, 3 ±1, 0	12,8 ±1,5	13,6 ±2,2	13.6 ±1.3	11,6 ±1,6	12,9 ±1,4
Δw (m)	- 7.8 ±2.0	$-3.2 \pm 1.1$	- 3.4 ±1.1	- 5,2 ±1,5	-15,7 ±2,3	-10,4 ±1,3	1.9±1.7	- 1,7 ±1,9
$\Delta(10^{-6})$	0.74±0, 15	0 26±0.05	0,29±0.04	- 0.50±0.05	0,74±0,15	- 0.17±0.04	0.93±0.11	0,96±0, 11
ω(")	0,73±0,03	∩.70±0.01	0.71±0.01	0.51±0.02	0,26±0,03	0.37±0.01	- 0.02±0.02	- 0,38±0.02
ψ(~)	- 0.11±0.04	- 0,15±0.01	- 0.15±0.01	0.15±0.02	0.08±0.04	0.15±0.01	0.12±0.03	0,19±0,03
€(")	0.23±0.07	- 0.17±0.01	- 0.14±0.01	- 0.18±0.02	0.07±0.03	- 0.03±0.01	0.17±0.02	0.24±0.03
σ,2	Ŭ. 85	0.91	0. 87	0. 83	1.20	1, 14	1, 11	1, 09

*Weigf 'Factor =  $\sigma_{0,1}^2 / \sigma_{0,W14}^2$ 

**See p. 118 for references.

# Table 5.4-2

# Transformation: NWL 9D - WN14

# SOLUTION FOR 2 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS

## (USING VARIANCES ONLY)

DU	DV	DW	DELTA	OMEGA	PSI	EPSILON
METER S	METERS	METFRS	(X1.D+6)	SFCDNDS	SFCONDS	SFCONDS
15.89	10.27	-3.38	0.29	0.71	-0.15	-0.14

## VARIANCE - COVARIANCE MATPIX

# $\sigma_0^2 = 0.87$

0.957D+00 -0.812D-03 -0.133D-02 0.958D-10 9.151D-08 0.423D-08 0.502D-09 -0.812D-03 0.955D+00 0.127D-02 0.109D-08 -0.877D-09 -0.248D-09 -0.603D-08 -0.133D-02 0.127D-02 0.112D+01 -0.293D-08 -0.205D-09 -0.708D-09 -0.196D-06 0.958D-10 0.109D-08 -0.293D-08 0.185D-14 -0.436D-18 0.277D-17 -0.530D-18 0.151D-08 -0.877D-09 -0.205D-09 -0.436D-18 0.285D-14 -0.592D-16 0.4445D-15 0.433D-08 -0.248D-09 -0.708D-09 0.277D-17 -0.592D-16 0.789D-14 0.167D-15 0.502D-09 -0.603D-08 -0.196D-08 -0.530D-18 0.446D-15 0.167D-15 0.394D-14

# COEFFICIENTS OF COPRELATION

0.1000+01 -0.849D-03 -0.129D-02 0.228D-02 0.289D-01 0.8230-01 0.817D-02 -0.849D-03 0.100D+01 0.123D-02 0.260D-01 -0.168D-01 -0.472D-02 -0.9831-01 -0.129D-02 (.123D-02 0.1000+01 -0.646D-01 -0.263D-02 -0.125D-01 -0.296D-01 0.228D-02 0.260D-01 -0.646D-01 0.100D+01 -0.190D-03 0.120D-02 -0.196D-03 0.289D-01 -0.168D-01 -0.363D-02 -0.190D-03 0.100D+01 -0.207D-01 0.133D+00 0.823D-01 -0.472D-02 -0.125D-01 0.120D-02 -0.207D-01 0.1000+01 0.494D-01 0.817D-12 -0.985D-01 -0.2960 01 -0.196D-03 0.133D+00 0.494D-01 0.1000+01

# Table 5.4-2 (cont'd)

	V1 (	WN1 4	•		V21 '	WIL 901	)	V:	L - V2	
							-			
5410	0.2	-0.1	-0.3	700	-13.2	3.8	10.5	13.4	-3.0	-10.9
5648	0.1	0.0	0.6	702	-1.6	-1.4	-17.7	τ.7	1.5	18.7
5713	0.0	0.4	-0.0	713	-3.1	-21.4	0.0	3.1	21.P	-0.0
5733	-6.7	5.0	-4.3	733	3.0	-1-3	1.1	-9.7	6.3	-5.4
5915	2.1	0.5	4.5	709	-19.1	-2.9	-33.4	21.2	3.4	37.9
5923	-0.3	-0.4	0.1	719	11.6	9.8	-1 - 7	-11.9	-9,3	1.7
5924	0.1	0.6	c.0	740	-11.0	-20.3	-0.5	11.8	20.0	0.6
5933	0.3	9.0-	0.3	727	-11.8	18.7	-10.1	· · · 1	-10.5	10.5
5934	-0.0	-0.1	-0.3	729	0.7	1.9	12.1	-0.7	-1.9	-12.4
5935	0.3	0.^	0.2	728	-21.2	-1.5	-8-0	21.4	1.5	٤.2
6001	0.8	0.1	-2.8	18	-2.0	-0.2	3.9	2.9	0.3	-6.6
6002	-0.1	0.2	1.1	742	0.5	-1.1	-4.9	-0.6	1.3	6.0
6003	0.7	-0.4	-0.1	778	-2.6	1.5	0.4	3.?	-1.9	-0.6
6004	3.7	-5.4	-5.5	739	-8.1	8.1	5.9	11.8	-13.6	-11.4
6006	0.6	-2.2	1.3	616	-1.P	4.5	-2.5	2.5	-4.8	2.7
6008	1.4	-0.9	2.9	815	~5.2	3.5	- ^E .4	f.7	-4.3	P.2
6011	-0.7	0.3	-4.3	811	1.3	-0.6	6.3	-2.0	ù"~	-10.7
6012	0.0	0.0	-0.5	708	-0.2	-0.8	6.1	0.2	0.8	-6.6
6015	-1.1	-1.0	-1.1	817	4.4	3.5	2.6	-5.5	-4.5	-?.7
6016	0.7	1.5	0.1	612	-3.5	-5.0	-0.5	4.1	6.5	0,6
6022	-1.9	0.A	-1.9	117	2.5	-1.1	1.4	-4.2	1.0	-3*5
6023	-0.3	0.4	1.1	744	0.4	-0.8	-1.2	-0.7	1.2	2.3
6031	-0.2	2.7	3.3	809	0.3	-2.9	-3.6	-0.5	5.5	6.9
6038	-0.2	-0.1	-0.2	831	2.3	<b>°</b> *∂	0.9	-?."	-1.0	-1.1
6043	-1.5	-4.5	6.7	847	2.2	4.8	-4.8	-3.7	-0.1	11.4
6053	-2.0	1.7	1.0	19	1.5	-1.4	-0.6	-3.5	3.1	1.P
6055	1.4	-0.1	-0.5	722	-4.1	0.3	1.0	5.5	-0.4	-1.5
6060	-0.1	-0.4	6.0	805	1.1	4.8	-6.7	-1.2	~5.3	7,4
6064	-0.7	2.2	-1.3	822	1.4	-5.4	2.1	-7.1	7.6	-7.4
6065	-0.3	-0.7	-0.2	830	1.4	1.8	0.7	-1.7	-2.5	-1.0
6068	0.0	-0.1	1.5	115	-0.1	1.2	-9.7	0.1	-1.2	11.1
6075	-0.1	0.4	0.3	717	0.2	-0.5	-0.3	-0.3	1.0	0.5

# Table 5.4-3

# Transformation: SAO III - WN14

# SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PAPAMETERS

## (USING VARIANCES ONLY)

DU	DV	DW	DELTA	OMEGA	PS1	FPSILON
METERS	METERS	MFTERS	(X1-0+6)	SECONDS	SFCONDS	SFCONDS
13.93	13-62	-10 5	-0.17	0_ 37	0.15	-0-03

#### VARIANCE - COVARIANCE MATRIX

# $\sigma_0^2 = 1.14$

0.1550+01 -0.2470-04 -0.P18D-03 -0.382D-08 9.357D-0A 0.3550-08 0.3100-09 -0.247D-04 0.167D+01 0.118D-02 0.288D-08 0.473D-08 -0.5799-09 -0.329D-08 -0.818D-03 0.118D-02 0.167D+01 -0.300D-08 0.342D-09 -0.584D-08 -0.491D-08 -0.382D-08 0.288D-08 -0.300D-08 0.1900-14 -0.693D-1P -0.100D-17 0.301D-17 0.357D-08 0.473D-08 0.342D-09 -0.693D-18 0.274D-14 -0.152D-15 -0.474D-16 0.355D-08 -0.579D-09 -0.584D-08 -0.100D-17 -0.152D-15 0.300D-14 0.304D-15 0.310D-09 -0.329D-08 -0.491D-08 0.301D-17 -0.474D-15 0.304D-15 0.306D-14

## COEFFICIENTS OF CORRELATION

0.1000+01 -0.1530-04 -0.5090-03 -0.7040-01 0.5480-01 0.5217-01 0.4500-02 -0.1530-04 0.1000+01 0.7050-03 0.5110-01 0.6990-01 -0.8190-02 -0.4590-01 -0.5090-03 0.7050-03 0.1000+01 -0.5340-01 0.5070-02 -0.8260-01 -0.6680-01 -0.7040-01 0.5110-01 -0.5340-01 0.1007+01 -0.3040-03 -0.4210-03 0.1250-02 0.5480-01 0.6990-01 0.5070-02 -0.3040-03 0.1000+01 -0.5300-01 -0.1640-01 0.5210-01 -0.8190-02 -0.8260-01 -0.4210-03 -0.5300-01 0.1000+01 0.1000+00 0.4500-02 -0.4590-01 -0.6880-01 0.1250-02 -0.3640-01 0.1000+01 0.1000+01

# Table 5.4-3 (cont'd)

# PESICUALS V

VI( WN14 ) V2( SAD	111) VI - V2
6012 U.3 U.U ~U.4 hU12 ~2h.h ·	
	-2 0 - 22 3 - 20 2 3 2 3 2 7
A046 0 6 1 1 0 6 6046 =7 5 =	
Anas -0 1 -0 4 1 1 4045 1 0	
<b>6047</b> 0.5 -0.1 0.2 6067 -36.2	7.6 - 8.7 - 36.7 - 7.5 - 9.0
6051 0 5 0.3 0.0 6051 -7 7 V	
<b>6057</b> 1.1 0.6 0.1 6052 -20.0 -1	
	14.7 2.7 18.3 15.6
4055 m 3 0.2 m 2 4055 9 8	
6061 0.3 0.8 -0.9 6061 -10.9 -	
A063 -1.3 0.5 -0.4 A063 21.0	
A064 -0.5 -0.2 0.4 6064 9.7	
A065 =0.1 =1.1 =1.4 0065 1.7	7 9 1 2 -1 5 -9 9 -1 2 4

# Table 5.4-3 (cont'd)

	V1 (	WN14	<u>)</u>		V21 54	0 111	) -	V	I - V?	
6067	0.9	0.5	-0.1	6067	-12.2	-6.3	1.3	13.1	6.8	-1.4
6068	-0.2	-0.8	-0.3	A06A	0.4	1.4	0.3	-0.7	-2.2	-0.6
6069	0.1	0.3	0.3	6069	-2.1	-5.0	-5.9	2.7	8.3	6.1
6072	1.0	-0.6	0.3	6072	-10.7	13.8	-5.3	11.7	-14.4	5.5
6073	0.1	-0.6	0.7	6073	-1.3	12.5	-11.9	1.4	-17.2	12.6
6075	-0.3	-0.6	0.8	6075	4.7	11.5	-12.2	-5.0	-12.0	13.0
6078	-0.8	0.9	5.6	6078	10.0	-15.5	-40.4	-10.8	16.3	46.0
6111	-0.4	-0.0	0.7	- 4111	2.8	0.0	-5.5	-3.3	-0.0	é.1
173	0.3	0.0	0.3	6123	-7.3	-0.6	~8.0	7.6	0.6	8.3
6134	-0.4	-0.0	0.7	6134	2.P	0.1	5.5	-3.?	-0.1	6.?
8010	-9.2	13.4	0.0	6010	7.2	-5.0	-0.0	-16.4	18.2	6.0
8011	· -2.1	39.2	-5.1	8011	2.1	-14.9	8.2	-4.1	54.1	-12.2
8015	-5.7	20.6	-2.5	8015	3.1	-3.1	1.7	-8.8	23.7	-5.2
8019	-1.3	14.8	-1.5	-6019	5.6	-17.0	5.8	-**0	31.8	-7.4
9001	-3.2	0.9	0.8	9001	12.5	-9.3	-7.7	-16.7	۰.2	P.5
9602	-0.3	-1.1	-0.9	<del>9</del> 002	0.3	1.1	<b>?</b> •4	0.7	-2.2	-1.3
9004	-3.1	20.1	-8.7	9004	4.2	-3.2	e.7	-7.4	23.3	-17.5
9005	4.5	-1.5	2.9	9005	-15.6	5.8	-158	21.1	-1.3	18.6
9006	11.1	-1.8	1.9	<b>9006</b>	-9.9	P-2	<b>~</b> ₹.2	21.0	-10.0	°.1
9007	1.8	-+.0	-8.5	9007	-3.5	6.0	5.6	5.3	-10.1	-14.1
9008	0.9	-1.8	-1.0	9008	-3.3	7.9	4.4	4.7	-9.7	-5.4
900°	0.5	-0.2	-1.5	<del>0</del> 000	-6.1	3.7	9,7	6.6	-3"6	-11.2
9016	0.4	0.1	0.4	9010	-6.3	-1.2	-5.5	6.7	1.2	5.8
9011	0.2	-0.3	-3.1	<b>9011</b>	-3.2	3.1	16.7	3.4	-3.4	~19.8
9012	-0.6	1.0	0.5	9012	7.0	-12.4	-4.2	-7.6	13.5	4.7
9021	1.0	-3.3	0.2	°021	-0.6	3.6	-0.3	1.7	-6.9	0.5
9028	0.1	-0.2	1.5	9028	-2.1	3.8	-19.2	2.1	-3.0	20.7
9029	1.0	0.5	-0.2	9029	-12.2	-6+2	1.2	12.2	6.7	-1.4
9031	-0.4	0.2	-7.0	9031	1.6	-0.7	16.6	-2.0	6.9	-23.7
9091	-1.2	15.2	-1.5	9091	12.9	-26.1	14.2	-14.1	41.3	-15.7
9424	-4.4	2.0	1.5	9424	. R_2	-2.7	-3.4	-12.6	4.A	5.0
9425	-0.1	-0.0	0.2	9425	3.6	0.6	-7.0	-3.7	-0.6	7.2
9426	1.2	3.2	-2.6	9426	-5.?	-12.4	27.0	6.9	15.5	-79.6
9427	1.1	-12.9	2.9	9427	-4.8	11.0	-12.9	5.9	-23.9	15.8
9431	-11.2	6.9	-9.5	9431	28.4	-30.4	3.8	-3' .6	37.2	-4.3
9432	-0.2	2.1	-0.4	9432	6.7	-51.3	32.3	-6.8	53.4	-32.7

# Table 5.4-4

# Transformation: GEM 4 - WN14

# SOLUTION FOR 3 TRANSLATION. 1 SCALE AND 3 POTATION PAPAMETERS

## (USING VARIANCES ONLY)

DU	DV	DW	95LTA	OMEGA	PSI	EPSILON
METERS	METERS	METERS	(X1+0+6)	SFCCNDS	SFCONDS	SECONDS
14.52	11.64	1.91	0.93	-0.02	0.12	0.17

## VAPIANCE - COVARIANCE MATRIX

# $\sigma_{2}^{2} = 1.11$

0.2680+01 -0.3780-01 -0.1160-01 -0.9320-08 0.2350-07 0.3920-07 0.5100-08 -0.3780-01 0.2510+01 0.7610-02 0.3640-07 0.7090-08 -0.1100-07 -0.3450-07 -0.1160-01 0.7610-02 0.2910+01 -0.3050-07 0.6120-08 -0.2120-07 -0.3950-07 -0.9320-08 0.3640-07 -0.3050-07 0.1110-13 -0.4370-16 -0.5360-17 0.4020-16 0.2350-07 0.7090-08 0.6120-08 -0.4370-16 0.9990-14 -0.2040-14 -0.1660-14 0.3920-07 -0.1100-07 -0.2120-07 -0.5360-17 -0.2040-14 0.1760-12 0.3870-14 0.5100-08 -0.3450-07 -0.3950-07 0.4020-16 -0.1660-14 0.3870-14 0.1270-13

## COEFFICIENTS OF CORRELATION

# Table 5.4-4 (cont'd)

	V1 (	WN14	)		N.1 (	GEM 4 1	)	VI	i - V2	
							-			
1021	-0.1	-0.2	0.1	1021	2.3	5.3	-2.1	-2.4	-5.5	2.2
1022	0.4	-0.1	0.4	1022	-3.2	0.4	-3.0	2.5	-0.5	3.4
1030	-4.3	-0.9	1.0	1030	4.5	1.8	-3.3	-°.8	-2.4	4.3
1032	45.0	63.5	7.1	103.2	-R.7	-10.0	-10.6	53.7	73.5	17.7
1034	-1.1	0.5	C.3	1034	٩,٩	-5.3	-3.8	-10.9	5.8	4.0
1042	1.8	-0.6	0.1	1042	-12.2	3.7	-0.9	14.0	-4.3	1.1
7036	-1.9	1.3	-0.1	7036	8.1	-7.P	0.4	-10+0	9.1	~0.5
7037	-0.7	1.0	0.6	7037	3.7	-6.2	-4.5	-4.4	7.1	5.1
7039	-1.1	-0.7	1.7	7030	5.3	5.3	-10.2	-7.3	-6.0	11.9
7040	-0.1	n.5	1.4	7040	0.3	-?.1	-4.7	-0.4	2.7	E.1
7043	-02	-0.0	-0.0	7043	7.0	1.9	0.9	-9.1	-2.0	-0.9
7045	-3.7	1.0	-0.7	7045	9.0	-4.5	3.6	-12.7	5.5	~4.3
7072	0.2	0.0	-0.1	7072	-5.1	-0.9	3.1	5.4	0.0	-3.2
7075	-1.0	-0.5	0.3	7075	9.0	4.7	-2.9	-10.7	-5-2	3.2
7076	-1.0	-3.0	-0.7	7076	5.1	10.4	2.4	-6.!	-13.3	-3.1
9001	-0.9	0.8	0.8	9001	1.2	-2.0	-3.4	-2.1	2.5	4.?
9002	0.6	۲.٦	-1.1	9002	-1.6	-2.3	1.7	2.2	3.0	-2.P
9004	-1.7	30.2	-3.4	9004	2.3	-5.8	5.4	-4.0	35.9	9.3-
9005	13.0	-11.9	9.1	9005	-7.9	7.9	-10.0	20.8	-10.0	19.1
9006	13.0	-9.6	1.7	9006	-2.2	f.5	-1.5	15.2	-16.1	3.2
9008	-7.4	2.1	7.1	9008	2.9	-3.0	-4.4	-5.3	5.2	6.5
9009	1.3	-0.4	-0.6	<b>900</b> 0	-12.0	6.1	3.1	13.3	-6.5	-2.7
9010	0.9	-0.9	-0.3	°010	-5.4	6.4	2.2	6.3	-7.7	-2.5
9012	1.5	0.8	-1.3	9012	-3.3	-2.0	3.1	4.8	2.8	-4.5
¥021	2.6	-0.4	-1.6	Ý021	-5.0	1.3	6.5	7.6	-1.7	-8.2
9028	1.0	-0.2	0.3	9028	-13.7	2.4	-2.2	14.P	-2.6	2.5
9031	-5.6	1.8	-20.9	9031	5.7	-2.3	10.7	-10.0	4.1	-31.5
9091	-4.1	17.8	-2.4	0001	10.3	-7.3	7.4	-14.4	25.1	-9.8
9425	-0.1	-0.4	-0.4	5425	1.5	8.6	7.5	-1.6	-6.0	-7.9
9427	2.1	-32.0	2.2	9427	-4.1	9.9	-5.2	6.7	-41.0	7.4

# Table 5.4-5

# Transformation: GSFC 73 - WN14

# SOLUTION FOR 3 TRAVISLATION: 1 SCALE AND 3 ROTATION PARAMETERS

# (USING VARIANCES ONLY)

DU	DV	DW	DELTA	OHEGA	PST	EPSILON
METERS	METFPS	METEPS	(X1.D+6)	SECONDS	SECONDS	SECONDS
13.73	12.86	-1.70	6.96	-0.38	D.10	0.24

## VARIANCE - COVARIANCE MATRIX

# $\sigma_0^2 = 1.09$

0.2180+01 -0.6460-01 -0.1660-01 -0.1250-07 0.2650+07 0.5000-07 0.6290-08 -0.66460-01 0.2030+01 0.4490-01 0.5080-07 0.1130-07 -0.1900-07 -0.5420-07 -0.1660-01 0.4490-01 0.3670+01 -0.2690-07 0.1320-07 -0.2420-07 -0.6480-07 -0.1250-07 0.5080-07 -0.3690-07 0.1220-13 -0.1330-15 -0.5370-14 0.1220-15 0.2650-07 0.1130-07 0.1320-07 -0.1330-15 0.1110-12 -0.3800-14 -0.3080-14 0.5000-07 -0.1900-07 -0.3430-07 -0.5370-16 -0.38000-14 0.2230-13 0.5450-14 0.6290-08 -0.5420-07 -0.6485-07 0.1320-15 -0.3080-14 0.5950-14 0.1790-13

# COEFFICIENTS OF CORRELATION

0.1000+01 -0.3080-01 -0.5920-02 -0.7610-01 0.1700+(0 0.2270+00 0.3180-01 -0.3080-01 0.1000+01 0.1660-01 0.3210+00 0.7550-01 -0.9940-01 -0.2840+00 -0.5920-02 0.1660-01 0.1(0+01 -0.1740+00 0.6600-01 -0.1210+00 -0.2540+00 -0.7610-01 0.3210+00 -0.1740+00 0.1000+01 -0.1130-0° -0.230-02 0.9890-02 0.1700+00 0.7520-01 0.4660-01 -0.1130-01 0.1000+01 -0.2410+00 -0.2180+00 0.2270+00 -0.8940-01 -0.1210+00 -0.3230-02 -0 2410+00 0.1000+01 0.2970+00 0.3 80-01 -0.2840+00 -0.2540+0 0.8890-02 -0.2180+00 0.2970+00 0.4000+01

# Table 5.4-5 (cont'd)

	V1 (	WN14	)		V21 GS	FC 73	) -	V1	l – V2	
1021	0.2	-0.3	-0.3	1021	-1.3	2.7	3.5	1.5	-3-0	-3.0
1022	0.9	0.2	0.0	1022	-3.F	-0.6	-0.3	4.7	0.9	0.3
1030	-4.7	-0.6	1.1	1020	2.7	0.7	-4.5	-7.4	-1.2	5.5
1034	-1.1	1.3	0.7	1034	2.5	-2.3	-4.2	-3.6	3.6	4.0
1042	3.7	-1.0	-0.3	1942	-10.0	2.2	1.9	13.7	-3.2	-2+2
7036	-2.9	2.0	-0.1	7036	6.7	-5.4	0.9	-9.1	7.4	-1.0
7037	0.2	1.5	0.5	7037	-0.4	-4.0	-3.4	0.6	5.5	3.8
7039	0.2	-2.1	1.8	7039	-0.5	5.3	-8.1	0.7	-7.5	۰.9
7040	0.6	0.7	0.3	7040	-1.2	-1.5	-1.1	1.8	2.3	1.4
7045 -	-3.9	0.4	-0.1	7045	4.7	-1.3	0.8	·7	1.9	-0.9
7072	,0.7	-0.3	-0.3	7072	-7.9	4.6	4.4	8.6	-4.9	-4.7
7075	-2.0	-0.5	0.6	7075	4.5	0.9	-7.6	-6.5	-1.4	3.1
7076	-1.8	-5.7	-3.3	7076	3.5	7.4	7.8	~5,3	-12.0	-11.1
9001	-2.0	0.1	0.1	9001	3.7	-0.4	-0.7	-5.7	0.5	0.8
9002	1.1	-0.9	8.0	9002	-1.9	2.6	-1.8	3.0	-3.6	2.6
9004	-1.8	25.5	-2.1	9004	1.7	0	4.7	-3.5	30.5	-6.8
9005	5.9	-4.8	3.6	9005	-11.2	23.7	-13.1	17.0	-29.4	16.7
9005	11.1	-5.4	0.2	3000	-7.7	15.3	-0.7	18.9	-20.9	0.9
9008	-2.2	-0.1	0.6	9008	14.3	0.6	-6.2	-16.5	-0.6	6.9
9009	0.6	-0.2	-0.0	9009	-17.2	9.6	1.0	17.9	-9.8	-1.1
9012	1.6	-0.2	0.3	9012	-5.7	0.8	-1.9	7.2	-0.9	2.2
9021	2.1	-3.3	-3.1	9021	-1.6	2.8	6.7	3.7	-6.2	~0,P
9028	0.6	-0.2	0.9	9028	-10.1	3.1	-9.9	10.7	-3.3	10.7
9031	-9.8	5.1	-14.7	<b>0</b> 031	9.0	-5.3	10.4	-18.R	10.4	-25.1
9091	-3.2	24 .9	-1.8	9091	4.4	-7.1	5.0	-7.6	32.0	-6.9
9425	-0.0	-0.5	-0.2	9425	0.4	5.8	2.9	-0.4	-6.3	-3.0

with respect to the WN14 origin, are listed in Table 5.4-6.

# Table 5.4-6

Shifts to the Geocenter (Solution WN14)

Source	u _o (m)	v _o (m)	w _o (m)	r _o (m)
1. Dynamic Ccmparison	14.8 ±1.4	11.8 ±1.3	-1.8 ±1.6	18.9 ±1.9
2. Geometric Fit (section 5.1)	23.2 ±0.9	2.9 ±0.8	-2.7 ±1.2	23.4 ±1.2
3. Weighted Mean of 1 & 2	20.7 ±1.2	5.3 ±1.1	-2.4 ±1.4	21.4 ±1.6
4. JPL/DSN				25.9 ±2.5

The quantity  $r_0 = \sqrt{u_0^2 + v_0^2}$  is distance of the WN14 origin from the rotation axis of the earth. Calculating the same number from the JPL-LS 37 coordinates of the Deep Space Network (stations DSN1 = 4711, DSN2 = 4712, DSN4 = 4714, DSN6 = 4742 and DSN7 = 4751) as published in [Gaposchkin et al., 1973], one gets  $r_0 = 25.9 \pm 2.5$  m, which value is nearest to the one calculated from the geometric fit.

The differences in scale between the dynamic solutions are significant (see Fig. 5.1-2 for comparison). The largest discrepancy is between the SAO III and GSFC-73 with  $\Delta = (1.13 \pm 0.12) \times 10^{-6}$ , which is larger than what one would expect from the noise. The other dynamic scales are within near noise level and, on the average, differ from the scale of the WN14 solution by

 $\Delta = (0.12 \pm 0.08) \times 10^{-6}$ or about one part in 8.3 million.

The largest discrepancies occur in the orientation of the various dynamic systems with respect to each other and to WN14. In the rotation about the w axis ( $\omega$ ), the largest difference occurs between the NWL-9D and the GSFC-73 solutions, where  $\omega = 1$ ", or about 34 m on the equator (Fig. 5.4-1). The other differences are smaller but are significant. These rotations may be partly due to the definition of the zero meridian in the case of purely electronic systems (e.g., Doppler), partly to the various definitions of the vernal equinox in the star catalogs used, and also to its motion with respect to inertial space, in case of optical observations. The latter alone requires a correction to the FK4 right ascensions amounting to +0".65 at 1960.0, changing with a rate of +1".36 per century [Martin and Van Flandern, 1970].

The rotations about the axes u and v are even more confusing. Fig. 5.4-2 illustrates the situation at the pole. The weighted means of the dynamic solutions are  $\psi = 0.02 \pm 0.02$  and  $\varepsilon = -0.04 \pm 0.02$ . The discrepancy between the poles as determined separately from the SAO III 6000 stations and then from the 9000 stations is unexplained at this time. It is interesting to note that the weighted mean pole and zero meridian positions computed from the dynamic solutions hardly differ from those of the WN14 solution.

The only general conclusion that one can draw from the rotation parameters is that the coordinate systems used in the dynamic solutions need to be more carefully defined and conditions enforcing these definitions more strongly applied than evidenced from the solutions discussed.



Fig. 5.4-1 Dynamic zero meridians relative to the WN14 zero meridian.



Fig. 5.4-2 Dynamic pole positions relative to the WN14 pole.

# 5.5 Comparisons with Geodetic Datums

In a planning document prepared in 1966 it was shown that the various ountries in the world use or have used 90 different geodetic datums in their mapping activities [Mueller, 1966]. Since many of these datums have been tied together with ground survey, it is possible to combine them into about 20 large and/or independent datum blocks (Fig. 5.5-1). The original OSU goal, outlined in section 1, called for at least three well-distributed tracking stations on each of these datum blocks. As of the writing of this report this goal has been accomplished only on the following datums:

> Australian (3 stations) European 50 (16 stations but marginal accuracy) North American 1927 (21 stations) South American 1969 (10 stations)

On the Tokyo Datum there are also several stations, but only one of them is independently determined in the WN14 solution. In order to meet the original requirement additional stations or observations will have to be included in future solutions in the following general areas in order of preference: Europe, Soviet Union, India, Japan, Philipp'r s, Cape (South Africa), Madagascar, New Zealand, North Africa. Observations have already been taken and will become available within reasonable time in Europe and North Africa.

Relationships between the geodetic datums and the WN14 coordinate system, as reflected from the data included, are summarized in Table 5.5-1. Coordinates given only to the nearest meter represent estimated values, while the other parameters are the results of regular seven parameter transformations. In order to reduce the convelations between these parameters, the rotations and the scale are determined first from respective direction cosines and chord distances, both independent of the translation parameters

and from each other. In a subsequent adjustment, the translations are calculated while the rotations and scale are constrained at their previously determined values with weights corresponding to their variances. For details of this procedure see [Kumar, 1972].

If the geodetic coordinates referred to any of the datums listed are to be shifted to the "best" geocenter, subtract from the Cartesian datum coordinates the values  $\Delta u$ ,  $\Delta v$ ,  $\Delta w$  listed and add 21 m, 5 m and -2 m (or other value. from Table 5.4-6) respectively.

The variance-covariance matrix, the coefficients of correlation and the residuals after adjustment for those datum blocks where three or more stations are available are shown in Tables 5.5-2 to 5.5-8. The datum with the poorest fit is the European 50, followed by the South American 1969.



Fig. 5.5-1 Major geodetic datum blocks.

Tat	le	5.	5-	3
-----	----	----	----	---

# Relationship Between Various Geodetic Datums and the WN System (Datum - WN14)

No.	Datum Name ¹	NO. C	Δu (m)*	Δv (m)*	∆w (m)*	ω(*)++	\$(*)**	e(")**	۵(×10 ⁴ )
1	Adindan (Ethiopia)	2	184 ±19	21 ±11	-200 ± 6				
3	1962 Arc Cape	1	119 ± 8	-105 ± 8	-413 ±10				
5	(South Africa) Ascension Island	1	152 ± 7	126 ± 7	298 ±10			}	
1	1958	1	227 ± 7	- 93 ± 7	$-58 \pm 8$	1		ł	i i
6	Australian Geodetic	3	118.2± 5.0	41.1± 6.2	-121. 0± C. 9	1.03±0,18	0,99±0,18	-0.25=0.22	-1.20±0.71
10	Camp Area Astro		ļ	Ì		}			
1.	1961/62(USGS)	1 1	$111 \pm 10$	148 ± 9	-238 ±10			1	
12	Carisimas Island	.	116 + 0			) · · ·			
15	Fastor Island Astro		-115 ± 9	-224 ±12	529 ± 8			}	
1	1967	<b>,</b>	-192 +10	-179 +10	100 111				
16	European-50 (W) ²	11	$133.3 \pm 9.5$	114 2+15 9	$152 9 \pm 9 9$	-1 78+0 28	0 01+0 01	0.00.00.44	
{	European-50				100.21 0.2	-1,1010,38	0.0120.31	-0.3810,44	-7,30±1,14
	(All stations) ³	16	134.3± 9,1	152.7± 8.0	144.6± 8.8	-0.41±0.20	0.27±0.30	-0.51+0.22	-7 24+0 88
17	Graciosa Island	}	1						
]	(Azores)	1	123 ±17	-147 ± 9	37 ±17			Ì	
20	Heard Astro 1969	1	182 ±12	56 ±12	-114 ±14				
22	Indian	1	-165 ±17	-711 ±10	-228 ±11				
23	Isla Socoro Astro	1	$-134 \pm 12$	-206 ± 7	$-503 \pm 9$				
24	Johnston Island	١.						<b>j</b>	
20	1901 1901		-161 ±13	51 ±25	211 ±13			]	
100	(Philippinga)		151 +10	E1 1 7	111				
27	Midway Astro 1961	1	-377 ± 7	3 01 ± 1 94 + 7	-279 - 9				
					-210 10				

[•]If (Datum - Geocenter) is sought add to the tabulated values of  $\Delta u$ ,  $\Delta v$ ,  $\Delta w$  the respective quantities -21m, -5m, 2m (see Table 5.4-6). ^{•• $\omega$},  $\phi$ ,  $\epsilon$  when positive, represent counterclockwise rotations about the respective w, v, u axes, as viewed from the end of the positive axis.

Tab	le	5.5-1	(cont	'd)
-----	----	-------	-------	-----

Octue N or	Datum Name ¹	No. of Stations	Δu (m) *	$\Delta v(m)^*$	∆w (m)*	ω(*)**	ψ( [*] )**	€(*)	Δ(×10 ⁴ )
28 29	New Zealand 1949 North American	1	- 61 ± 8	41 ± 9	-192 ± 9				
	1927 (W) ⁵	8	30,6± 7.3	~170.3± 4.5	-134.9± 6,8	0.21±0.20	0.59±0.21	-0. 45±0. 23	-7.91±0.45
	1927 (E) ⁶ North American	13	56.4± 6,9	-144.6± 4.4	-196,4± 4,3	1,01±0,19	~0.01±0.16	0.54±0.14	2.15±0,62
36	(All Stations) ² Pitcairn Island	21	57.1± 2.2	-147.9± 2.6	-187.5± 2,9	0, 86±0, 06	0.23±0.06	0.33±0.11	0, 80±0, 27
39	Astro Provisional South	1	-167 ±12	-168 ±11	- 60 ±11				
41	Chile 1963 South American	1	0 ± 8	-196 ± 8	-93 ±9				
42	1969 ⁹ Southeast Island	10	54.4± 5,5	30.0± 4.8	42.9± 4.9	-0, 63±0, 17	0.17±0.12	-0.12±0.13	6,67±0,59
43	(Mahe) South Georgia	1	54 ± 8	186 ± 8	272 ± 9				
<b>!</b>	Astro	1	820 ± 8	-101 ±11	291 ±11				
46 47	Tokyo Tristan Astro	1	183 ±10	-506 ± 9	-686 ± 9				
49	1968 Wake Island	1	654 ±14	-420 ±11	622 ±13				
50	Astronomic 1952 Yof Astro 1967	1	-260 ± 7	67 ±12	-140 ± 8				
51	(Dakar) Palmer Astro	1	55 ± 6 ·	-143 ± 7	-95 ±7				
	1969	1	-218 ± 9	- 8 ±12	-226 ±12				

*If (Datum - Geocenter) is sought add to the tabulated values of  $\Delta u$ ,  $\Delta v$ ,  $\Delta w$  the respective quantities -21m, -5m, 2m (see Table 5.4-6). * $\omega$ ,  $\psi$ ,  $\epsilon$  when positive, represent counterclockwise rotations about the respective w, v, u axes, as viewed from the end of the positive axis.

# Table 5.5-1 (cont'd)

¹See Table 3. 1-3 for datum description and other related information.

⁸Stations included are Tromso (6006), Catania (6016), Hohenpeissenberg (6065), Wippolder (8009), Zimmerwald (8010), Haute Provence (8015), Nice (8019), Meudon (8030), San Fernando (9004), Dionysos (9091) and Harestua (9426).

³Stations included are as in #2 and Mashhad (6015), Malvern (8011), Naini Tal (9006), Shiraz (9008) and Rigs (9431).

⁴Based on p. 70, Bulletin Geodesique, 107, 1973.

⁶Stations included are Goldstone (1030), Colorado Springs (3400), Vandenberg AFB (4280), Wrightwood II (6134), Moses Lake (6003), Edinburg (7036), Denver (704, and Organ Pass (9001).

⁶Stations included are Blossom Point (1021), Fort Myers (1022), E. Grand Forks (1034), Rosman (1042), Bedford (3401), Semmes (3402), Hunter AFB (3648), Aberdeen (3657), Homestead (3861), Beltsville (6002), Greenbelt (7043), Jupiter (7072) and Sudbury (7075).

⁷Stations included are as in #4 and #5 above.

⁶Stations included are Brasilia (3414), Asunction (3431), Bogota (3477), Paramaribe (6008), Quito (6009), Villa Dolores (6019), Natal (6067), Arequipt (9007), Curacao (9009) and Comodoro Rivadavia (9031).

# Transformation: Australian Datum ~ WN14

# SCALE FACTOR AND ROTATION PARAMETERS CONSTRAINED

# SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS

# (USING VARIANCES ONLY)

DU	DV	DW	DELTA	OMEGA	PSI	EPSILON
METERS	PETERS	METERS	(X1.0+6)	SECONDS	SECONDS	SECONDS
118.16	41.14 -	120.95	-1.20	1.03	0.99	-0.25

## VARIANCE - COVARIANCE MATRIX

# $\sigma_0^3 = 0.48$ 0.2500+02 0.3750+01 0.1870+01 0.2070-05 -0.2540-05 -0.1410-05 0.5740-06 0.3750+01 0.3910+02 0.1890+02 -0.1970-05 -0.4140-05 0.1620-05 0.4570-05 0.1870+01 0.1890+02 0.4740+02 0.1240-05 -0.2140-05 0.4420-05 0.5880-05 0.2070-05 -0.1970-05 0.1240-05 0.5070-12 0.3350-14 -0.15570-13 -0.4570-14 -0.2540-05 -0.4140-05 -0.2140-05 0.5070-12 0.3350-14 -0.15570-13 -0.4570-14 -0.2540-05 -0.4140-05 -0.2140-05 0.3350-14 0.7650-12 -0.1440-12 -0.4080-17 -0.1410-05 0.1620-05 0.4420-05 -0.1550-13 -0.1480-12 0.3790-12 0.3790-12 0.5740-06 0.4570-05 0.5880-05 -0.4570-14 -0.4080-12 0.3740-12 0.1140-11

# COEFFICIENTS OF CORRELATION

0.1000+01	0.1200+00	0.5429-01	0.5820+01	-0.5800+00	-0.3260+00	0+1070+00
0.1200+00	0.1000+01	0.4380+00	-0.4430+00	-0.7570+00	0.3000+00	0.6830+00
0.542D-01	0.4380+00	0.1000+01	0.2520+00	-0.3560+00	0.74?)+00	0.7980+00
0.5820+00	-0.4430+00	0.2520+00	0+1000+01	0.5390-02	-0.2529-01	-0.6000-02
-0.580D+00	-0.7579+00	-0.3560+00	0.5390-02	0.100D+01	-0.1960+00	-0.4360+00
-0.326D+00	0.3000+00	0.7430+00	-0.2520-01	-0.1960+00	0.1000+01	0.4100+00
0.1070+00	0.683D+00	0.7980+00	-0.6000-07	-0.4360+00	0.4100+00	0+1000+01

# Table 5.5-2 (cont'd)

	VIC	WN14	)		V2( A	UST.)		V1	- V2	
			•				•			
6073	0.9	-0.4	-3.0	6023	-0.A	0.4	1.9	1.7	-0.8	-4.0
6032	1.0	1.2	0.7	6032	-0,9	-1.1	-0.5	1.9	2.2	1.2
6060	-1.9	-0.8	1.9	0.606	1.7	0.7	-1.4	-7.6	-1.5	3.2

Transformation: European 50 Datum (W) - WN14

# SCALE FACTOP AND ROTATION PARAMETERS CONSTRAINES

# SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 POTATION PAPAMETERS.

## (USING VARIANCES ONLY)

 DU
 DV
 DW
 DFLTA
 DMEGA
 PSI
 EPSILON

 METERS
 METERS
 METERS
 (X1.0+6)
 SECONDS
 SECONDS

 133.27
 114.18
 152.20
 -7.30
 -1.76
 0.01
 -0.38

VARIANCE - COVAPIANCE MATRIX

# 

-0.147D+02 0.753D+03 -0.125D+02 -0.939D-06 0.738D-04 -0.606D-06 -0.203D-04 -0.172D+02 -0.125D+02 0.851D+02 -0.610D-05 -0.851D-06 -0.938D-0⁵ 0.281D-05 -0.550D+05 -0.839D-06 -0.610D-05 0.132D-11 0.420D-14 0.984D-15 -0.200D-14 -0.281D-05 0.238D-04 -0.851D-06 0.420D-14 0.344D-11 -0.121D-12 -0.207D-11 0.105D-04 -0.606D-06 -0.938D-05 0.984D-15 -0.121D-12 0.226D-11 0.229D-13 0.146D-05 -0.293D-04 0.281D-05 -0.299D-14 -0.207D-11 0.229D-13 0.447D-11

# COEFFICIENTS OF CORRELATION

0.1000+01 -0.9790-01 -0.1970+00 -0.5060+00 -0.1600+00 0.7300+00 0.7300-01 -0.9790-01 0.1000+01 -0.8540-01 -0.4590-01 0.8060+00 -0.2530-01 -0.8710+00 -0.1970+00 -0.8540-01 0.1000+01 -0.5760+00 -0.4970-01 -0.6760+00 0.1440+00 -0.5060+00 -0.4590-01 -0.5760+00 0.1000+01 0.1970-02 0.5700-03 -0.1730-02 -0.1600+00 0.8060+00 -0.4970-01 0.1970-02 0.1000+01 -0.4340-01 -0.5270+00 0.7380+00 -0.2538-01 -0.6760+00 0.5700-03 -0.4340-01 0.1000+01 0.7100-02 0.7300-01 -0.8710+00 0.1440+00 -0.1730-02 -0.5270+00 0.7190-02 0.1000+01

# Table 5.5-3 (cont'd)

	V1(	WN14	)		V2( )	EU-SOW	)	VI	- V2	
6006	0.0	-0.7	0.3	6006	-1.7	21.4	-10.7	1.9	-7?.1	10.6
6016	0.2	-0.8	-0.0	6016	-14.4	40.0	1.9	19.6	-41.7	-1.9
6065	0.1	-0.4	-0.1	6065	-5.1	16.6	4.4	5.2	-17.0	-4.4
8009	-3.2	0.0	0.3	P009	11.4	-0.1	-1.9	-14.6	0.1	2.2
8010	-1.3	1.0	0.0	£010	10.1	-3.7	-7.5	-11.4	4.7	A.3
8015	-0.1	2.6	-0.1	£015	1.9	-10.5	1.3	-2.1	13.2	-1.3
8019	-0.0	3.0	-0.1	8019	0.5	-12.2	1.9	~0.5	15.1	-2.0
8030	-1.5	4.7	0.2	6030	9.0	-12.8	-1.7	-10.5	17.4	2.0
9004	0.0	3.8	0.0	9004	-0.4	-9.P	-0.7	0.5	13.6	0.7
9091	0.3	7.7	-0.5	9091	-4-7	-18.6	7-1	5.0	26.3	-7.6
9426	-0.4	3.9	-0.7	9426	-1.5	-11.3	5.5	1.9	15.1	-6.7

# Transformation: European 50 Datum - WN14

# SCALE FACTOR AND POTATION PAPAMETERS CONSTRAINED

# SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PAPAMETERS

## (USING VARIANCES ONLY)

 DU
 DV
 DW
 DELTA
 DMFGA
 PS1
 FPSILON

 METERS
 METERS
 METERS
 (X1.0+6)
 SECONDS
 SECONDS
 SECONDS

 134.32
 152.68
 144.60
 -7.24
 -0.41
 0.27
 -0.51

## VARIANCE - COVARIANCE MATRIX

# $\sigma_0^2 = 1.06$

0.8360+02 0.5480+01 -0.7890+02 -0.3030-05 -0.2650-05 0.1020-04 -0.2750-05 0.5480+01 0.6410+02 -0.6510+01 -0.7940-06 0.3720-05 0.1280-05 -0.5340-05 -0.2890+02 -0.6510+01 0.7690+02 -0.3570-05 0.1500-05 -0.9110-05 0.3490-05 -0.3080-05 -0.7940-06 -0.3570-05 0.7760-12 -0.1310-15 0.4220-15 -0.2730-15 -0.2650-05 0.3720-05 0.1500-05 -0.1310-15 0.9880-12 -0.3730-12 0.3080-13 2.1020-04 0.1280-05 -0.9110-05 0.4230-15 -0.3720-12 0.2160-11 -0.5960-12 -0.2750-05 -0.5340-05 0.3490-05 -0.2730-15 0.3080-13 -0.5960-12 0.1190-11

## COEFFICIENTS OF CORRELATION

0.100D+01 0.748D-01 -0.360D+00 -0.383D+00 -0.291D+00 0.362D+00 -0.276D+00 0.748D-01 0.100D+01 -0.927D-01 -0.113D+00 0.467D+00 0.109D+00 -0.617D+00 -0.360D+00 -0.927D-01 0.100D+01 -0.462D+00 0.172D+00 -0.706D+00 0.365D+00 -0.383D+00 -0.113D+00 -0.462D+00 0.100D+01 -0.140D-03 0.326D-03 -0.284D-02 -0.291D+0D 0.467D+00 0.172D+00 -0.149D-03 0.100D+01 -0.255D+00 0.284D-01 0.762D+00 0.109D+00 -0.706D+00 0.326D-03 -0.255D+00 0.100D+01 -0.372D+00 -0.276D+00 0.617D+00 0.365D+00 -0.284D-03 0.284D-01 -0.3720+00 0.100D+01

# Table 5.5-4 (cont'd)

	V1 (	WN14	)		V21	EU-50	}	<b>V</b> 1	- V2	
							-		-	
6006	0.1	-1.4	0.4	6006	-3.9	41.5	-13.7	4.0	-47.8	14.1
6015	0.1	-0.0	0.2	6015	-14.2	3.5	-15.7	14.3	-3.6	15.0
6016	0.2	-0.9	-0.0	6016	-14.0	45.1	1.4	14.2	-44.0	-1.4
6065	0.1	-0.6	-0.1	6065	-4.3	24.3	3.0	4.3	-24.9	-2.1
8009	-2.5	-2.6	0.7	P009	9.0	6.6	-3.6	-11.5	-0.3	4.3
8010	-1.2	-0.5	1.0	£010	9.5	1.9	-8.8	-10.7	-2.4	0. R
8011	-0.9	13.7	0.4	8011	3.0	-17.2	-2.2	-3.9	31.)	2.7
8015	-0.1	1.5	-0.0	£015	1.0	-6.0	0.0	-1.1	7.6	-0.0
8019	-0.0	1.9	-0.1	E019	0.4	-7.6	0.7	-0.4	9.5	-0.8
8030	-1.0	2.6	0.4	F030	6.0	-7.2	-3.4	-6.9	9.9	3.9
9004	0.3	3.2	0.1	9004	-6.8	-8.2	-2.3	7.1	11.4	2.5
9006	-0.8	0.1	-0.1	9006	5.0	-2.0	2.0	-* . R	2.1	-2.1
9008	-0.4	0.4	0.7	9008	¢.0	-7.9	-13.2	-6.4	8.4	13.0
9091	-0.3	5.8	-0.5	<b>9091</b>	4.7	-14.0	6.8	-5.0	10.8	-7.3
9426	0.9	0.2	-0.4	9426	-3.1	-0.6	3.2	4.0	0.8	-2.6
9431	-0.2	19.3	-5.6	9431	0.4	-56.3	29.3	-0.6	75.6	-35.0

# Transformation: NAD 1927 (W) - WN14

# SCALE FACTOR AND ROTATION PARAMETERS CONSTRAINED

SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS

## (USING VARIANCES ONLY)

 DU
 DV
 DW
 DELTA
 OMEGA
 PSI
 FPSILON

 METERS
 METERS
 METERS
 (x1.0+6)
 SECONDS
 SECONDS
 SECONDS

 30.60
 -170.28
 -134.88
 -7.91
 0.21
 0.59
 -0.45

## VARIANCE - COVARIANCE MATRIX

 $G_0^3 = 0.29$ 0.531D+02 0.528D+01 0.276D+02 0.285D-06 0.596D-05 0.565D-05 -0.292D-05 0.578D+01 0.707D+02 0.164D+02 0.985D-06 -0.251D-06 0.137D-05 -0.372D-05 0.276D+02 0.164D+02 0.461D+02 -0.830D-06 0.253D-05 0.462D-05 -0.691D-05 0.285D-06 0.985D-06 -0.830D-06 0.207D-12 -0.639D-14 -0.580D-14 0.102D-13 0.596D-05 -0.751D-06 0.253D-05 -0.639D-14 0.930D-12 0.295D-12 -0.382D-12 0.569D-05 0.137D-05 0.462D-05 -0.580D-14 0.395D-12 0.10*D-11 -0.579D-12 -0.392D-05 -0.372D-05 -0.691D-05 0.102D-13 -0.382D-12 -0.574D-12 0.123D-11

## COFFFICIENTS OF CORRELATION

0.1000+01 0.1590+00 0.5570+00 0.8610-01 0.8480+00 0.7610+00 -0.4850+00 0.1590+00 0.1000+01 0.5320+00 0.4750+00 -0.5730-01 0.2940+00 -0.7360+00 0.5570+00 0.5320+00 0.1000+01 -0.2690+00 0.2870+00 0.6640+00 -0.9180+00 0.8610-01 0.4750+00 -0.2690+00 0.1000+01 -0.1460-01 -0.1240-01 0.2010-01 0.8480+00 -0.5730-01 0.2870+00 -0.1460-01 0.1000+01 0.2990+00 -0.3560+00 0.7610+00 0.2940+00 0.6640+00 -0.1240-01 0.3990+00 0.1000+01 -0.5080+00 -0.4850+00 -0.7360+00 -0.9180+00 0.2010-01 -0.3560+00 -0.5080+00 0.1000+01

# Table 5.5-5 (cont'd)

V1( WN14 )				V2 ( NAD	-278 )	V1 - V2				
1030	-0.9	0.4	1.6	1030	4.5	-1.4	-6.7	-5.4	1.4	A.3
3400	2.2	0.5	3.0	3400	-6.7	-2.6	-6.9	A.A	3.1	9.9
4280	0.1	-0.7	-0.9	4280	-0.7	1.1	4.0	0.8	-1.3	-4.9
6003	0.2	-0.2	-0.2	6003	-4.0	5.4	1.5	4.2	-5.6	-1.7
6134	0.2	-0.2	-0.6	6134	-2.7	1.9	5.1	2.9	-2.1	-5.7
7036	-0.1	-0.2	-0.9	7036	0.1	0.9	3.5	-0.2	-1.1	-4.4
7045	-1.2	0.5	0.0	7045	2.5	-1.7	-0.1	-3.7	2.2	0.2
9001	-0.2	0.1	0.5	<b>6001</b>	2.6	-2.3	-5.3	-2.8	2.4	5. A

# Transformation: NAD 1927 (E) - WN14

# SCALE FACTOR AND ROTATION PARAMETERS CONSTRAINED

# SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PARAMETERS

# (USING VARIANCES ONLY)

DU	DV	DW	DELTA	OMEGA	PS1	FPSILON
METERS	METERS	MFTERS	(X1.D+6)	SECONDS	SECONDS	SFCONDS
56.37 -	144.64 -	196.45	2.15	1.01	-0.01	0.54

# VARIANCE - COVARIANCE MATRIX

# σ² ≈ 0,76

0.4750+02 0.5870+01 0.1360+01 -0.2880-06 0.5810-05 0.4270-05 -0.7570-06 0.5870+01 0.1910+02 0.1160+01 0.1930-05 0.1060-05 0.5450-06 -0.1760-05 0.1360+01 0.1160+01 0.1880+02 -0.1420-05 0.1770-06 -0.1630-06 -0.2260-05 -0.2880-06 0.1930-05 -0.1420-05 0.3790-12 0.1300-14 -0.1940-14 0.2070-15 0.5810-05 0.1060-05 0.1770-06 0.1300-14 0.8660-12 0.3920-12 -0.1010-12 0.4270-05 0.5450-06 -0.1630-06 -0.1940-14 0.3920-12 0.6180-12 -0.6760-13 -0.7570-06 -0.1760-05 -0.2260-05 0.2070-15 -0.1010-12 -0.6760-13 0.44220-12

# COEFFICIENTS OF CORRELATION

0.100D+01	0.1950+00	C.455D-01	-0.6790-01	0.9050+00	n <b>.788</b> D+r0	-0.1620+00
0.1950+00	0.1000+01	0.6100-01	0.717D+00	0.2600+00	0+159D+00	-0.5920+00
0.4550-01	0.6100-01	0.1000+01	-0.5300+00	0.4390-01	-0.4770-01	-0.7680+00
-0.6790-01	0.7170+00	-0.5300+00	0.1000+01	0.2270-02	-0.4000-02	0.4950-03
0.9050+00	0.7600+00	0.4390-01	0.7270-0?	0.1000+01	0.5350+00	-0,159D+00
0.7880+00	0.1590+00	-0.4770-01	-0.4000-02	0.5350+00	0.1000+01	-0.1760+00
-0.1620+00	-9.5920+00	-0.7680+00	0.4950-03	-0.1590+00	-0.1260+00	0,100D+01

# Table 5.5-6 (cont'd)

	V1( WN14 )				V2(NAD-27E )				V1 - V2		
1021	0.6	0.2	1.3	1021	-2.5	-0.9	-3.8	3.1	1.1	5.1	
1022	0.1	0.8	0.5	1022	-0.6	-4.8	-2.6	0.7	F .6	2.1	
1034	-3.2	1.2	0.5	1034	5.8	-3.5	-1.8	-9.0	4.6	2.3	
1042	2.4	0.3	0.9	1042	-7.2	-1.2	-2.7	9.6	1.5	3.6	
3401	1.6	-1.0	-1.0	3401	-6.7	3.7	2.9	8.3	-4.6	-3.9	
3402	0.5	-0.5	0.4	3402	-0.8	1.5	-1.0	1.3	-2.0	1.4	
3648	-1.2	0.4	1.5	3648	2.8	-1.7	-2.7	-4.0	2.1	4.1	
3657	2.0	0.6	-0.4	3657	-7.2	-2.3	1.0	°.3	2.9	-1.4	
3861	-1.4	-0.3	-0.0	3861	4.4	1.5	0.1	-5.8	-1.8	-0.1	
6002	-0.2	-0.6	-0.9	6002	1.1	5.9	6.6	-1.3	-6.4	-7.5	
7043	-0.2	-0.6	-0.9	7043	1.2	5.9	6.5	-1.3	-5.5	-7.4	
7072	0.4	0.4	0.5	7072	-4.3	-4.4	-5.2	4.7	4.7	5.7	
7075	-3.4	-1.2	-0.3	7075	7.8	3.6	1.0	-11.2	-4.9	-1.3	

# Transformation: NAD 1927 - WN14

# SCALF FACTOP AND RETATION PARAMETERS CONSTRAINED

SOLUTION FOD 3 TRANSLATION, 1 SCALE AND 3 ROTATION PAPAMETERS

## IUSING VARIANCES ONLY!

DU	DV	DW	DELTA	DMEGA	PSI	FPS1LON
METERS	MFTFPS	METERS	(X1.D+6)	SECONDS	SECONDS	SECONDS
57.13 -	147.90 -	187.52	0.80	0.86	0.23	0.33

## VARIANCE - COVARIANCE MATRIX

# $\sigma_0^3 = 0.76$ 0.4980+01 0.5290+00 0.8240+00 -0.1940-07 0.4210-06 0.3040-06 -0.1580-06 0.5290+00 0.6530+01 0.2940+01 0.3680-06 0.4490-07 0.1040-06 -0.8760-06 0.8240+00 0.2940+01 0.8360+01 -0.7750-06 0.4930-07 0.1380-06 -0.1190-05 -0.1940-07 0.3680-06 -0.2750-06 0.7340-13 -0.2000-15 0.1910-16 0.2620-15 0.4210-06 0.4440-07 0.4930-07 -0.2000-15 0.7710-13 0.9540-14 -0.1000-12 0.3040-06 0.1080-06 0.1380-06 0.1910-16 0.9590-14 0.6950-13 -0.2930-13 -0.1580-06 -0.8760-06 -0.1190-05 0.2620-15 -0.1000-13 -0.2930-13 0.7420-12

# COEFFICIENTS OF CORRELATION

0.1000+01	0.9270-01	0.1280+00	-0.3200-01	0.6790+00	n.517D+00	-0.1440+00
0.9270-01	0.1000+01	0.3980+00	0.5320+00	0.6330-01	0.1600+00	-0.4970+00
0.1280+00	0.3980+00	0.1000+01	-0.3510+00	0.6140-01	0+1810+00	-0.8390+00
-0.3200-01	0.5320+00	-0.3510+00	0.1000+01	-0.2660-02	0.2670-03	0.1970-02
0.6790+00	0.63?0-01	0.6140-01	-0.2660-02	0.100D+01	0.1310+00	-0.7230-01
0.5170+00	0.160D+00	0.181D+00	0.2670-03	0.1310+00	0.1007+01	-0.7760+00
-0.1440+00	-0.6970+00	-0.8392+00	0.1970-02	-0.7330-01	-0.2260+00	0.1000+01

# Table 5.5-7 (cont'd)

	V1 ( WN14 )			V2(N4D-27 )				V1 - V2		
					# ####################################					
1021	0.9	0.2	1.3	1021	-3.7	-1.0	-3.8	4.6	1.2	5.1
1022	0.0	0.6	0.5	1022	-0.2	-3.3	-2.3	0.2	3.9	2.R
1030	-0.5	-0.4	1.5	1030	2.4	1.3	-6.2	-2.9	-1.7	7.7
1034	-2.9	1.7	1.2	1034	5.4	-5.0	-3.9	-8.4	6.7	5.0
1042	2.5	0.3	1.1	1042	-7.5	-0.9	-3.0	10.1	1.1	4.1
3400	0.5	0.5	2.2	3400	-1.6	-2.9	-5.1	2.2	3.4	7. ?
3401	2.1	-0.8	-1.1	2401	-8.8	3.0	3.1	11.0	-3.8	-4.2
3402	0.2	-0.7	0.7	3402	-0.4	2.2	-1.6	0.6	-2.9	2.3
3648	-1.1	0.2	1.5	3648	5.6	-1.0	-2.7	-3.7	1.3	4.2
3657	2.4	0.6	-0.4	3657	-6.6	-2.5	1.0	11.1	2.1	-1.4
3861	-1.5	-0.7	-0.2	3861	4.7	3.0	0.6	-6.2	-3.7	-0.9
4280	1.0	-1.1	-0.9	4280	-4.7	5.6	4.0	5.7	-6.7	-5.0
6002	0.0	-0.5	-0.4	£002	-0.3	5.7	6.5	0.4	-+.2	-7.5
6003	0.0	-0.6	-0.9	6003	-0.7	16.4	6.A	0.7	-19.9	-7.6
6134	0.5	-0.5	-0.6	6134	-5.8	4.9	5.2	6.4	<b>-</b> *.4	-5.F
7036	-2.1	Z • 2	0.2	7036	4.3	-9.6	-0.7	-6.4	11.5	0.8
7043	0.0	-0.6	-0.9	7043	-0.3	5.8	6.4	0.3	-6.3	-7.4
7045	-3.5	0.5	-0.6	7045	7.4	-1.6	2.n	-10.9	2.1	-2.6
7072	0.4	0.2	0.4	7072	-4.1	-2.9	-4.7	4.5	3.1	5.1
7075	-2.8	-0.9	-0.1	7075	6.4	2.5	0.2	-9.2	-3.4	-0.3
9 <b>0</b> 01	-0.3	0.4	0.6	9001	4.9	-6.6	-6.2	-5.3	6.9	6.8

Transformation: South American 1969 Datum - WN14

SCALE FACTOR AND ROTATION PARAMETERS CONSTRAINED

SOLUTION FOP 3 TRANSLATION, 1 SCALE AND 3 POTATION PAPAMETERS

# (USING VARIANCES ONLY)

DU	OV	DW	DELTA	OMEGA	PS1	EPSILON
METFRS	METERS	METERS	(X1.D+6)	SFCONDS	SECONDS	SFCONDS
54.37	29.98	42.92	6.67	-0.63	C.17	-0.12

# VARIANCE - COVARIANCE MATRIX

 $\sigma_0^3 = 0.47$ 0.298D+02 0.477D+01 0.188D+01 -0.990D-06 0.348D-05 -0.906N-06 -0.473D-07 0.477D+01 0.728D+02 0.262D+00 0.182D-05 0.188D-05 -0.225D-06 0.421D-06 0.188D+01 0.262D+00 0.736D+02 0.327D-06 0.275D-06 -0.128D-05 -0.208D-05 -0.990D-06 0.182D-05 0.327D-06 0.352D-12 0.128D-14 0.1597-14 0.2527D-14 0.348D-05 0.188D-05 0.275D-06 0.128D-14 0.657D-12 -0.103D-12 0.463D-14 -0.906D-06 -0.225D-06 -0.128D-05 0.159D-14 -0.103D-12 0.240D-17 0.585D-12 -0.473D-07 0.421D-06 -0.208D-05 0.252D-14 0.463D-14 0.585D-13 0.772D-12

# COEFFICIENTS OF CORPELATION

0.1000+01	0.1830+00	0.708D-01	-0.3060+00	0.7870+00	-0+2857+00	-0.1470-01
0.183D+00	0.1000+01	0.1130-01	0.6410+00	0.4870+00	-0.8079-01	0.1440+00
0.708D-01	0.1130-01	0.1000+01	0-1140+00	0.698D-01	-0.4500+00	-0.7020+00
-0.3060+00	0.641D+00	0.1140+00	0.1007+01	0.2640-02	0.4580-02	0.6960-02
0.7870+00	0.4870+00	0.6980-01	0.2660-02	0.1000+01	-0+2190+00	<b>0.9340-02</b>
-0.285D+00	-0.8070-01	-0.4500+00	0.4580-02	-9.2140+00	0+1000+01	0.1640+00
-0.1420-01	0-1440+00	-0.7020+00	0.696D~02	0.9340 32	0,1540+00	0.1000+01

# Table 5.5-8 (cont'd)

	VI( WN14 )				V?( SA-1060 )				V1 - V2		
3414	3.9	-1.1	6.0	3414	-1.7	0.7	-2.8	5.6	-1. ^p	£.F	
3431	-1.3	2.5	0.0	3431	1.4	-3.A	-0.0	-2.7	4.3	0.1	
3477	16.8	2.2	14.1	3477	~10.3	-3.2	-9.9	27.1	5.5	24.1	
8008	0.1	0.3	1.9	6008	-1.0	-5.1	-14.4	1.0	5.4	16.7	
6009	-1.9	-1.0	-1.9	+00•	9.5	5.7	6.7	-11.2	-6.7	-5. °	
6019	-0.2	-0.2	-0.8	6019	2.2	2.0	3.6	-2.5	-2.7	-4.4	
6067	-0.2	-0.5	-0.9	6047	2.9	7.0	8.2	-3.1	-7.5	-9.1	
9007	1.0	G.4	-1.1	9007	-10.6	-2.A	3.7	11.6	2.1	-4.9	
e00e	-0.4	0.0	-1.9	9009	4.5	-0.4	10.6	-6.3	0.4	-12.5	
9031	-5.7	1.6	2.4	4031	5.3	-1.3	-1.3	-11.0	2.0	3.7	

# 6. SUMMARY AND CONCLUSIONS

The OSU WN14 solution is a geometric adjustment for the coordinates of 158 tracking stations.

The coordinate system in which the coordinates are presented is oriented towards the Greenwich Mean Astronomical Meridian (u axis) and the Conventional International Origin (w axis), as both defined by the Bureau International de l'Heure. The v axis forms a right-handed system with u and w, and with the former defines the average geodetic equator. The coordinates of the origin with respect to the geocenter are suggested to be  $u_{WN14}^{O} = -21$  m,  $v_{WN14}^{O} = -5$  m,  $w_{WN14}^{O} = 2$  m.

The scale in the solution is defined through SECOR observations and weighted height constraints. Chord distances derived from C-Band radar observations and from electronic distance measurements (geodimeter and tellurometer) are also included as weighted constraints, but they seem to have very little or no effect. The main reason that the SECOR observations are successfully utilized (perhaps for the first time) is that the illconditioning arising in quadrilateration when the four stations lie near a plane (which is always the case with SECOR) is eliminated by "pinning down" the stations to the geoid through the height constraints and the directions defined by the optical observations from the collocated stations.

The scale in the solution is such that when the coordinates are transformed to a geocentric rotational ellipsoid of a = 6 378 142 m and 1/f = 298.25, they produce geoid undulations consistent with dynamically determined ones with  $k^{2}M = 3.9860092 \times 10^{\frac{1}{2}4}m^3 \sec^{-2}$  and  $\gamma_e = 978.0326$  cm sec⁻².

The consistency of the solution is represented by the average standard deviation in a Cartesian coordinate of +3.9 m, and in height of  $\pm2.9$  m. The correlations between the coordinates of a given station and those between different stations are low, except at those nearby stations where the relative positions are maintained at the surveyed values with weighted constraints.

Comparisons with the EDM chords show an average agreement of 1:575,000, with 1:2,700,000 at best and 1:330,000 at worst. The average agreement with the C-Band chords is 1:1,000,000, varying between 1:2,100,000 and 1:525,000. The scale agreement with the dynamic solutions on the average is 1:3,600,000, with 1:1,000,000 at worst and 1:5,900,000 at best.

Comparisons with coordinates from dynamic satellite solutions show significant inconsistencies in the orientation of the coordinate systems which need to be resolved. The residuals after transformation are all within the noise level.

Table 6.1 is a summary of the Cartesian coordinates from solutions WN12 and WN14. As mentioned earlier the former differs from the latter only in that in it the heights are not constrained. The scale in WN12 is such that when the coordinates are transformed to a geocentric rotational ellipsoid of a = 6 378 154 m and  $1/f = __38.25$ , they produce geoid undulations consistent with dynamically determined ones with  $k^2M = 3.9860089 x$  $10^{-14} m^3 sec^{-2}$  and  $\gamma_e = 978.0285 cm sec^{-2}$ . For various comparisons between solutions WN12 and WN14 see Tables 5.3-1, 5.3-2 and 5.3-4.

Comparisons with geoid undulations from satellite and surface gravimetric solutions in case of the WN14 solution show an rms residual of  $\pm 6.1$ , with

an average of only -0.3 m. Similar comparison with the WN12 solution, where the heights are not constrained, shows that the rms of the residuals is  $\pm 16.1$  m, and the average -0.2 m.

Comparisons with survey coordinates result in satisfactory transformation parameters for the NAD-1927, the Australian and the South American 1969 datums, and marginal ones for the European 1950 datum. In order to fulfill the "three station per datum" general requirement for the other major datum blocks, additional observations are needed from Europe, the Soviet Union, India, Japan, the Philippines, South Africa, Madagascar, New Zealand and North Africa, in order of preference.
### Table 6-1

# Summary of Cartesian Coordinates (Solutions WN12 and WN14)

)	TATION	)   	SOLUTION WN-12					SOLUTION WN-14					
NO I	NAME	U	V	W	σ,	σ	σ.	U	V	¥	σ	σ,	0
   1021	BLOSSOM POINT	1113021.8	-4976331.7	3942970.9	3.1	4.0	4.2	   1118023.1	-4876323.4	3942963.9	2.8	2.6	2.8 1
1 1022 1	FORT MYERS	807850.8	-5652004.0	2833509.0	2.6	3.3	3.3	807851.9	-5651989.6	2833500.2	2.2	1.9	2.3 1
1030	GOLDSTONE	-2357249.2	-4646346.4	3668312.5	6.1	4.4	4.7	1-2357742.9	-4646338.5	3668306.8	5.6	3.3	3.2 1
1032	ST. JOHN'S	1 2602704.3	-3419179.7	4697621.1	49.1	89.5	29.9	2602688.6	-3419228.9	4097137.3	39.3	46.7	13.8 1
1033	FAIRBANKS	1-2249292.3	-1445690.5	5751823.3	7.5	10.0	10.5	-7299282.6	-1445693.7	5751811.6	6.9	9.7	5.7 1
1034	E. GRAND FORKS	-521708.3	-4242074.9	4718726.5	3.5	4.0	4.4	-521704.5	-4242064.3	4718716.8	3.1	3.0	2.7
1 1042 1	ROSMAN	1 647495.9	-5177948.0	3656714.4	3.1	3.6	4.0	647497.5	-5177935.6	3656705.9	2.8	2.4	2.6 1
3106	ANTIGUA	2881840.5	-5372180.7	1868548.5	4.1	4.6	4.9	2881838.3	-5372164.6	1868538.6	3.7	3.3	4.3
3334	STONEVILLE	-84969.1	-5327986.3	3493434.3	15.6	14.0	10.8	-84963.8	-5327974.9	3493428.3	13.6	6.8	9.0
3400	CCLORADO SPRINGS	-1275239.4	-4798062.9	3944279.5	16.3	12.4	8.6	-1275207.2	-4798029.3	3994208.3	9.1	5.1	5.7 1
3401	BEUFORD	1 1513134.8	-4463580.1	4283061.2	3.5	5.3	4.6	1513136.1	-4463576.8	4283055.8	3.2	3.4	3.0 1
3402	SEMMES	167250.1	-5481980.4	3245042.6	4.2	4.3	4.6	1 167259.7	-5481971.0	3245037.0	3.9	2.8	3.5
3404	SHAN ISLAND	642485.7	-6053942.4	1895690.5	5.0	5.3	5.5	642491.4	~6053940.3	1895688.6	4.7	3.7	4.9
3405	GRAND TURK	1919482.1	-5621096.5	2315780.1	3.6	5.6	4.9	1919482.9	-5621028.1	2315775.3	3.3	3.5	4.0
3406	CURACAO	2251802.9	-5816929.0	1327197.4	2.8	3.5	3.8	2251800.2	-5816912.9	1327191.1	2.4	2.1	3.4 1
3407	TRINIDAD	2979892.9	-5513532.6	1161126.8	5.2	5.1	5.9	2979891.1 	-5513530.9	1181129.3	4.7	3.4	5.3 1
3413	NATAL	5186366.4	-3654725.1	-653022.7	3.4	2.9	3.2	5186348.4	-3654272.4	-653018.9	2.1	2.2	2.7 1
3414	BRASILIA	4114987.8	-4554148.5	-1732166.1	9.9	8.4	7.9	1 4114977.8	-4554142.5	-1732154.0	7.7	6.1	7.2 1
1 3431	ASUNCION	1 3093056.1	-4870100.4	-2710845.8	8.5	9.3	12.5	3093045.4	-487CC81.7	-2710823.0	7.6	6.5	10.6 (
3476	PARAMARIBO	1 3623243+6	-5214213.7	601514.0	3.4	3.3	3.6	3623277.3	-5214210.7	601515.3	2.2	2.0	3.0 1
3477	BOCOTA	1 1744649.6	-6114305.6	532205+2	10.4	13.7	9.B	174+650.2	-6114286.7	532208.6	10.2	6.6	9.6
3478	MANAUS	1 3185765.4	-5514574.5	-347713.2	19.3	35.4	35.8	3185777.0	-5514585.9	-347703.2	10.7	14.5	35.1
3499	CUITO	1280834.0	-6250966.2	-10605.5	3.8	5.9	4.5	1280834.2	-6250955.9	-10800.6	3.6	3.4	4.1
3648	HUNTER AF8	832562.6	-5349553.4	3320596.4	4.1	5.0	5.4	832566.2	-5349540.7	3360585.3	3.6	2.5	3.6
i 3657	ABERDERN	1186796.1	-4785205.1	4032892.3	3.4	5.0	4.5	1186787.1	-4785193.1	4032882.3	3.1	3.0	3.0
3861	HCHESTEAD	961766.7	-5679170.6	2729843.8	3.3	3.8	3.7	961767.9	-5679156.6	2729PP3.5	3.0	Z.3	2.6
3902	CHEVENNE	1-1234689.4	-4651235.9	4174763.4	28.6	32.1	11.3	1-1234700.7	-4651242.8	4174758.6	8.6	6.3	6.3
3903	MERNOCN	1068960.0	-4842973.2	3991763.9	17.3	15.5	11.4	1 1068989.7	-4843005.4	3991776.6	12.1	8.5	8.9
4050	PRETORIA	5051614.R	2726608.6	-2774181.0	4.4	3.8	5.5	5051608.1	2726603.3	-2774166.8	3.2	3.2	4.4
4061	ANTIGUA	2081594.5	-5372540.2	1668034.3	4.2	4.7	5.0	1 2881592.3	-5372523.9	1868024.4	3.8	3.5	4.3
4081	GRAND TURK	1920409.9	-5619426.1	2319133.4	3.7	5.7	5.0	1 1920410.9	-5619417.8	2319128.5	3.3	3.6	4.0
4082   	PERRITT ISLAND	910567.9	-5539130.2	3017974.8	Z.9	3.8	3.7	910567+2 	-5539113+2	3017965.3	2.6	2.4	2.8 1
4280	VANDENBERG AFB	-2671883.7	-4521217.3	3607495.0	4.3	4.4	4.8	1-2671873.8	-4521210.5	3607490.4	3.8	3.3	3.6
4740	PERMUDA	1 2308688.6	-4874314.8	3343092.0	3.8	5.4	5.1	1 2308887.3	-4874298.2	3393082.1	3.3	3.1	3.8
1 5001	PERNOCN	1 1088874.4	-4842954.9	3991857.8	4.9	10.2	7.9	1 1088849.4	-4842948.7	3991840.2	3.6	3.0	3.7
5201	MOSES LAKE	1-2127810.4	-3785912.3	4656011.9	2.7	2.8	3.7	1-2127802.2	-3785911.5	4656012.1	2.3	2.2	2.4
1 5410	I MIDWAY ISLANDS	1-5618704.5	-258231.5	2997243.8	Z +9	3.2	4.1	1-5618754.1	-258237.5	2997250.2	Z.3	Z.8	3.6
1 5048	FORT STEWART	794687.3	-5360063.7	3353093.5	4.2	5.0	5.5	794691.0	-5360051.1	3353082.4	3.6	2.5	3.0
5712	PARAMARIBO	3623307.1	-5214190.5	601672.3	3.4	3.3	3.6	1 3623289.8	-5214188.0	601673.2	Z.1	2.C	2.9
[ 5713	I TERCEIRA	4433654.4	-2268159.2	3971673.1	Z.7	Z.8	3.8	1 4433637.8	-2266153.2	3471050.8	Z.0	Z • Z	2.7
	I	1						۱ <u> </u>					

Table 6-1 (cont'd)

1 5	TATION	{	SOLUT	IDN WN-	12			I SOLUTION WH-14					
NO I	NAME	l U	V	¥	an a	<i>a</i> ,	σ.,	ł U	V	¥	σ _υ	σ,	<i>a</i>
1 5715	DAKAR	   5884479.9	-1853580-1	1412743-8	2.3	2.5	3.1	 	-1453540.1	1412740.1	1.4	2.0	2.2
5717	FORT LAMY	6023416.1	1617949.5	1331651.2	2.7	2.6	3.3	6023410.7	1417944.5	1331655.8	2.0	2.0	2.7
5720	ADDIS ABABA	4900750-1	3968255.1	966348.3	2.7	2.9	3.4	49007.9.1	3968253-0	966356.7	2.0	2.1	2.9
5721	MASHHAD	2604406.6	4444124.9	3750345.7	2.6	2.6	3.5	1 2604404.8	4444122.3	3750344-3	2.1	2.1	2.7
5722	DIEGO GARCIA	1 1905122.3	6037294.5	-810776.4	4.2	5.5	4.8	1 1905127.0	6032267.5	-#10716-2	3.5	4-1	4.3
5723	CHIANG MAI	-941713.7	5967448.6	2039317.5	3.1	3.3	4.1	-941709.4	5967445.0	2039322.9	2.5	2.3	3.5
5726	ZAMBDANGA	1-3361953.2	5365845.5	763623.6	3.0	3.3	3.8	1-3361946.8	5365R37.0	763627.8	2.3	2.2	3.2
5730	WAKE ISLAND	-5858583.8	1394474.9	2093844.7	2.8	3.1	3.0	-5858574.6	1394467.2	2093847.4	2.1	2.5	3.1
5732	PAGO PAGO	-6099984.0	-997345.6	-1568577.0	5.7	4.4	4.9	-6099970.5	-997355.3	-1568570.9	3.6	3.5	4.1
5733	CHRISTMAS ISLAND	-5865350.8	-2446375.3	221663.1	4.4	3.5	4.6	1-5885333.9	-2448380.4	221670.7	2.7	2.9	3.9
5734	SHEMYA	1-3851808.1	396416.1	5051343.3	3.2	3.7	4.9	1-3851799.0	396409.3	5051342.0	2.7	3.3	3.9
5735	NATAL	1 5186368.5	-3654226.0	-653022.6	3.3	2.8	3.1	1 5186350.6	-3654223.7	-653018.9	2.0	2.1	2.5
5736	ASCENSION ISLAND	6118355.5	-1571763.1	-878558.4	3.3	2.9	3.3	6118340.3	-1571761.9	-878553.6	2.3	2.2	2.7
5739	TERCEIRA	44336-6.0	-2266192.2	3971663.3	2.7	2.8	3.8	4433629.3	-2268186.2	3971647.0	2.0	2.2	2.5
5744	CATANIA	1 4896444.1	1316129.4	3856628.4	2.4	2.8	3.2	4896437.7	1316125.0	3856626.2	1.6	2.2	2.3
5907	WORTHINGTON	-449391.6	-4600910.6	4380315.4	5.8	13.8	13.5	-449417.5	-4600905.5	4380288.1	4.2	3.2	4.5
5911	BERMUDA	2308010.4	-4873778.3	3394476.1	3.6	4.9	5.2	2307991.2	-4873773.2	3394463.4	2.0	2.3	3.0
5912	PANAMA	1142664.4	-6196104.1	928340 <b>.</b> B	4.8	9.1	7.0	1 1142644.5	-6196109.1	988336.6	3.1	3.4	4.1
5914	PUERTO RICO	2349423.9	-5576023.2	2010340.5	13.5	21.1	9.7	2349456.9	-5576027.1	2010342.6	10.5	7.0	6.4
5915	AUSTIN	-744066.7	-5465234.3	3192485.8	5.6	15.3	12.8	-744091.1	-5465238.7	3192467.4	3.8	3.8	4.7
5923	CYPRUS	4363335.9	2862256.8	3655380.7	2.5	2.7	3.3	4363332.2	2862254.9	3655380.7	1.9	2.1	2.4
5924	ROTA	5093565.8	-505319.1	3784273.1	2.4	3.1	3.8	1 5093556.2	-565372.3	3784268.3	1.9	2.6	2.9
1 5925	RCGERTS FIELD	1 6237376.B	-1140741.8	687740.0	3.0	3.1	3.6	1 6737366.3	-1140241.5	6P7740.2	2.3	2.0	3.0
1 5930	SINGAPORE	-1542556.4 	6186964.6	151627.8	3.3	3.9	4.0	1-1542549.4	6186956.7	151833.8	2.0	2.7	3.4
5931	HONG KONG	1-2423919.1	5388294.8	2394863.9	3.1	3.5	4.3	-2423914.9	5388250.3	2394869.2	2.5	2.5	3.6
5933	DARWIN	1-4071578.3	4714767.0	-1366533.3	4.3	4.4	4.3	-4071568.4	4714253.3	-1366528.3	3.2	3.2	3.7
5934	MANUS	1-5367671.7	3437881.4	-225419.4	3.6	3.5	3.8	1-5367663.1	3437869.9	-225416.0	2.5	2.5	3.3
9935	GUAM	1-5059832.6	3591194.2	1472759.4	2.9	3.0	3.4	1-5059825.7	3591186.0	1472762.5	2.1	2.2	2.8
5937	PALAU	1-4433470.5	4512939.3	809955,3	3.1	3.2	3.7	1-4433+63.6	4512930.3	809958.7	2.2	2.2	3.2
5938	GUADALCANAL	1-5915106.0	2146873.2	-1037912.8	4.4	3.9	4.0	1-5915096.5	2146860.8	-1037909.5	3.0	3.0	3.5
5941	MAUI	1-5467771.9	-2381242.7	2254024.0	3.5	3.2	4.4	1-5467757.3	-2381246.7	2254033.8	2.5	2.8	3.0
1 900 T	THULE	1 546566.4	-1389493.6	6180242.4	2.7	2.7	4.4	1 546568.7	-1389993.7	6180236.7	2.6	2.4	3.4
6002	BELTSVILLE	1130762.7	-4830837.6	3994709.9	2.2	2.7	3.1	1130764.9	-4830831.9	3994704.0	2.0	1.7	1.9
6003	MUSES LARE	1-2127839.9	-3785864.2	4656037.4	2.5	2.7	3.5	[-2127832.1	3785863.0	4656037.2	2.1	2.0	2.3
0004	SPERTA	1-3851806.8	396416.1	5051341.7	3.2	3.7	5.0	1-3851797.5	396409.4	5051340.5	2.7	3.3	3.9
0000     4007	TRUMSU	1 2102430.3	721674-1	5958181.7	2.7	3.3	4.4	1 2102927.4	771668.5	5958180.8	2.4	2.9	2.9
	I ENLEINA	4433653.3	-2268156.9	3971671.0	7.7	Z.7	3.8	4433637.3	-2268151.4	3971655.0	z.0	2.2	2.5
		1 3623257.3	->214236.7	601534.8	3.4	3.3	3.6	1 3623241.0	-5214233.7	601536.1	2.1	2.0	2.9
0004		1 1280834.0	-0250966.2	-10805.5	3.8	5.9	4.5	1280834.2	-6250955.9	-10800.6	3.6	3.4	4.1
I DOTT	MAUL	1-2400034.2	-2404424.3	2242224.6	4.4	3.4	3.9	1-2466018.6	-2404431.5	2242224.4	3.0	2.9	3.3
6009	MAUI	1280834.0  -5466039.2 	-6250966.2 -2404429.3	-10805.5 2242224.6	3.8	5.9 3.4	4.5 3.9	1280834.2  -5466018.6 	-6250955.9 -2404431.5	-10800.6 2242224.4	3.6 3.0	3.4 2.9	, ,

Table 6-1 (cont'd)

	S T A T I O N	STATION I SOLUTION WN-12						SOLUTION WN-14					
NO	I NAME	U	V	¥		σ _v	a	U	V	······································	σ	σ,	σ.,
6012	I ***KE ISLAND I	-5858578.8	1394516.4	2093817.4	2.9	3.2	3.8	1-5858569-3	1394508.7	2093820-3	2.1	2.6	3.2
6013	KANOYA	-3565901.4	4120723.2	3303426.9	4.0	5.2	5.9	1-3565892.8	4120713.6	3303428.3	3.3	4.4	4.9
6015	PASHHAD	2604355.4	4444169.2	3750321.7	2.6	2.9	3.5	1 2604353 3	4444166.0	3750320.5	2.1	2.2	2.6
6016	CATANJA	4896394.6	1316176.2	3856670.7	2.4	2.8	3.2	4896388.3	1316172.1	3856668.2	1.8	2.2	2.2
6019	VILLA DCLORES	2280630.7	-4914547.7	-2355417.9	2.7	3.6	5.2	1 2280627.1	-4914543.2	-3355402.8	2.4	2.7	3.7
6020	EASTER ISLAND	-1050621.5	-5354898.4	-2845762.3	6.0	6.1	6.9	1-1888614.3	-5354894.4	-2895749-0	5.4	4.5	5.5
6022	TUTUILA	-6099975.9	-997357.7	-1568593.6	4.8	3.9	5.2	1-6099961.7	-997362.2	-1568585.5	3.4	3.6	6.7
023	THURSDAY ISLAND	-4955391.2	3842255.7	-1163855.5	4.5	3.9	4.7	-4955386.8	3042247.8	-1163847.4	3.2	3.0	4.0
6031	I INVERCARGILL	-4313830.4	891340.6	-4597277.7	4.4	4.2	5.3	1-4313625.3	891333.9	-4597265.8	3.4	3.9	3.8
6032	I CAVERSHAM	-2375426.0	4875557.6	-3345424.5	3.7	4.3	5.0	1-2375420.6	4875546.7	-3345411.1	3.3	3.2	3.9
6038	SOCORRO ISLAND	-2160989.6	-5642717.9	2035368.0	2.9	3.8	4.4	1-2160980.9	-5642710.5	2035367.8	2.5	2.0	3.8
6039	I PITCAIRN ISLAND	-3724775.0	-4421234.4	-2686094.4	7.9	7.2	7.3	1-3724765.9	-4421237.6	-2686084.7	6.2	5.4	5.5
6040	COCOS ISLAND	-741986.1	6190803.6	-1335557.1	4.7	4.8	4.7	-741981.7	6190792.9	-1338546.3	4.5	3.7	4.2
6042	ADDIS ABARA	4900752.0	3968255.1	966318.9	2.7	2.9	3.4	4900750.7	3968252.7	966325.3	2.0	2.1	2.9
6043	CERRO SOMBRERO	1 1371376.5	-3614750.6	-5055947.1	3.5	4.2	7.0	1 1371375.9	-3614750.3	-5055927.8	3.3	3.8	4.8
6044	HEARD ISLAND	1098898.5	3684617.0	-5071900.1	6.9	6.7	11.1	1098897.9	3684606.6	-5071873.1	6.8	6.2	7.8
6045	MAURITIUS	3223434.7	5045343.6	-2191818.0	3.6	4.0	4.6	3223432.0	5045336.3	-2191805.7	3.2	3.1	3.9
604 7	ZAMBOANGA	-3361983.5	5365820.6	763620.5	3.1	3.4	3.9	1-3361976.9	5365811.9	763624.7	2.4	2.3	3.2
6050	PALMER STATION	1192679.3	-2451013.2	-57-7052.4	5.0	6.3	9.8	1197678.8	-2451015.6	-5747034.2	4.9	6.1	6.1
6051	MANSON STATICN	1111337.1	2169270.2	-5974355.2	5.0	4.2	7.3	1 1111336.1	2169262.7	-5874334.1	4.9	3.7	4.4
6052	WILKES STATION	-902611.4	2409530.0	-5816569.9	4.6	4.4	7.4	1 -902608.8	2409522.1	-5816551.8	4.4	4.0	5.4
6053	MCMURDO STATION	-1310854.8	311252.9	-6213294.3	4.8	4.8	7.4	1-1310852.3	311257.5	-6213276.5	4.6	4.5	4.3
6055	ASCENSION ISLAND	6118349.3	-1571749.2	-876601.3	3.3	2.9	3.4	6118334.2	-1571748.3	-R78596.5	2.3	2.3	2.8
6059	CHRISTMAS ISLAND	-5885350.2	-2448374	221663.6	4.3	3.4	4.5	1-5885333.5	-2448379.0	221671.1	2.7	2.9	3.8
6060	CULGODRA	-4751655.0	2792065.7	-3200174.2	4.5	4.0	4.7	-4751650.0	2792058.1	-3200164.0	3.3	3.3	3.7
1003	SOUTH GEORGIA IS.	2499921.2	-2219306.3	-5155267.1	3.9	5.9	7.8	2999915.6	-2219369.3	-5155246.0	3.7	5.7	5.3
6063	DAKAR	5884479.3	-1853496.4	1612858.7	2.4	2.6	3.2	5884467.4	-1853495.8	1612855.1	1.7	2.1	2.5
6064	FORT LAMY	6023394.4	1617934.2	1321731.7	3.3	3.1	3.7	6023386.7	1617931.9	1331733.2	2.7	2.6	3.2
6065	HOHENPEISSENBERG	4213570.2	820833.7	4702786.5	2.6	3.0	3.6	4213564.6	820830.0	4702784.4	2.0	2.4	2.3
6066	WAKE ISLAND II	-5858580.7	1394474.0	2093843.0	2.9	3.2	3.8	1-5858571.2	1394166.4	2093846.0	2.1	2.6	3.2
6067	NATAL	5186415.0	-2652935.9	-654280.7	3.3	2.8	3.1	5186197.1	-3653933.3	-654276.9	2.1	2.2	2.6
6098	I JUHANNESBURG	5084837 <b>.</b> 1	2670346.5	-2768109.3	4.2	3.5	5.3	5084830.4	2670341.2	-2768095.2	3.0	2.9	4.2
6069	TRISTAN DA CUNHA	4978430.9	-1086671.1	-3823187.7	8.3	6.6	10.4	4978421.7	-1086874.0	-3823167.8	6.5	6.4	8.1
6072	CHIANG MAI	-941707.8	5967462.5	2039307.4	5.9	5.1	4.9	1 -941702.1	5967455.1	2039311.6	5."	4.0	4.3
6073	DIEGU GARCIA	1905134.3	6032792.0	-81074Z.3	3.7	4.8	4.7	1 1905134.1	6032282.4	-810732.7	3.4	3.7	4.2
0075	I MARE	3602824.5	>238248.2	-515957.7	4.2	4.6	4.5	3602820.6	5238240.7	-515948.3	3.0	3.6	4.0
6078	I PURT VILA		1231910.5	~1925983.7	19.9	9.4	16.6	1-5952303.4	1231904.9	-1925972.5	9.7	8.0	12.4
0111	WALGHIWOOD I	-2448862.8		3582759.4	3.0	3.2	3.8	J-2448853.3	-4667985.8	3582754.9	2.6	2.1	2.4
0152	J PUINT BARKUW	-1001007.4	-012435.3	6019599.3	4.9	4.6	7.1	1-1881799.4	-812439.0	6019590.7	4.6	4.4	4.5
0134	I WKIGHINUUU II	1-448910.5	-4005052.4	3582454.1	3.0	3.2	3.8	1-2448907.0	-+66B075.9	3582449.6	2.6	Z.1	2.4

Table 6-1 (cont'd)

>	STAT1ON	!	SOLUTION WN-12				I SOLUTION WN-14 I						
NO I	NAME	U	V		ص م	<i>a</i> ,	σ.,	1 U	V	W	σ,	<i>a</i> ,	υ,
7036	FOINBURG	   -828491_0	-5657684.5	2816825-5	3.8	3.9	6.0	   -828487.0	-5657671.3	2816816-0	3.5	2.4	2.9
7037 1	COLUMBIA	1 -101294 8		2003244 6	2 2	3.5	3.0	-191791.0	-4967201.9	3083252.4	2.0	2.2	2.4
7039 1	REGMINA	1 2308214.8	-44073414.8	3304548.4	3.7	5.3	5.0	1 2308113.4	-4871608.3	3304558.5	2.3	3.1	3.6
7040	SAN JUAN	2465050.9	-5536965.5	1985522.2	4.0	6.6	4.7	2465049.5	-5534930-0	1985513-1	3.7	3.2	4.0
7043	CREENAFLT	1 1130706.5	-4831337.2	3996141.4	2.2	2.7	3.1	1 1130708.6	-4831331.3	3996135.5	2.0	1.7	1.9
7045	DENVER	1-1240475.1		4048997.8	4.6	4.2	4.7	1-1240470.2	-4760242.1	4048985.3	4.7	2.8	2.9
7072 1	ALIPTIER	976261.3	-5601616-6	2880251-4	2.5	3.3	3.3	976261.3	-5401399.9	2880241.9	2.2	1.8	2.3
7075	CUDBUBY	1 602618.7	-4147090.4	4400487 7	4.0	5.7	5.4	1 492420.7	-4347074.5	6400475-6	3.7	3.4	3.4
	3000000	1		400040101	484			1					
7076	KINGSTON	1384259.2	-5905680.0	1966554.4	4.3	5.8	5.9	1 1384158.7	- 905662.0	1966545.7	4.1	4.4	5.3
8009 I	WTP. DLDER	3923429.9	249866.1	5003013.3	13.3	13.1	15.2	1 3923397.4	299869.4	5002975.5	8.5	10.1	6.9
8010	ZIMMERWALD	1 4331312.7	567499.7	4633118.9	7.9	10.9	11.5	4331307.0	567490.8	4633106.3	5.7	8.3	5.4
8011	MALVERN	1 3920188.9	-134806.7	5012776.2	12.8	16-5	15.5	1 3920153.5	-134804-5	5012734.8	8.9	14.3	6.9
8015	HALITE PROVENCE	4578328.1	457945.6	4403204.8	6.4	10.7	10.2	1 4578322.1	457936.5	4403195.3	4.2	8.0	4.4
8019	NICE	4579469.1	586582.7	4386428.4	6.3	10.6	10.1	4579463-2	586573.5	4384419.2	4.1	7.9	4.3
8030	MELEION	4205629-1	163695-6	4776550.9	9.0	12.3	11.8	4205626.9	163683.4	4776540.6	6.5	9.7	5.8
9001	CREAN PASS	-1535755.1	-5167026.6	3401047.1		3.9	3.8	1-1535750.7	-5157014.4	3401039-4	4.2	2.8	2.7
i													
9002 İ	OLIFANISFONTEIN	5056115.1	2716514.0	-2775782.0	4.2	3.6	5.3	5056108.4	2716508.7	-2775768.8	3.0	3.0	4.2
9004	SAN FERNANDO	1 5105589-8	-55-769-7	3764685.6	6.3	12.9	8.5	1 5105581.5	-555271.5	3769676-0	3-4	10.0	4.0
9005	TOKYC	1-3946751-4	3366303.2	3596830.3	11.2	10.3	9.8	1-3946730.5	3366286.1	3698822-9	9.2	9.0	7.5
9006	NAINI TAL	1 1018153.3	5-71119-3	3109677-2	14.2	10.9	9.6	1 1018164.5	5471108.7	3109625.6	12.4	5.5	6.0
9007 I	ARFOUTPA	1 1942762.4	-5604101.6	-1744905-8	2.8	4.0	5.3	1 1942760.9	-5804088-2	-1796900.9	2.5	2.9	4.4
9008	SHIHAZ	3376872-6	4403980-0	3136250.1	8.1	10.3	9.5	1 3376875.2	4403976.2	3136257-3	6.8	6-1	6.1
9009	CURACAC	2251813.5	-5816933.6	1327169.7	2.8	3.5	3.6	1 2251810.7	-5816917.6	1327163-4	2.4	2.1	3.4
9010 1	IUPITER	976276.2	-5601418-8	2880244-0	2.5	3.3	3.3	1 976276.2	-5601607.2	2880/ 34-5	2.1	1.8	2.3
		1			•••			1					
9011 1	VILLA DOLORES	2280578-9	-4914584.8	-3355398.8	2.7	3.6	5.3	2280575-3	-4914580.2	-3355383.7	2.4	2.7	3.7
9012	MAUI	-5466088.5	-2404310.5	2242188.7	4.5	3.4	3.9	1-5466067.8	-2404312.7	2242186.4	3.0	2.9	3.3
9021 I	MOUNT HOPKINS	1-1936799.1	-5077719.4	3331926.1	7.3	6.8	6.4	1-1936789-3	-5077714.7	3331922.7	7.1	5.3	5.3
9028	ADDIS ABABA	4903727.7	3965208.6	963853.2	2.8	2.9	3.4	1 4903726.6	3965206.3	963859.6	2.1	2.1	2.9
9029	NATAL	1 5166459-3	-3653874-6	-654317.9	3.4	2.9	3.2	1 5186441.4	-3653871.9	-654314-1	2.1	2.2	2.7
9031	COMODORO RODAVIA	1 1693795.5	-4112354.3	-4556644.1	8.4	9.4	14.3	1 1693797.3	-4112353.1	-4556622-0	8.3	8.8	11.2
9052	ATHENS	1 4606866.7	2029704-0	3903567.4	6.0	12.6	8.9	4 4606861.5	2029692-2	3903562.2	4.2	10.3	4.4
9091	DIONYSOS	4595164.1	2039433.4	3912675.8	6.0	12.6	8.9	4595158.9	2039417.6	3912670.6	4.2	10.3	4.4
9424 1	COLD LAKE	F 1-1264834_5	-3466912-6	5185449-2	5.2	6.5	7.7	T 1-1264831-9	-3466915-4	5185450-9	4.7	5.5	4.3
9425 1	EDWARDS AFB	-2450022.2	-4624438.2	3635041-1	3.1	3.2	3.8	1-2450012-7	-4624431-6	3635036-6	2.6	2.2	2.4
9426 1	HARESTUA	1 3121202-6	592607-0	5512720-9	9.6	11.4	15.5	1 3121261-3	592605.7	5512723-0	8.6	9.4	5.8
9427	JOHNSTON ISLAND	-6007458-1	-1111834.2	1825730.0	10.9	20.6	8.8	1-6007428.7	-1111852.5	1825733.9	8.9	19.8	8.6
9431	RIGA	3103091-2	1421439-3	5322819-8	13.1	11.7	14.7	1 3183897-6	1421426-7	5322814-7	12.3	9.4	7.0
9432	UZHGOROD	1 3907423-B	1602394-2	4763932-7	10.2	12.4	13.7	3907419-2	1602378-6	4763922-1	7.9	10.4	5.9
		1				32.00							

### INDEX TO REPORTS OF THE DEPARTMENT OF GEODETIC SCIENCE

### PRODUCED UNDER THIS PROJECT

Report No.

70	[Preuss, 1966]
71	[Mueller, 1966]
82	[Hotter, 1967]
86	[Krakiusky and Pope, 1967]
87	[Krakiwsky, Blaha, Ferrier, 1968]
88	Krakiwsky, Ferrier, Reilly, 1967]
93	[Mueller, 1967]
100	[Gross, 1968]
106	[Hornbarger, 1968]
110	[Veach, 1968]
114	[Krakiwsky, 1968]
118	[Schwarz, 1968]
125	[Mueller, Reilly, Schwarz, 1969]
139	[Arur, 1970]
140	[Mueller, Reilly, Schwarz, Blaha, 1970]
147	[Schwarz, 19 <u>7</u> 0]
148	[Blaha, 1971]
150	[Blaha, 1971a]
177	[Saxena, 1972]
184	[Kumar, 1972]
185	[Tsimis, 1972]
187	[Mueller, Reilly, Soler, 1972]
188	[Mueller and Whiting, 1972]
190	[Reilly, Schwarz, Whiting, 1972]
191	[Tsimis, 1973]
193	[Mueller, Kumar, Reilly, Saxena, 1973a]
195	[Mueller, Kumar, Soler, 1973b]
196	[Mueller and Kumar, 1973c]
199	[Mueller, Kumar, Reilly, Saxena, Soler, 1973d]

#### REFERENCES

- American Geophysical Union. (In press). <u>The National Geodetic Satellite</u> <u>Program</u>, NASA Special Publication, U.S. Government Printing Office, Washington, D.C.
- Anderle, R.J. (1973). "Transformation of Terrestrial Survey Data to Doppler Satellite Datum." Journal of <u>Geophysical Research</u>, preprint.
- Arur, M.G. (1970). "Analysi of Latitude Observations for Crustal Move-Ments." <u>Reports of the Department of Geodetic Science</u>, No. 139. The Ohio State University, Columbus.
- Blaha, Georges. (1971). "Inner Adjustment Constraints with Emphasis on Range Observations." <u>Reports of the Department of Geodetic Science</u>, No. 148. The Ohio State University, Columbus.
- Blaia, Georges. (1971a). "Investigations of Critical Configurations for Fundamental Range Networks." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 150. The Ohio State University, Columbus.
- CSC. (1971). <u>NASA Directory of Observation Station Locations</u>, <u>Vol. 1 and</u> <u>2</u>, second edition. Prepared by Computer Sciences Corporation, Falls Church, Virginia, for Metric Data Branch, Network Computing and Analysis Division, Goddard Space Flight Center, Greenbelt, Maryland.
- CSC. (1972/73). <u>Correction Sheets to NASA Directory of Observation</u> <u>Station Locations, Vol. 1 and 2.</u> Prepared by Computer Sciences Corporation, Falls Church, Virginia.
- Gaposchkin, E.M., G. Veis and J. Latimer. (1973). "Smithsonian Institution Standard Earth III Coordinates." Presented at First International Symposium, The Use of Artificial Satellites for Geodesy and Geodynamics, Athens, Greece, May 14-21.
- Girnius, A. and W.L. Joughin. (1968). "Optical Synthetic Simultaneous Observations Between Baker-Nunn Camera Stations." <u>Smithsonian</u> <u>Astrophysical Observatory Special</u> Report No. 266, Cambridge, Mass.
- Gross, Joseph. (1968). "Preprocessing Electronic Satellite Observations." <u>Reports of the Department of Geodetic Science</u>, No. 100. The Ohio State University, Columbus.

Heiskanen, W.A. and H. Moritz. (1967). <u>Physical Geodesy</u>. W.H. Freeman and Company, San Francisco.

- Hornbarger, Daniel H. (1968). "Comparison of Astrometric and Photogram-Metric Plate Reduction Techniques for a Wild BC-4 Camera." <u>Reports</u> <u>of the Department of Geodetic Science</u>, No. 106. The Ohio State University, Columbus.
- Hotter, Frank D. (1967). "Preprocessing Optical Satellite Observations." <u>Reports of the Department of Geodetic Science</u>, No. 82. The Ohio State University, Columbus.
- Huber, Donovan N. (1971). "Densification of the World Satellite Triangulation Network in South America with the PC-1000 Camera (Geometric Triangulation)." <u>ACIC Technical Report</u> No. 72-3, U.S. Air Force, Aeronautical Chart and Information Center, St. Louis, Mo.
- King-Hele, D.G. et al. (1970). "Table of Earth Satellites," Vols. 1 and 2. <u>Royal Aircraft Establishment Technical Report Nos. 70020 and 70111.</u> Ministry of Technology, Farnborough, Hanks, England.
- Krakiwsky, Edward J. (1968). "Sequential Least Squares Adjustment of Satellite Triangulation and Trilateration in Combination with Terrestrial Data." <u>Reports of the Department of Geodetic Science</u>, No. 114, The Ohio State University, Columbus.
- Krakiwsky, Edward J. and Allen J. Pope. (1967). "Least Squares Adjustment of Satellite Observations for Simultaneous Directions or Ranges, Part 1 of 3: Formulation of Equations." <u>Reports of the Department of Geodetic Science</u>, No. 86, The Ohio State University, Columbus.
- Krakiwsky, Edward J., Georges Blaha, Jack M. Ferrier. (1968). "Least Squares Adjustment of Satellite Observations for Simultaneous Directions or Ranges, Part 2 of 3: Computer Programs." <u>Reports of the</u> <u>Department of Geodetic Science</u>, No. 87, The Ohio State University, Columbus.
- Krakiwsky, Edward J., Jack Ferrier, James P. Reilly. (1967). "Least Squares Adjustment of Satellite Observations for Simultaneous Directions or Ranges, Part 3 of 3: Subroutines." <u>Reports of the Depart-</u> <u>ment of Geodetic Science</u>, No. 88, The Ohio State University, Columbus.
- Kumar, Muneendra. (1972). "Coordinate Transformation by Minimizing Correlations Between Parameters." <u>Reports of the Department of Geodetic</u> Science, No. 184, The Ohio State University, Columbus.
- Lerch, Francis J. et al. (1972). "Gravitational Field Models for the Earth." Presented at the International Symposium on Earth Gravity Models and Related Problems, St. Louis, Mo., August 16-18.
- Marsh, J.G., B.C. Douglas, S.M. Kloski. (1973). "A Global Station Coordinate Solution Based Upon Camera and Laser Data - GSFC 1973." Presented at First International Symposium on the Use of Artificial Satellites for Goedesy and Geodynamics, Athens, Greece, May 14-21.

- Martin, C.F. and T.C. Van Flandern. (1970). "Secular Changes in the Lunar Ephemeris." <u>Science</u>, <u>168</u>, pp. 246-247.
- Mueller, Ivan I. (1964). <u>Introduction to Satellite Geodesy</u>. Frederick Ungar Publishing Co., New York.
- Mueller, Ivan I. (1966). "Proposed Optical Network for the National Geodetic Satellite Program." <u>Reports of the Department of Geodetic Science</u>, No. 71, The Ohio State University, Columbus.
- Mueller, Ivan I. (1967). "Data Analysis in Connection with the National Geodetic Satellite Program." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 93, The Ohio State University, Columbus.
- Mueller, Ivan I. (1969). <u>Spherical and Practical Astronomy As Applied to</u> <u>Geodesy</u>. Frederick Ungar Publishing Co., New York.
- Mueller, Ivan I., James P. Reilly, Charles R. Schwarz. (1969). "The North American Datum in View of GEOS I Observations." <u>Reports of the</u> <u>Department of Geodetic Science</u>, No. 125, The Ohio State University, Columbus.
- Mueller, Ivan I., James P. Reilly, Charles R. Schwarz, Georges Blaha. (1970). "SECOR Observations in the Pacific." <u>Reports of the Department of</u> <u>Geodetic Science</u>, No. 140, The Ohio State University, Columbus.
- Mueller, Ivan I., J.P. Reilly, Tomas Soler. (1972). "Geodetic Satellite Observations in North America (Solution NA-9)." <u>Reports of the</u> <u>Department of Geodetic Science</u>, No. 187, The Ohio State University, Columbus.
- Mueller, Ivan I. and M.C. Whiting. (1972). "Free Adjustment of a Geometric Global Satellite Network (Soluti n MPS-7)." <u>Reports of the Department</u> of Geodetic Science, No. 188, The Ohio State University, Columbus.
- Mueller, I. I., M. Kumar, J. Reilly, N. Saxena(1973a). "Free Geometric Adjustment of the DOC/DOD Cooperative Worldwide Geodetic Satellite (BC-4) Network." <u>Reports of the Department of Geodetic Science</u>, No. 193, The Ohio State University, Columbus.
- Mueller, I. I., M. Kumar, T. Soler(1973b). "Free Geometric Adjustment of the SECOR Equatorial Network." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 195, The Ohio State University, Columbus.
- Mueller, I. I. and M. Kumar(1973c). "Geometric Adjustment of the South American Satellite Densification (PC-1000) Network." <u>Reports of the</u> <u>Department of Geodetic Science</u>, No. 196, The Ohio State University, Columbus.
- Mueller, Ivan I., M. Kumar, J.P. Reilly, N. Savena, T. Soler. (1973d). "Global Satellite Triangulation and Trilateration for the National Geodetic Satellite Program. <u>Reports of the Department</u> <u>of Geodetic Science</u>, No. 199, The Ohio State University, Columbus.

- Preuss, Hans D. (1966). "The Determination and Distribution of Precise Time." <u>Reports of the Department of Geodetic Science</u>, No. 70, The Ohio State University, Columbus.
- Rapp, R.H. (1973). "Comparison of Least Squares and Collocation Estimated Potential Coefficients." <u>Reports of the Department of Geodetic Science</u>, No. 200, The Ohio State University, Columbus.
- Reilly, J.P., C.R. Schwarz, M.C. Whiting. (1972). "The Ohio State University Geometric and Orbital (Adjustment) Program (OSUGOP) for Satellite Observations." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 190, The Ohio State University, Columbus.
- Rinner, K. et al. (1967). "Beiträge zur Theorie der Geodätischen Netze im Raum." <u>Deutsche Geodätische Kommission, Reihe A, Heft 61</u>, Munich.
- Saxena, Narendra K. (1972). "Improvement of a Geodetic Triangulation Through Control Points Established by Means of Satellite or Precision Traversing." <u>Reports of the Department of Geodetic Science</u>, No. 177, The Ohio State University, Columbus.
- Schwarz, Charles R. (1968). "The Use of Short Arc Orbital Constraints in the Adjustment of Geodetic Satellite Data." <u>Reports of the Department</u> <u>of Geodetic Science</u>, No. 118, The Ohio State University, Columbus.
- Schwarz, Charles R. (1970). "Gravity Field Refinement by Satellite to Satellite Doppler Tracking." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 147, The Ohio State University, Columbus.
- Tsimis, Emmanuel. (1972). "On the Geometric Analysis and Adjustment of Optical Satellite Observations." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 185, The Ohio State University, Columbus.
- Tsimis, Emmanuel. (1973). "Critical Configurations (Determinantal Loci) for Range and Range-Difference Satellite Networks." <u>Reports of the</u> <u>Department of Geodetic Science</u>, No. 191, The Ohio State University, Columbus.
- Uotila, U.A. (1967). "Introduction to Adjustment Computations with Matrices." Lecture notes, Department of Geodetic Science, The Ohio State University, Columbus.
- Veach, James P. (1968). "Investigations into the Utilization of Passive Satellite Observational Data." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 110, The Ohio State University, Columbus.
- Veis, G. (1963). "Precise Aspects of Terrestrial and Celestial Reference Frames." <u>Smithsonian Astrophysical Observatory Special Report</u> No. 133, Cambridge, Mass.

Vincent, Samir et al. (1972). "A Detailed Gravimetric Geoid of North America, North Atlantic, Eurasia and Australia." Presented at the International Symposium on Earth Gravity Models and Related Problems, St. Louis, Mo. August 16-18. (Revised through personal communication).

#### APPENDIX

#### Solution WN12 (Heights not Constrained)

Information pertinent to the WN12 solution may be found in sections 5.3 and 6.

Tables corresponding to those in the Appendix, but for the solution WN14 (heights constrained), are 5.2-2, 3 and 4, on pp. 124 - 157.

Coordinates and statistical information for solution WN16 (no EDM and C-Band scalars) are not given. For various comparisons with solutions WN12 and WN14 see section 5.3.

## PRECEDING PAGE BLANK NOT FILME

#### Table A - 1

#### Cartesian and Geodetic Coordinates (Solution WN12, Heights not Constrained)

Sta, No	u	σ.,	v	σ,	W	σ.,
	Ø	CL D	λ	σλ	н	σ _H
		a	A.	Γ		
		83	Aъ	r,		
L		a _c	Ac	Гс		

- u, v, w 'Cartesian coordinates in meters (Orientation: u = the Greenwich meridian as defined by the B.I.H.;  $v = \lambda = 90^{\circ}$  (E); w = Conventional International Origin).
- φ, λ Geodetic latitude and longitude in angular units (degrees, minutes and seconds of arc) computed from the Cartesian coordinates and referred to a rotational ellipsoid of a = 6378155.00 m and b = 6356769.70 m.
- H Geodetic (ellipsoidal) height in meters referred to the same ellipsoid.
- $\sigma_{a}, \sigma_{v}, \sigma_{v}$  Standard deviations of the Cartesian coordinates in meters.
- $\sigma_{i0}, \sigma_{i1}$  Standard deviations of the geodetic coordinates in seconds of arc.
- $\sigma_{H}$  Standard deviations of the geodetic height in meters.
- a, A, r, Altitude (elevation angle), azimuth and magnitude of the major semi axis of the error ellipsoid, respectively. Angles in degrees, magnitude in meters. Altitude is positive above the horizon. Azimuth is positive east reckoned from the north (see section 4, 74).
- $a_b$ ,  $A_b$ ,  $r_b$  Same as above for the mean axis of the error ellipsoid.
- a_c, A_c, r_c Same as above for the minor axis of the error ellipsoid.

PRECEDING PAGE BLANK NOT FILMED

				- r	······································	T
1021	1118021.79	3.08	-4876331.74	4.02	3942970.91	4.22
	38 25 49.58	0.12	252 54 47.93	0.13	-37.25	4.61
		17.22	-22.57	4.66		
	-1	0.14	15.44	3.50	1 I	
		7.71	104.06	3.07		
1022	807850.80	2.59	-5652004.03	3.28	2833508.99	3.33
* OF C	26 32 52 99	0.09	278 8 3.45	0.09	-16.00	3.78
			•••••••			
	-	10.26	-9.18	3.91		
	1	6.55	136.74	2.65		
	-]	0.45	49.89	2.51		
1030	-2357249.25	6.06	-4646346.37	4.43	3668312.46	4.69
	35 19 47.41	0.11	243 5 59.18	0.24	900.93	5.28
		1.58	79.40	6.25		
	•	74.84	-16.44	5.40		
	-1	15.07	-10.18	3.19		
1032	2602704.27	49.06	-3419179.74	89.45	4697621.12	29.90
	47 44 28.96	0.82	307 16 43.15	4.37	29.05	48.75
			74 07	101 26		
	-	23+17	10.01 55 50	20.88		
	, i i i i i i i i i i i i i i i i i i i	7 71	162.75	9.71		
		/•/1	102013	7.12		
1022		7.52	-1445690.55	10.01	5751823-26	10.48
1055	-66 52 17-67	0.24	212 9 35.34	0.75	183.52	10.69
	UT JE 11071	~				
		80.84	50.11	10.75		
		4.78	-71.12	10.09		
		-7.80	18.22	7.02		
				·		
1034	-521708-32	3.46	-4242074.91	4.03	4718726.53	4.40
	48 1 20.58	0.12	262 59 19.43	0.17	232.09	4.63
			~~ ~~			
		71.40	-33.55	4.68		
	-	18.28	-44.67	4.17		
		-3.35	45+44	2.07		

1042	647495 .88	3.05	-5177948.03	3.62	3656714.45	4.01
	35 12 7.07	0.10	277 7 39.96	0.12	878.21	4.35
		71.87	-10.47	4.46		
		15.66	138.43	3.21		
		-8.90	50.95	2.88		
3106	2881840.45	4.10	-5372180.72	4.58	1868548.48	4.92
	17 8 55.01	0.15	298 12 38.84	0.14	-41.24	5.07
	9	52.81	-22.80	5.57		
		31.89	122.29	4.14		
	-	17.08	43.31	3.73		
3334	-84969.13	15.63	-5327986.33	14.01	3493434.31	10.82
	33 25 30.96	0.35	269 5 10.83	0.60	10.32	14.08
	-	37.59	73.02	18.39		
		48.08	42.04	10.81		
	-	15.82	-29.57	10.14		
3400	-1275239.36	16.26	-4798062.94	12.40	3994229.54	8.60
-	39 0 21,44	0.28	255 6 57.27	0.57	2205.45	15.18
	-	47.07	68.16	19.54		
	-:	30.15	-60.48	7.69		
	:	27.39	12.00	7.14		
3401	1513134.75	3.46	-4463580.09	5.32	4283061.16	4.61
	42 27 17.76	0.13	288 43 35.19	0.16	40,11	5.53
	-	72.55	52.38	5.64		
		16.28	30.70	4.32		
		6.11	122.44	3,31		
3402	167256.13	4.16	-5481980.43	4.27	3245042.65	4.57
	30 46 49.96	0.12	271 44 51+22	0.16	38.80	4.97
		66.76	32.69	5.17		
	-	11.89	93.32	4.10		
	-	19.66	-0.99	3.59		

17 24 19.20   0.17   276   3 28.60   0.17   0.62   5.66   48.04   37.71   6.21   4.89   0.45   128.21   4.48   336.61   4.89   0.45   128.21   4.48   34.66   34.65   128.21   4.48   34.66   3.63   -5621096.52   5.59   2315780.14   4.91   -58.16   6.10   -73.37   149.73   6.26   -11.34   17.54   4.07   12.00   105.10   3.57   3406   2251802.88   2.78   -5816928.95   3.51   1327197.36   3.81   291   9   43.26   0.09   -20.23   3.71   43.17   -21.20   4.15   -46.82   -19.56   3.28   0.72   69.66   2.56   3407   2979892.91   5.15   -5513532.61   5.09   1181126.82   5.87   188.52   5.48   27.87   -35.78   6.88   56.06   106.09   5.18   -17.73   44.49   3.56   3413   5186366.38   3.39   -3654225.08   2.89   -653022.67   3.18   5.56   5.56   5.56   5.56   5.56   5.56   5.57   0.10   324   49   55.67   0.09   16.35   3.44   70.52   131.38   3.50   13.54   -1.54   3.15   -13.73   85.08   2.80   3414   4114987.81   9.91   -4554148.48   8.43   -1732166.11   7.89   1030.76   10.13   67.20   62.72   10.29   -22.18   48.62   9.33   6.20   10.600   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10.13   10	3404	642485.65	4.96	-6053942.43	5.26	1895690.46	5.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		17 24 19.20	0.17	276 3 28.60	0.17	0.62	5.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			48.04	37.71	6.21		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	41.96	38.61	4.89		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.45	128.21	4.48		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3405	1919482 •06	3.63	-5621096.52	5.59	2315780.14	4.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21 25 48.61	0.14	288 51 14.11	0.13	-58.16	6.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	73.37	149.73	6.26		
12.00   105.10   3.57 $3406   2251802.88   2.78   -5816928.95   3.51   1327197.36   3.81   291   9   43.26   0.09   -20.23   3.71   43.17   -21.20   4.15   3.28   0.72   69.66   2.56   3.28   0.72   69.66   2.56   3.28   0.72   69.66   2.56   3407   2979892.91   5.15   -5513532.61   5.09   1181126.82   5.87   10   44   34.80   0.18   298   23   23.43   0.17   188.52   5.48   27.87   -35.78   6.88   56.08   106.09   5.18   -17.73   44.49   3.56   3413   5186366.38   3.39   -3654225.08   2.89   -653022.67   3.18   3.44   70.52   131.38   3.50   13.54   -1.54   3.15   -13.73   85.08   2.80   3414   4114987.81   9.91   -4554148.48   8.43   -1732166.11   7.89   1030.76   10.13   67.20   62.72   10.29   -33   5.01   -39.33   6.20   -22.18   49.62   9.33   5.01   -39.33   6.20   -22.18   -39.33   6.20   -22.18   -39.33   6.20   -20.23   3.57   -30.33   5.20   -20.23   3.57   -20.23   3.57   -20.23   3.57   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   3.71   -20.23   -20.23   -20.23   3.71   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.23   -20.$		-	11.34	17.54	4.07		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12.00	105.10	3.57		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3406	2251802.88	2.78	-5816928.95	3.51	1327197.36	3.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12 5 25.95	0.12	291 9 43.26	0.09	-20+23	3.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			43-17	-21.00	4.15		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	46.82	-19.56	3.28		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.72	69.68	2,56		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3407	2979892-91	5.15	-5513532-61	5.09	1181126.82	5.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.001	10 44 34.80	0.18	298 23 23.43	0.17	188,52	5.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			27.87	-35,78	6.88		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			56.08	106.09	5.18		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	17.73	44.49	3,56		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3412	5186366 30	3 20	-3454225 00	2 90	-653022 67	3 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5415	- 5 54 57.61	0.10	324 49 55.67	0.09	16.35	3.44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			70-52	131.38	3,50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			13.54	-1-54	3.15		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	13.73	85.08	2.80		
-15 51 37.66 0.25 312 5 59.97 0.28 1030.76 10.13 67.20 62.72 10.29 -22.18 48.62 9.33 5.01 -39.33 6.20	3414	4114987 .RI	9.91	-4554148_4R	8.43	-1732166-11	7_ 89
67.20 62.72 10.29 -22.18 48.62 9.33 5.01 -39.33 6.20	÷ • • •	-15 51 37.66	0.25	312 5 59.97	0.28	1030.76	10.13
-22.18 48.62 9.33 5.01 -39.33 6.20			67.20	62.72	10-29		
5.01 -39.33 6.20		-	22.18	48.62	9.33		
			5.01	-39.33	6.20		

### Table A - 1 (cont^{*}d)

3431	3093056.06	8.49	-4870100.38	9.32	-2710845.83	12.48
	-25 18 57.79	0.39	302 25 12.34	0.27	174.32	10.55
	-:	26.28	12.12	12.63		
	-	63.57	-174.59	9.98		
		2.67	100.80	7.45		
3476	3623293.59	3.44	-5214213.74	3.33	601514.00	3.63
	5 26 52.65	0.12	304 47 41.88	0.09	-25.26	3.93
		78,73	89.58	3.97		
		3.30	-17.25	3.70		
	-	10.76	72.12	2.57		
3477	1764649.59	10.40	-6114305-58	13.73	532205-16	9.84
2	4 49 .0.09	0.32	285 55 31.84	0.36	2572.65	13.13
	-:	37.05	55.20	14.41		•
		51.75	38.44	12.50		
	•	-8.19	-41.04	5.45		
3478	3185785-39	19.25	-5514574-52	35, 38	-347713-16	35.78
	- 3 8 46.06	1.17	300 0 54.53	0.88	48.51	29.79
		15.24	-38.23	43.59		
	-(	62.34	20.46	30,90		
	:	22.50	58.25	6.91		
3499	1280834.05	3.77	-6250966.19	5.86	-10805.45	4.55
	- 0 5 51.65	0.15	281 34 47.01	0.12	2693.82	5.84
	-(	69.63	161.18	6.03		
	-	17.81	11.27	4.35		
		9.56	98.17	3.75		
3648	832562.57	4.14	-5349553.36	4.98	3360596.37	5.44
	32 0 6.38	0.15	278 50 45.96	0.16	-20.08	5.81
		67.94	-16.88	6.02		
	+	21.77	-7.13	4.27		
		3.39	81.52	4.13		

### Table A - 1 (cont^{*}d)

3657	1186786.07	3.40	-4785205.14	5.01	4032892.27	4.55
	39 28 19.03	0.12	283 55 44.27	0.15	-29.45	5.48
	-	80.38	77.67	5.53		
		5,99	25.95	3.95		
		7.49	116.74	3.34		
3861	. 961766.69	3.26	-5679170.55	3.77	2729893.83	3.72
	25 30 26.19	0.09	279 36 42.61	0.12	-26.74	4.45
	-	69.92	160.24	4.62		
		12.52	107.66	3.29		
	-	15.44	21.17	2.54		
3902	-1234689.39	28.61	-4651235.90	32.12	4174763.36	11.28
	41 7 57.61	0.64	255 8 0.48	0.87	1855.30	34.27
	-	52,22	45.81	43.01		
		2.52	132.55	8.81		
		37.66	40.60	7.09		
3903	1088979.96	17.26	-4842973.23	15.52	.3991763.89	i!.36
	38 59 34.47	0.37	282 40 21.45	0.51	76.40	15,48
	-	69,40	23.21	16.10		
		-2.49	119.86	12.65		
		20.43	30.79	10.05		
4050	5051614.78	4.39	2726608.63	3.75	-2774180.99	5.45
	-25 56 38.17	0.16	28 21 28.62	0.13	1589.72	5.12
	-	50.27	2.32	5.67		
		38.74	-12.80	4.20		
		7.47	83.24	3.63		
4061	2881594.50	4.15	-5372540.16	4.73	1868034.31	5.02
	17 8 37,11	0.15	298 12 25.75	0.14	-1.25	5.20
		54.68	-20.73	5.67		
		30.50	125.51	4.16		
	-	16.07	45.28	3.90		

### Table A - 1 (cont¹d)

4 08 1	1920409-94	3.66	-5619426-13	5.71	2319133.37	4.96
4001	21 27 45.31	0.14	288 52 3.36	0.13	-24.19	6.21
	-	74.68	150.88	6.35		
		-8,96	25.72	4.20		
	1	12.32	113.75	3.54		
4.00 3	010567-03	2.93	-5539130-15	3.77	3017974.77	3.69
4002	28 25 28 .71	0.10	279 20 6.94	0.11	-16.18	4.23
	•	75.78	173.63	4.30		
	-	14.01	-16.45	3.11		
		-2.39	74.15	2.89		
		4 36	-4521217.23	4.36	3607495-03	4-82
4280	-2011003+11	4+25	239 25 6.15	0.16	96.95	5.07
	34 37 JUEIU,					
		69.57	11.21	5.20		
		-8.63	77.17	4.20		
	-	18.37	-15.72	3.95		
4740	2204888.60	3.77	-4874314-80	5-42	3393072.00	5.13
4140	32 20 52 79	0.14	295 20 46.32	0.14	-22.10	6.09
	-	76.56	123.13	6.19		
		-9.43	-10.91	4.39		
		9.48	77.50	3.50		
5001	1000074.44	4.86	-4862956.96.	10.24	3991857.81	7.87
2001	38 59 37 67	0.22	282 40 17.34	0.22	103.64	10.77
	30 37 31 401					
	-	75.43	42.59	11.01		
		13.02	15.41	6.81		
		6.43	106.90	4.79		
6201	-2127810 44	2.70	-3785912-34	2.85	4656011-95	3.66
5201	47 11 5.03	0.09	240 39 45.16	0.12	344.39	3.90
		77 66	10.73	3 65		
		11+05	10.13	2,72		
	-	12+13	51.27	2 4 1 4		
		-4.40	-27.10	C • 41		

### Table A - 1 (cont^{*}d)

5410	-56' 8764.51	2.88	-258231.46	3.21	2997243.77	4.14
24.00	28 1? 47.97	0.13	182 37 53.01	0.12	27.63	3.05
		20.77	5.40	4.16		
		24.78	-94.68	3.31		
	-	56.70	-49.32	2.72		
5448	794687.29	4.18	-5360063.67	5.01	3353093.54	5.47
2040	31 55 18.22	0.15	278 25 59.82	0.16	-3.04	5.84
		67.97	-16.20	6.05		
	-	-21,82	-8.02	4.30		
		2.84	80.84	4.17		
5712	3623307.10	3-41	-5214190.54	3.32	601672. "6	3.62
2112	5 26 57.81	0.12	304 47 42.67	0.09	-21.52	3.03
		79.26	81.07	3.98		
		1.27	-15.66	3.68		
	•	-10.66	74.10	2.53		
5712	6633656 .67	2.74	~2268159.21	2.80	3971673.06	3.81
1112	38 45 36.57	0.10	332 54 24.20	0.12	115.58	3.70
		60.33	-13.35	4.01		
		9.62	93.97	2.77		
		<u>-</u> 7,77	-170.91	2.49		
5715	5884479-91	2.26	-1853580.11	2.53	1612763.77	3.08
5115	14 44 39.26	0.10	342 30 57.05	0.09	42.22	2.39
		26.14	-12.90	3.14		
		13.14	83.68	2.57		
		60 • 2 8	-162.19	2+14		
5717	6023416-10	2.65	1617949.45	2.79	1331651.17	3.30
~ • • • •	12 7 52.03	0.11	15 2 7.14	0.09	288.98	2.72
		1.36	-21.60	3.41		
		62.25	70.99	2.77		
		27.71	-112.32	Z•53		

5720	4900750.11	z <b>.7</b> 4	3968255.14	2.89	966348.26	3.39
	8 46 13.11	0.11	38 59 52.53	0.09	1854.51	2.88
		-6-83	-15.82	3.48		
		76.61	43.96	2.88		
		11-46	-104.43	2.64		
5721	2604406-62	2.57	4444124.91	2.82	3750345.66	3.53
	36 14 26.70	0.11	59 37 41.75	0.10	955.63	2.97
		27.12	-15.07	3.59		
		62.69	157.74	2.79		
		2.93	-106.57	2.51		
5772	1905122.27	4.22	6032296-51	5.47	-R10726.36	6. 81
<i>J</i> 122	- 7 21 6.47	0.15	72 28 22.13	0.14	-85.15	5.67
		63.18	175.46	6.00		
		15.89	51.19	4.45		
		21.01	-45.09	3.88		
6793	-061712 76	2.11	5067440.50	8 ·33	2030317.47	6 06
2123	18 46 10.94	0.13	98 58 4.09	0.11	254.75	3.54
		30.12	15.96	4.15		
		59.45	-174.63	3.31		
		4.64	-76.73	3.02		
5726	-3361952-23	3-05	5365845-53	3.31	763623-65	3. 78
	6 55 20.46	0.12	122 4 8.65	0.10	95.45	3.31
		30.73	-1.24	3,90		
		31.61	-112.70	3.24		
		-42.95	-57.65	2.97		
5730	-5858583_78	2.85	1394474.89	3.14	2093844.73	3.76
	19 17 29.26	0.12	166 36 41.20	0.10	34.22	3.16
		25.72	10.83	3.80		
		41.58	-104.48.	3.26		
	•	-37.54	-57.45	2.65		

<b>57</b> 32	-6099983.96	5.71	-997345.64	4.36	-1568577.00	4.92
	-14 19 53.94	0.15	189 17 8.46	0.15	51.55	5.76
		-59.46	53,10	6.03		
		28.51	30.13	5.05		
		-10.03	-54,35	3.73		
5733	-5885350,80	4-47	-7448375-27	3-57	221663-06	4 57
	2 0 18.13	0.15	202 35 16.39	0.12	39.20	4.35
		4.69	24.97	4.82		
		-74.15	98.16	4.42		
		-15.10	-63.76	3.18		
5734	-3851806.13	. 3.19	396416.13	3.69	5051343-27	4-94
	52 42 48.10	0.12	174 7 26.34	0.19	58.61	4.63
		57.52	16.91	5.00		
		25.26	-120.93	3.97		
		-19.03	-40.29	2.72		
5735	5186368.50	3.29	-3654225.97	2.78	-653022.62	3.07
	- 5 54 57.60	0.10	324 49 55.68	0.09	18.58	3.37
		69.19	134.20	3.43		
		16.81	-8.45	3.05		
		-11.91	77.89	2.65		
5736	6118355.50	3.29	-1571763.06	2.89	-878558-41	3.31
	- 7 58 13.71	0.11	345 35 33.55	0.10	72.03	3.27
		-24.67	-10.61	3.32		
		61.35	22.20	3.29		
		-13.00	82.040	2.89		
5739	4433645.98	2.74	-2268197.23	2.81	3971663.26	3.82
	38 45 36.17	0.10	332 54 22.82	0.12	115.31	3.70
		60.35	-13.33	4.01		
		9.30	93.38	2.77		
		27.88	-171.65	2.49		

### Table A - 1 (cont^{*}d)

5744	4896444.11	2.41	1316129.40	2.80	3856628.42	3.24
	37 26 37.2?	0.10	15 2 42.34	0.11	25.53	2.90
		33.53	-21.04	3.29		
		43.95	108.66	2.89		
		27.50	-131.22	2,24		
5907	~449391.62	5.78	-4600910.61	13.80	4380315.36	13.48
	43 38 57.61	0.30	264 25 16.89	0.25	465.51	17.02
	-	-89.22	-69.67	17.02		
		0.08	14.57	9,46		
		-0.77	104.57	5.12		
5911	2308010.43	3.59	-4873778.30	4.88	3394476.12	5.23
	32 21 45.70	0.13	295 20 24.75	0.12	-8.49	6.15
		76.57	10.91	6.26		
	•	13.43	11.91	3.94		
		0.23	101.85	3.06		
5912	1142664.35	4.77	-6196104.08	9.09	988340.83	7.00
	8 58 26.97	0.22	280 26 56.02	0.15	-5.68	9.33
	-	76.71	155.28	9.45		
	-	13.15	-16.14	6.75		
		1.91	73.41	4.41		
6914	2260622 00	15 50	-5576072 18	21 11	2010260 56	9 77
2744	18 29 39.46	0.37	292 50 52.20	0.49	-25.62	19.66
	-	45-04	51.42	21.15		
		11.21	116 23	12.06		
		21.99	21.64	8.94		
				•		
5915	-744066.67	5.59	-5465234.26	15.26	3192485.84	12.81
	30 13 46.54	0.33	262 14 49.59	0.20	173.55	17.26
	-	85.40	-159.30	17.30		
		-4.36	1.85	10.02		
		~1.48	91.96	5.34		

5923	4363335.92 35 11 30.27	2.47 J.10	2862258.83 33 15 50.59	2.74 0.10	3655380.74 174.41	3.28 2.87
		24.87	-19.60	3.36		
		61.90	130.62	2.78		
		12.25	-115.38	2.31		
5924	5093565.84	2.43	-565319.12	3.06	3784273.08	3.75
	36 37 36.84	0.10	353 40 0.62	0.13	29.53	3.09
		41.64	-8.48	3.77		
		9.04	89.65	3.11		
		40.Y4	-170.55	2.31		
5925	6237376.79	2.96	-1140241.76	3.08	687740.04	3.58
	6 13 54.13	0.12	349 38 24.98	0.10	26,13	2.97
		-4.08	-15.82	3.65		
	-	-41.33	17.78	3.10		
		48.58	69.58	2.084		
5930	-1542556.38	3.34	6186964.65	3.90	151827.82	3.98
	1 22 23.53	0.13	103 59 59.15	0.11	28.03	3.82
		36.38	0.54	4.14		
		41.16	-129.56	3.84		
	-	27.62	-66.78	3.21		
5931	-2423919.09	3.06	5388254.76	3.54	2394863.85	4.31
	22 11 55.47	0.13	114 13 14.56	0.10	144.12	4.02
		47.68	2.79	4.50		
		41.43	-162.93	3.37		
		-1.15	-19.28	2		
5933	-4071578 .29	4.25	4714266.96	4.39	-1366533.27	4.29
	-12 27 15.16	0.14	130 48 58.46	0.14	94.10	4.47
		68.49	-14.65	4.50		
	-	-17.53	22.04.	4.31		
	-	-12.06	-71.83	4.11		

### Table A - 1 (contⁱd)

5934	-5367671.67	3.60	3437881.37	3.49	-225417.36	3.83
	- 2 7 20.43	0.13	147 21 40.64	0.11	95.84	3.65
		20 44	16 45	A` 00		
		20.00 EE 47	-130 30	3 64		
	-	JJ+07	-120.30	3.36		
	-	10.73	-04+00	3833		
5935	~5059832_63	2.89	3501104-10	3.02	1472750.43	3.45
2,22	13 26 21 .01	0.11	144 38 5.78	0.10	106.56	3.10
	• 5 20 24074	~~~			100470	5610
		18.09	17.68	3.51		
		64.73	-116.10	3.09		
	-	17.04	-66.58	2.74		
	· · ·					
5937	-4433470.52	3.05	4512939.33	3.17	809955.32	3.74
	7 20 40.19	0.12	134 29 27.85	0.10	146.59	3.20
		22.81	8.93	3.81		
		43.13	-104.28	3.16		
	-	38.19	-61.74	2.97		
6020	-501510/ 01			2 00	•	
2430	-2412100-01	4.43	21408/3.19	3.87	-103/912+81	4.04
	- 9 25 40.91	0.13	100 3 0.33	0.13	94.51	4.40
	-	72.09	-168.20	4.50		
	-	17.22	28.30	4.11		
		-4.79	-63.19	3.73		
				_		
5941	-5467771.89	3.46	-2381242.67	3.23	2254023.97	4.35
	20 49 54.29	0.14	203 32 0.14	0.11	66.65	3.47
		11.47	16.44	4.46		
	-	77.71	-5.01	3.42		
		4.38	-74.45	3.11		
		• • • •				
6001	546566+45	Z•68	-1389993.59	2.74	6180242.37	4+38
	76 30 4.78	0.08	291 27 55.80	0.40	216.93	4.38
		81.99	27.11	4.41		
		-6.36	64.75	3.04		
		4.85	154.21	2.29		

6002	1130762.75 39 1 39.39	2.23 0.08	-4830837.60 283 10 26.91	2.70 0.09	3994709 <b>.</b> 87 0.92	3.11 3.37
		71.81	+25.01	3.47		
		17.77	142.30	2.25		
		-3.74	53.50	2.20		
		50.4	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	2020		
6003	-2127839.88	2.53	-3785864.18	2.69	4656037.40	3.54
	47 11 6.25	0.08	240 39 42.82	0.11	344.33	3.77
		76.55	13.31	3.83		
	•	-12.67	33.21	2.55		
		-4.43	-57.79	2.23		
6004	-3851806.76	3.20	396416.10	3.67	5051341.73	4.95
	52.42 48.10	0.12	174 7 26.34	0.19	56.55	4.64
		57.30	15.66	5.01		
		25.54	-122.46	3.99		
	-	-18*44	-41.92	2.10		
6006	2102930.27	2.67	721674.08	3.34	5958181.65	4.37
	69 39 45.05	0.10	18 56 27.47	0.28	113.69	4.41
		80.94	-18.03	4.43		
		7.87	132.03	3.51		
		4.47	-137.35	2.33		
6007	4433653.31	2.74	-2268156.86	2.73	3971570.98	3.79
	38 45 36.56	0.09	332 54 24.27	0.11	112.66	3.66
		59.76	-12.11	3.97		
		13.23	101.67	2.74		
		26.66	-161.56	Z•46		
6008	3623257.28	3.39	-5214236.72	3.30	601534.83	3.60
	5 26 53.33	0.12	304 47 40.48	0.09	-25.12	3.91
		79.11	84.72	3.95		
		2.23	-16.98	3.67		
	-	10.65	72.60	2.51		

6009	1280834-05	3.77	-6250966-19	5.86	-10805.46	4.55
0007	- 0 5 51.65	0.15	281 34 47.01	0.12	2693.82	5.84
	-	69.63	161.18	6.03		
	-	17.81	11.27	4.35		
		9.56	98.16	3.75		
6011	-5444039.24	4.43	-2404429-31	3.36	2242224.57	3.90
0011	20 42 26.77	0.12	203 44 38.33	0.13	3091.27	4.46
	-=	75.66	159.30	4.55		
		-5.21	48.38	4.32		
	-	13.32	-42.86	2.60		
6012	-5858578.80	2.94	1394516.35	3.21	2093817.38	3.77
	19 17 28.37	0.12	166 36 39.78	0.11	29.67	3.26
		26.45	12.27	3.82		
		43.23	-105.62	3.35		
	-	35.21	-57.18	2.71		
6013	~3565901 •45	3.98	4120723.17	5.16	3303426.94	5.88
	31 23 42.34	0.17	130 52 17.55	0.17	104.05	5.28
		28.71	28.74	6.21		
		56.88	-118.32	5.08		
	-	15.11	-52.76	3.55		
6015	2604355-41	2.55	4444169.18	2.86	3750321.68	3.50
••••	36 14 25.84	0.11	59 37 44.41	0.10	951.38	2.98
		26.67	-14.83	3.56		
		61.67	143.86	2.82		
		8.87	-109.32	2.51		
6016	4896394.57	2.39	1316176.24	2.79	3856670.75	3.23
	37 26 39.02	0.09	15 2 44.70	0.11	22.94	2.91
		36.01	-21.06	3.28		
		42.58	110.84	2.88		
		26.32	-132.13	Z.20		

6019	2280630.74	2.74	-4914547.69	3.56	-3355417.89	5.24
	-31 56 35.25	0.15	294 53 38.37	0.10	619.03	4.54
	-	45.45	-0.34	5,33		
	-	44.36	173.08	3.57		
		3.29	86.31	2.57		
		3427	00192	2		
6020	-1888621.47	5.97	-5354898.38	6.0/	-7895767.32	6-92
0020	-27 10 36.23	0.18	250 34 21-87	0.19	228-82	7.94
	-(	68.61	33.53	8.35		
		4.66	-44.45	5.58		
	:	20.82	47.32	4.41		
			003063 (0			
6022	-6099975.88	4.81	~99/35/.69	3.90	+1568593.64	5.20
	-14,19 24,32	0.10	189 17 8.90	0.13	47.83	4091
	-:	28.98	28.84	5.59		
	-	59.85	-168.68	4.71		
	•	-7.60	-65.40	3.45		
6023	-4955391.18	4.54	3842255+66	3.94	-1163855.47	4.66
	-10 35 3.18	0.15	142 12 40.02	0.13	129.96	4.70
	-4	45.47	11.72	4.85		
	-4	42.36	-146.24	4.62		
	:	11.21	-66.66	3.62		
6031	-4313850+43	4.44	891340.59	4.23	-4597277.74	5.32
	-46 24 57.98	0.14	168 19 32.20	0.20	12.92	5+42
	-	70.77	5.36	5.56		
	-	11.60	-120.67	4.54		
	-1	15.13	146.15	3.79		
6032	-7776/78 00	3.73	4875557+63	4.28	-3345424.51	4.96
	-2313423.77			~ • •		
	-31 50 25.42	0.14	115 58 33.09	0.14	11.30	4.99
	-2373425.47	0.14	115 58 33.09 12.50	0.14 5.27	11.30	4.99
	-23/3423.77	0.14 61.34 25.93	115 58 33.09 12.50 -14.69	0.14 5.27 3.93	11.30	4.99

### Table A - 1 (cont^fd)

6038	-2160989.61	2.92	-5642717.93	3.78	2035368.01	4.35
	18 43 58.17	0.13	249 2 40.84	0.10	-5.95	4.11
		44.61	-2.02	4.50		
		-45-14	-9-63	3.70		
		-3.81	84.21	2.81		
6039	-3724775-03	7.86	-4621236.66	7,20	-7686094-35	7.26
	-25 4 6.62	0.18	229 53 12.24	0.22	323.72	9, 98
		-76.99	34.17	10.17		
		-4.56	-75.99	6.11		
		12.16	13.02	5.05		
6040 [·]	-741986-07	4.71	6190803.59	4.83	-1338557+08	4.72
	-12 11 44.20	0.15	96 50 4.08	0.16	-35.90	5.07
		59.26	-178.79	5.38		
		3.99	-82.04	4.74		
		30.42	10.31	4.04		
6042	4900751.97	2.74	3968255.09	2.90	966318.93	3.38
	8 46 12.16	0.11	38 59 52.49	0.09	1851.44	2.89
		-8.03	-16.29	3.48		
		76.77.	36.82	2.88		
		10.44	-104.80	2.64		
6043	1371376.55	3.47	-3614750.64	4.23	-5055947.15	7.01
	-52 46 52.90	0.19	290 46 33.30	0.17	87.59	5.88
	-	-44.81	2.29	7.06		
	•	-44,93	-170.06	4.43		
		-3.84	96.11	3.10		
6044	1098898.48	6.87	3684616.99	6.67	-5071900.10	11.10
	-53 1 9.97	0.27	73 23 36.02	0.38	51.79	9.66
	-	-52,91	1.91	11-10		
	-	-14.89	-108.68	7.33		
		33.06	-28.65	6.16		

6045	3223434.73	3.57	5045343.56	4.03	-2191818.01	4+60
	-20 13 53.64	0.14	57 25 32.79	0.12	125.84	4.43
	-	-49.89	-10.98	4,87		
		36.37	18.08	3.76		
		14.60	-82.97	3.51		
6047	-3361983.48	3.07	5365820.63	3.36	763620.46	3.83
• - ·	6 55 20.38	0.12	122 4 9.91	0.10	90.07	3.37
		29.95	-1.28	3.94		
		38.12	-118.16	3.28		
	-	-37.44	-65.09	3.02		
6050	1192679.27	5.00	-2451013.23	6.33	-5747052.45	9.81
	-64 46 26.35	0.27	295 56 52.30	0.34	23.64	8.30
	•	-43.39	2.35	10.27		
	•	-46,53	178.05	6.03		
		2.15	90.32	4.41		
6051	1111337.13	4.96	2169270.22	4.18	-5874355.23	7.25
	-67 36 5.26	0.15	62 52 24.67	0.40	44.13	7.08
	-	-71.06	-22.06	7.31		
		15.76	-56.73	4.96		
		10.23	36.20	4•08		
6052	-902611.43	4.59	2409529•97	4.40	-5816569.86	7.42
	-66 16 45.07	0.15	110 32 9.53	0.35	14.51	7.45
	-	-78.59	13.76	7.55		
		-9.78	-134.94	4.70		
		5.81	-45.95	4.05		
6053	-1310854.82	4.80	311262.87	4.79	-6213294.28	7.36
	-77 50 41.09	0.16	166 38 32.92	0.73	-33.23	7.27
	-	-77.95	-9.54	7.36		
	-	-11,19	148.49	4.88		
		-4.39	-120.64	4 • 70		

6055	6118349.28	3.29	-1571749.24	2.93	-878601.29	3.37
	- 7 58 15.13	0.11	345 35 33.94	0.10	68.61	3.25
	-1	4.58	-9.71	3.37		
	6	53.98	48.07	3.29		
	-2	21.05	86.03	2.92		
6059	-5885350-23	4.34	-2448374.39	3.44	221663.61	4.53
0027	2 0 18.15	0.15	202 35 16.37	0.11	38.35	4.28
		7.86	23.09	4.75		
	-1	72.68	86.83	4.35		
	-1	15.34	-64.73	3.12		
6060	-4751654.99	4.47	2792065.66	3.95	-3200174.19	4:72
	-30 18 34.26	0.14	149 33 41.64	0.15	245 • 25	4.90
	-(	5.75	11.70	5.03		
	-	21.87	-141.30	4.31		
		9.96	-55.35	3.74		
6061	2999921 •23	3.95	-2219366.28	5.85	-5155267.05	7.80
	-54 17 1.43	0.18	323 30 20.38	0.32	11-74	6.88
	-	51.84	-22.58	7.91		
	-	23.74	101.45	5.87		
	:	27.95	24.94	3.69		
6063	5884479-35	2.40	-1853496.36	2.58	1612858.73	3.16
	14 44 42.46	0,10	342 30 59.72	0.09	41.54	2.52
	:	27.42	-9.39	3.21		
		14.77	88.46	2.64		
	1	58.24	-156.33	2.26		
6064	6023394-41	3.30	1617934.17	3.05	1331731.69	3.68
2-••	12 7 54.76	0.12	15 2 6.84	0.10	281.55	3.41
		11.90	-10.94	3.70		
		73.32	123.77	3.42		
	-	11.51	76.60	2.90		

6065	4213570.18	2.63	820833.75	2.95	4702786.47	3.64
	47 48 4.39	0.09	11 1 24.84	0.14	965.28	3.51
		59.85	-15.20	3.71		
		23.02	121.81	3.08		
		18.38	-140.08	2.37		
6066	-5858580.74	2.94	1394474.01	3.21	2093843.05	3.77
	19 17 29.24	0.12	166 36 41.21	0.11	30.67	3.26
		26.45	12.28	3.82		
		43.24	-105.62	3.35		
	-	-35.20	-57.18	2.71		
6067	5186415.01	3.34	-3653935.93	2.84	-654280.70	3.13
	- 5.55 36.77	0.10	324 50 4.26	0.09	20,03	3.40
		70.69	131.71	3.45		
		13.50	-1.53	3.10		
	-	13.55	85.15	2.74		
6068	5084837.07	4 7	2670346-52	3,52	-2768109-30	5, 29
	-25 52 59.82	0.15	27 42 23.76	0.12	1529.74	4.95
	-	50.35	1.75	5.52		
		38.76	-12.64	4.00		
		7.11	83.10	3.39		
6069	4978430-89	8.32	-1086871-05	6.65	-3823187.75	10.43
	-37 3 54.13	0.28	347 41 4.73	0.28	37.46	10.01
	-	57.69	-21.20	10.91		
		24.01	24.02	7.76		
	-	20.28	104.55	6.53		
60 <b>7</b> 2	-941707.81	5.91	5967462.54	5.05	2039307-39	4, 85
	18 46 10.49	0.15	98 58 3.81	0.20	263.69	5.44
		-2.63	-71.48	6.00		
		71.82	10.50	5.56		
	-	17.98	19.38	4.13		

6073	1905134.35	3.72	6032292.03	4.81	-810742.32	4.66
	- 7 21 6.98	0,15	72 28 21.73	0.12	-81+84	4.85
		53.68	157.16	5.17		
		33.51	2.91	4.27		
		12.39	-95.45	3.70		
6075	3602824.49	4.24	5238248.23	4.55	-515957.74	4.51
	- 4 40 14.99	0.14	55 28 48.44	0.13	527.88	4.97
		55.89	166.98	5.31		
		30.21	-43.73	4.25		
	•	-14.33	-125.18	3.58		
6078	-5952307.73	19.88	1231910.54	9.37	-1925983.72	16.62
	-17 41 31.75	0.69	168 18 25.03	0.26	88.03	15.67
	-	-34.41	174.81	25.35		
	-	-38.94	-61.58	8.09		
		32.30	-120.85	7.15		
6111	-2448862.77	3.03	-4667992.31	3.19	3582759-41	3.79
	34 22 54.24	0.09	242 19 5.41	0.12	2262.44	4.11
		69.88	6.82	4.27		
		-6.03	80.05	2.95		
	-	-19.12	-12.05	2.59		
6123	-1881807.42	4.86	-812435.30	4.57	6019599.26	7.13
	71 18 47.61	0.14	203 21 4.94	0.52	14.09	6.99
		74.56	-29,91	7.17		
		0.60	62.25	5.41		
	-	-15.43	-27.59	3.83		
6134	-2448916-50	3.03	-4668082.35	3.19	3582454-09	3.79
	34 22 44.15	0.09	242 19 5.18	0.12	2176.44	4.11
		69.88	6.77	4.27		
		-6.01	80.08	2.95		
	-	-19.13	-12.01	2.60		

7036	-828491.01	3.84	-5657486•49	3.89	2816825.47	4.02
	26 22 46.35	0.11	261 40 7•45	0.14	52.58	4.56
	-1 -1 -1	56.30 14.36 18.44	24.56 78.88 -16.01	4.76 3.86 2.93		
7037	-191294.76	3.22	-4967308.32	3.47	3983264•47	3•90
	38 53 35.51	0.10	267 47 40.51	0.13	251•66	4•23
	ד נ-	72.86 12.76 11.25	-17.06 120.18 32.76	4.32 3.42 2.69		
7039	2308214.77.	3.73	-4873614•77	5.32	3394568.37	5.00
	32 21 49.28	0.14	295 20 34•49	0.14	-10.07	5.98
	-7	76.40 -9.41 9.73	122.37 -10.87 77.50	6.08 4.24 3.50		
7040	2465050.88	3.99	-5534945.53	4.42	198`522.20	4•66
	18 15 28.51	0.14	244 0 22.84	0.14	8.22	4•79
	-4	42.95 47.23 -6.40	-39.80 -52.58 44.39	5.52 4.11 3.13		
7043	1130706.51	2•24	-4831337.15	2.72	3994141•37	3.11
	39 1 15.40	0•08	283 10 19.90	0.09	10•89	3.38
	•	72.22 17.26 -4.15	-25.56 140.06 51.35	3.48 2.26 2.22		
7045	-1240475•11	4.60	-4760256.04	4.16	4048997.78	4.66
	39 38 47•64	0.11	255 23 38.85	0.20	1787.06	5.13
	-	69.98 14.50 13.50	-40.89 94.34. 7.90	5.25 4.64 3.33		

7072	976261.26	2.49	-5601416.41	3.30	2880251.42	3.26
	27 1 14.16	0.09	279 53 12.03	0.09	-11.73	3.78
	-	71.79	161.40	3.89		
	-	17.57	-34.30	2.60		
		-4.6	57.17	2.41		
7075	692618.68	3.97	-4347090.42	5.71	4600487.67	5.36
	46 27 20.78	0.16	279 3 10.09	0.19	249.08	6.10
	-	77.90	44.92	6.16		
		9.63	7.29	4.83		
		7.25	98.53	3.96		
707/	1204150 21	4 22		6.02	1044554 24	6 oc
1010	1004109421	4+32	-2702017.97	2.02	430 40	20 20
	10 4 34472	0.10	203 11 20-11	Velj	430.40	0.20
		55.60	-28.38	6.62		
	-	34.18	-21.04	5.20		
		3.42	66.63	3.99		
8.000	3073630 86	12 20	200944 12	13 00	5002017 24	15 14
0009	57 0 6.44	0.40	4 22 14.14	64-64	2012012020	15.81
	J2 0 0044	0040	- 26 14014		/3604	1 2001
		52.25	-67.68	17.90		
		27.30	160.52	12.64		
		23.93	57.28	9.89		
8010	6331313 67	7.92	547400 75	10 93	6622118 Q6	11 60
0010	46 52 27.05	0.30	7 77 52.27	10.57	-02:110:74	11.25
	-0 32 31.03	0.30		0.52	733631	10032
		35.59	-52.40	12.86		
		38.86	72.82	9.41		
		31.15	-168.03	7.79		
8011	3920188-87	12.84	-1 36806-73	16.49	5012774-21	15, 4P
~~**	52 8 36.18	0.38	358 1 49.80	0.87	193.35	16.26
	-	35.04	114.83	19.16		
		54.72	122.47	14.64		
		3.60	27.36	9.71		

0.315	4578328.11	6.41	457945.63	10.70	4403204.79	10.16
	43 55 57.92	0.24	5 42 43.17	0.48	690.57	9.36
	-	31,30	119-89	12.35		
		48.64	73.56	8-51		
		24.10	-165-90	5.81		
6.010	4579469 OB	6.36	586582-69	10-62	4386428-42	10-09
6014	43 43 33 36	0.24	7 17 57-30	0.48	405-86	9.23
		0.24		••••	107000	
	-	30.41	120.55	12.26		
		49.25	73.48	8.46		
		24.34	-164.85	5.73		
6030	4205629.05	9.02	163695.35	12.25	4776550.95	11.77
	48 48 22.39	0.31	2 13 44.38	0.60	192.34	11.31
	-	35.55	115.39	14.20		
		49.32	81.61	9.62		
		17.15	-167.35	8.71		
					2402012 02	2 03
9001	-1535755.11	4.78	-210/020.24	3.72	3401047.07	2001
	32 25 24.37	0.09	253 26 40.11	0.18	1020.00	4.30
	-	27.81	104.77	4.79		
	-	59.01.	-103.80	4.59		
	-	12.58	8.01	2.63		
9002	5056115.09	4.23	2716513.96	3.57	-2775782.87	5.33
	-25 57 36.68	0.15	28 14 52.57	0.12	1549.91	4.98
	-	50.29	2.25	5.55		
		38.75	-12.67	4.04		
		7.37	83.29	3.44		
			- EEE 340 47	12 00	27/0/00 57	0 63
9004	5105589.78	6.27		12.88	210708U.71	0.24
	36 27 46.84	0.18	373 41 22.04	0.51	00.15	7030
	-	28.45	99.97	13.86		
		53.62	57.33	7.98		
		20.69	178.16	4.68		
9005	-3946751.36	11.20	3366303.20	10.32	3698830.26	9.81
------	--------------	-------	--------------	--------	-------------	-------
	35 40 21.70	0.28	139 32 17.30	0.45	120.23	11.19
	-	36.67	-87.00	11.71		
		52.37	-71.98	10.95		
		-7.29	8.47	8,44		
9006	1018153.29	14.17	5471119.27	10.89	3109622.24	9, 58
	29 21 34.48	0.22	79 27 29.08	0.53	1867.29	12.62
	-	21.12	-98.45	14.73		
		66.43	-70.72	12.44		
		-9,99	-4.54	6.30		
9007	1942762.37	2.82	-5804101.64	3.99	-1796905.76	5.32
	-16 27 56.14	0.17	288 30 23.56	0.09	2483.27	4.24
	-	22.97	-5.98	5.36		
	-	66.29	158.90	4.01		
		5.54	81.66	2.71		
9008	3376872.59	8.14	4403980.05	10.33	3136250.06	9.48
	29 38 13.64	0.24	52 31 11.36	0.33	1551.01	11.43
		70.11	53.59	11.90		
		11.35	-70.11	8.62		
		16.11	-163.43	6.85		
9003	2251813-45	2.77	-5816933.57	3.51	1327169.71	3.80
	12 5 25.02	0.12	291 9 43.53	0.09	-18.08	3.72
		43.37	-20.96	4.15		
	-	46.62	-19.32	3.28		
		0.82	69.81	Z • 54		
9010	976276.21	2.48	-5601418.80	3.30	2880243.99	3.25
	27 1 13.87	0.09	279 53 12.55	0.09	-10.73	3.78
	-	71.88	161.71	3.89		
	-	17.49	-33.87	2.59		
		-4.57	57.57	2.40		

9011	2280578.88	2.74	-4914584	4.83 3.5	8 -3355398.84	5,27
	-31 56 34.52	0.15	294 53 3	5.99 0.1	0 619.02	4.55
	-	45.10	-0.65	5.	34	
	-	44.69	172.38	3.	58	
		3.49	85.84	2.	58	
9012	-5466088.52	4.46	-2404310	).50 3.3	9 2242188.67	3.91
	20 42 25.71	0.12	203 44 3	3.88 0.1	3 3076.02	4.49
	-	76.20	152.71	4.	57	
		-3.49	48.32	4.	35	
	-	13.33	-42.51	2.	62	
9021	-1.936799.06	7.34	-5077719	7.38 6.7	9 3331926-12	6.47
	31 41 2.90	0.20	249 7 17	7.77 0.3	0 2358.35	6.43
		-0.39	114.12	8.	35	
		72.49	25.34	6.	52	
	-	17.50	24.00	5.	38	
9028	4903727-67	2.76	3965201	B-62 7-9	1 963853.17	3.40
	8 44 50.89	0.11	38 57 3	3.80 0.0	9 1868.26	2.91
		-7.87	-16.14	3.	49	
		76.58	38.45	2.	90	
		10.80	-104.63	2.	65	
9029	5186459-35	3.38	-3653876	6.57 2.9	0 -656317-92	3, 18
	- 5 55 39.97	0.10	324 50 0	5.77 0.0	9 24.78	3.44
		71.00	132.27	3.	49	
		13.32	-1+17	3.	15	
	-	13.30	85.62	2.	79	
9031	1693795.54	8-42	-4112354	4.26 9.4	3 -4556644.13	14.26
	-45 53 12.21	0.46	292 23 8	8.78 0.3	3 194.17	10.66
	-	23.69	10.03	15.	00	
	-	66.03	-160.74	9.	61	
		-3.42	101.53	6.	76	

9051	4606866.74	5.99	2029707.98	12.63	3903567.43	8.89
	37 58 37.17	0.24	23 46 38.94	0.49	204.43	8.60
		5.58	111.32	12.83		
		64.19	9.67	9.14		
		25.12	-156.06	5.13		
9091	4595164.11	5.96	2039433.37	12.62	3912675.81	8.87
	38 4 45.11	0.24	23 55 57.67	0.49	483.07	8.60
		5.65	111.43	12.81		
		64.31	9.57	9.13		
		24.98	-155.92	5.10		
9424	-1264834.45	5.18	-3466912.61	6.52	. 5185449.25	7.70
	54 44 33.06	0.22	249 57 23.41	0.28	667.49	7.64
		69.02	-13.79	7.79		
	-	20.73	-4.57	6.59		
		3.08	84.27	4.95		
9425	-2450022.22	3.11	-4624438.17	3.25	3635041.10	3.85
	34 57 50.36	0.10	242 5 7.46	0.12	763.81	4.17
		70.21	6.95	4.32		
		-6.42	78.72	3.03		
	-	18.63	-13.46	2.67		
9426	3121262.56	9.62	592607.01	11.37	5512720-86	15.45
	60 12 39.75	0.42	10 45 1.07	0.70	587.40	13.27
		40.99	-26-57	16.30		
		41.50	113.69	10.84		
		21.18	-136.25	8.80		
9427	-6007458.13	10.94	-1111834.16	20.62	1825729.98	8.84
	16 44 38.03	0.31	190 29 7.47	0.74	48.78	7.37
		7.73	-110.69	23.58		
	-	66.40	177.42	7.06		
	-	22.15	-23.86	4.13		

9431	3183691.18	13.08	1421439.29	11.65	5322819.83	14.71
	56 56 55.84	0.46	24 3 29.66	0.79	12.01	11.98
		22.86	32.30	16.33		
		35.95	-75.50	12.78		
		45.26	147.47	9.65		
9432	· 3907423.80	10.22	1602394.18	12.62	4763932.72	13.68
	48 38 2.32	0.35	22 17 52.90	0.64	217.43	12.80
		59.08	- 1.87	13.80		
		0.47	88.92	13.09		
		30.92	179.20	9.44		

#### Table A - 2

# Station to Station Correlation Coefficients $\rho_{ij} > 0.75$ (Solution WN12)

STA-NO-3106	WITH STA."	· <b>⑦</b> •4061	STA.NO.3405	WITH STA	<b>NO_4081</b>
0.961	-0.079	0.021	0.950	-0.112	0.144
-0.085	0.969	-0.355	-0.121	0.979	-0.378
0.026	-0.351	0.973	0.158	-0.378	0.972
STA-NO-3406	WITH STA.N	10.4004	STA.NO.3413	WITH STA	NO.5712
0.978	-0.126	-0.143	0.772	-0.121	-0.196
-0.127	C.986	-0.272	-0.174	0.524	0.018
-0.143	-0.272	0.988	-0.012	-0.088	0.677
STA.NO.3413	WITH STA.N	10.5735	STA.ND.3413	WITH STA	NO-5736
0.942	-0.151	-0.076	0.791	-0.089	0.029
-0.153	0.919	-0.005	0.054	• 0.754	-0.006
-0.096	-0.015	0.934	-0.042	-0.068	0.769
STA.ND.3413	WITH STA.N	0.0055	STA.ND.3413	WITH STA	NO.6067
0.767	-0.066	0.019	0.985	-0.145	-0.069
0.055	0.716	-0.001	-0.144	0.979	0.003
-0.040	-0.069	0.750	-0.069	0.003	0.983
STA.NO.3413	WITH STA.N	e. 4020	STA.NO.3476	WITH STA	NO.5712
0,970	,-0.142	-0.068	0.943	-0.377	-0.092
-0.143	0.959	0.004	-0.369	0,940	-0.127
-0.067	0.004	0.966	-0.080	-0.123	0.949
STA.ND. 3476	WITH STA.N	10.5735	STA.ND.3476	WITH STA	NO.5912
0.774	-0.194	-0.023	0.757	-0.289	-0.120
-0.135	0.542	-6.107	-0.440	0.616	-0.076
-0.217	-0.002	0.697	0.013	-0.188	0.773
STA.NO.3476	WITH STA.N	0.6008	STA.NC. 3499	WITH STA	NO.6009
0.985	-0.380	-0.093	1.000	-0.065	0.066
-0.381	0.985	-0.131	-0.065	1.000	-0.201
-0.092	-0.130	0.987	0.066	-0.201	1.000
STA .NO. 3648	WITH STA.N	10.5648	STA-NO-4050	WITH STA	ND-6069
0.990	-0.001	-0.018	0.953	0.149	-0.211
-0.001	0.993	-0.320	0.146	0.935	-0.126
-0.018	-0.320	0.994	-0.214	-0.132	0.970
STA.NO.4050	WITH STAN	0.9002	STA-ND-4082	WITH STA	ND. 7072
0.964	0.147	-0.204	0.773	-0.083	0.000
0.145	0.950	-0.125	-0.058	0.857	-0.357
-0.212	-0.128	0.977	-0.009	-0.357	0.850
STA .NO. 4082	WITH STA.N	0.9010	STA-NO-4280	WITH STA	NO.6111
0.793	-0.085	0.009	0.702	0.065	-0.126
-0.060	0.865	-0.359	0.048	0.719	-0.304
-0.008	-0.358	0.863	-0.138	-0.328	0.778
STA.ND.4280	WITH STA.N	0.6134	STA.NO.4280	WITH STA	NO.9425
0.702	0.065	-0.126	0.726	0.065	-0.123
0.068	0.718	-0.304	0.066	0.741	-0.300
-0.139	-0.328	0.778	-0.134	-0.321	0.795
STA.NO. 4740	WITH STA.N	0.7039	STA-NO-5001	WITH STA	NO. 5907
0.453	-0.215	0.012	0.877	0.094	0.090
-0.211	0.977	-0.361	0.136	0.963	-0.545
0.011	-0.360	0.974	0.145	-0.395	0.939
STA.NO.5001	WITH STA-N	0.5911	STA-NO-5001	WITH STA	NO.5912
0.803	-0.140	C.216	0.652	0.049	0.187
-0.356	0.931	-0.486	-0.066	0.752	-0.597
0.265	-0.292	0.897	-0.213	0.054	0.794

STA.ND.5001	WITH STA.	ND.5914
-0.517	0.065	-0.012
-0.075	-0.802	0.242
0.159	0.185	-0.589
STA.NO.5201	WITH STA.	NO. 6003
0.929	0.201	-0.129
0.189	0.935	-0.357
-0.126	-0.367	0.961
STA-ND-5410	WITH STA	NO. 5941
0.790	-0.220	0.103
-0 032	0 796	-0.140
0.140	-0.119	0.140
CTA NO 5/10		NO 4044
0 700 0 700	WIIN SIA.	NU-0000
0.788	-0.008	-0.031
-0-186	0.779	-0.109
0.023	-0.154	0-821
STA-NO-5712	WITH STA.	NO.5912
0.803	· -0.303	-0.114
-0.450	0.655	-0.073
0.017	-0.194	0.764
STA-NO-5712	WITH STA.	NG.6067
0.784	-0.178	-0.013
-0.123	0.535	-0.089
-0.199	0.019	0.689
STA-NO-5713	WITH STA.	10.5739
0,997	-0-008	0.250
-0.009	0.997	-0.226
0.250	-0.225	0.998
STA.NO.5713	WITH STA	NO. 6007
0 037	-0 007	0 243
0.004	-0.007	-0 237
0.004	0.730	-0.221
U+243		U. 5774
STA-NU-2712	WINH STA.	NU. 5736
0.622	0-135	0.201
0.056	0.830	-0.105
0.201	-0.110	0.731
STA-NO715	WITH STA.	NO.6055
0.616	0.135	0.140
0.061	0.810	-0.105
0.193	-0.103	0.709
STA .NO. 5717	WITH STA.	NO. 5720
0.751	-0.095	0.029
0.185	0.844	-0.087
0.108	0.190	0.829
STA.NO. 5717	WITH STA.	NO. 5923
0.626	-0-015	-0.056
0.121	0.802	-0.162
0.030	-0-200	0.704
STA.NO. 5717	WITH STA	NO. 6016
0.567	0.080	
0 003	0.772	-0.177
	-0.14/	-0.177
<b>MALL &amp; 17(3)</b>	-0-104	080.0

STA-NO-5001	WITH STA-N	0.5915
0.846	0.127	0.091
0.062	0.918	-0.612
0.015	-0.236	0.914
STA.NO.5410	WITH STA.N	0.5730
0.835	0.004	-0.030
-0.195	0.812	-0.105
0.031	-0.166	0.847
STA.NO.5410	WITH STA N	0.6012
0.788	-0.008	-0.031
-0.186	0.779	-0.109
C-023	-0.164	0.821
STA-NO-5712	WITH STAIN	0.5775
0-818	-0 200	-0.008
~0.126	0.577	-0.101
-0.120	0.004	-0.101
-U+223 STA NO 5713	U+UU+U	V+131
STA-NU-5712	W110 314+W	0.0000
0.957	-0.395	-0.079
-0-384	0.955	-0.124
-0.090	-0.128	0.962
STA.NU.5712	WITH STAIN	0.9029
0.772	-0.175	-0.012
-0.122	0.524	-0.087
-0.196	0.019	0.677
STA.NO.5713	WITH STA.N	0.5974
0.842	0.127	0.080
0.188	0.604	-0.090
0.138	-0.019	0.635
STA.NO.5715	WITH STA.N	0.5717
0.613	-0.006	0.047
0.193	0.776	-0.087
0.132	-0.163	0.728
STA-NO-5715	WITH STA .N	0.5925
0.776	0.047	0.125
0.097	0.808	-0.091
0.103	-0.136	0.840
STA-ND-5715	WITH STAN	0.6063
0.915	0.108	0.117
0.109	0.938	-0.121
0.125	-0.116	0.951
STA-NO-5717	WITH STA N	n. 5744
0 610	0 072	-0 046
0.065	0.075	-0.197
-0.008	-0.140	-0.107
-U.U.S	-U.100	0.5025
31844047111 0 455	NI 117 31A	010722
CC0+U	0.120	0.100
-0.004	U. /4U	-0.108
		U•101
STA.NU.5717	WITH STA.N	J.0U42
0.726	-0.086	0.027
0.183	0.821	-0.091
0.101	-0.188	0.811

STA-NO-5717	WITH STA.	NC+9028
0.724	-0.087	0.027
0.184	0.820	-0.090
0.102	-C.187	0.810
STA.NO.5720	WITH STA.	VL:+5028
0.962	0.086	0.00%
0.086	0.966	-0.154
0.010	-0.155	0.975
STA.NO.5721	WITH STA.	NC. 5923
0.895	0.222	0.093
-0.056	0.867	-0.200
0.064	-0.159	0.815
STA-NO-5723	WITH STA.	LC . 5726
0.854	-0.136	-0.112
0.207	0-820	0.080
-0.045	0-083	0.831
STA .NO. 5723	WITH STAR	VC-5971
• 0.974	+0.217	-0-141
0.089	0.911	0.082
-0.120	0.141	0.917
STA NO 5722	WITH STA.	ND 6047
0.812	-0 134	-0.109
0.102	0 795	0.076
-0.046	0.077	0.010
-U.U40	UITH CTA 1	0. 5031
31A+NU+3120	WI17 316+	-0.050
0.034	0.0017	-0.058
-0.034	0.817	0.002
-U.U30		0.00.00
SIA - NU- 2720	W110 31A+"	-0.175
0.844	-0.127	-0.175
0.220	0.052	0.031
	U+104	0.037
SIA+NU+7/20	WIIM 51A."	NU+5737
0.974	-0.075	-0.100
0.088	0.925	0.070
-0.091	0.081	0.919
STA-NU-5730	WITH STAT	10.5935
0.840	-0.001	-0.037
-0.204	0.922	-0.10
-0.084	-0.124	0.824
STA. NU. 5730	WITH STA-	2109.00
0.942	-0.160	-0.109
-0.161	0.952	-0.080
-0.119	-0.073	0.965
STA.NO.5732	WITH STA.	NO.5733
0.783	-0.160	0.142
0.057	0.834	-0.371
-0.067	-0.239	0.841
STA.NO.5732	WITH STA."	10.5938
0.839	0.023	-0.047
-0.793	0.859	-0.117
0.136	-0.321	0.781

STA.NO.5720	WITH STA.N	0.6042
0.962	0.086	0.009
0.085	0.966	-0.154
0.010	-0.156	0.975
STA.NU.5721	WITH ST.,N	10.5744
0.784	0.240	0.059
-0.101	0.781	-0.191
0.038	-0.162	0.700
STA.NC.5721	WITH STA.N	0.6015
0.929	0.040	0.099
0.021	• 0.941	~0.130
0.092	-0.113	0.961
STA. 10.5723	WITH STA.N	10.5930
0.862	0.054	-0.122
0.083	0.813	0.129
-0.095	0.007	0.858
STA.ND.5723	WITH STA.N	0.5937
0.786	-0.127	-0.086
0.284	0.669	0.011
-0.027	0.056	0.708
STA.ND.5726	WITH STA .N	C.5930
0.929	0.205	-0.068
-0.119	0.857	۰.146
-0.180	0.097	0.872
STA.NO.5726	WITH STA-N	0.59?3
0.834	-0.019	-0.147
0.120	0.811	0.124
-0.090	0.137	0.855
STA-NO-5726	WITH STA N	n.5435
0.905	-0.117	-0.172
0.141	0.634	-0.007
-0.065	-0.009	0.862
STA.NO.5726	WITH STA-N	0.6047
0.947	0.002	-0.112
0.003	0.955	0.130
-0.109	0.126	0.966
STA-NO-5730	WITH STA.N	n <b>.</b> 5937
0.692	0.089	0.004
-0.158	0.775	-0.114
-0.109	-0.141	0.636
STA-NO-5730	WITH STA-N	0.6066
0.941	-0.160	-0.109
-0.161	0.952	-0.080
-0.119	-0.073	0.965
STA.NU.5732	WITH STA N	11. hy 24
0.673	0.078	-0.109
-0.300	0.752	-0.004
V.065	-0.207	0.4050
STA-NU-5732	WITH STAN	U+0U2Y
U+ / 34	-0.140	0.131
	0.744	-0.366
-0.067	-0.739	0.871

STA.NO.5733	WITH STA.N	10.5941
0.836	-0.055	0.134
<b>ስ</b> •ቦፋፋ	0.815	-0.297
-0.095	-0.169	0.902
STA.NO.5733	WITH STAIN	10.6059
0.974	0.039	0.028
0.031	0.959	-0.304
0.030	-0.303	0.976
STA-NO-5734	WITH STA.N	.0.6004
0.952	-0.305	-0.146
-0.311	0.963	-0.116
-0.137	-0.110	0.979
STA.NO.5725	WITH STA.N	0. c008
0.785	-0.137	-0.219
-0.197	0.551	-0.001
-0.021	-0.107	0.707
STA.NO.5735	WITH STA.N	ic. 6067
0.956	`-0.157	-0.087
-0.153	0.939	-0.015
-0.077	-0.005	0.951
STA-NU-5736	WITH STA.N	C.6055
0.955	0.014	-0.008
0.005	0.944	-0.027
-0.002	-0.035	C.957
STA.ND. 5736	WITH STA.N	10.6067
0.803	0.055	-0.042
-0.091	0.770	-0.069
0.030	-0.005	0.782
STA-NO-5729	WITH STA.N	0.5924
0.843	0.127	0.080
0.189	0.604	-0.089
0.138	-0.019	0.635
STA.N7.5744	WITH STAN	0.5923
0.944	0.083	0.052
0.746	0.954	-0.137
0.077	-0.153	0.888
STA .NO. 5744	WITH STA .N	0.6015
0.765	-0.075	0.037
0.229	0.756	-0.159
0.052	-0.176	0.699
STA .N2. 5744	WITH STA-N	0.6065
0.743	0.183	0.036
0.155	0.814	-0.129
0.044	-0.145	0.777
STA-ND- 5907	WITH STAN	0.5912
0.608	0.258	0.143
0.076	0.778	-0-563
-0.213	-0.052	0.784
STA-NO-5911	WITH STALN	0.5912
0.649	-0.288	0.389
-0.229	0.712	-0.503
-0.131	-0.107	0.886
~ ~ ~ ~ ~ ~		

CTA NO 6777		
STA-NU-2133	MIIW 214*	NU-6011
0.070	-0.040	-0.100
-0.112	-0.250	-0.340
010.0	~0.250	116.0
STA-10-5733	WITH ZIA"	10.9012
0.004	-0.042	-0.107
-0.113	0.768	-0.348
0.016	-0.248	0.313
STA-NO-5735	WITH STA.	10.5736
0.835	-0.096	0.025
0.071	0.810	-0.019
-0.049	-0.076	0.807
STA.NO.5735	WITH STA.	10.6055
0.808	-0.071	0.014
0.071	0.768	-0.015
-0.047	-0.077	0.784
STA-NO-5735	WITH STA.	10.9029
0.942	-0.155	-0.085
-0.152	0.910	-0.014
-0.075	-0.004	0.934
STA-NO-5736	WITH STA.	10.6063
0.605	0.031	0:190
0.115	0.791	-0.109
0.166	-0.089	0.707
STA.ND. 5736	WITH STA.	10.9029
0.791	0.053	-0.041
-0.090	0.754	-0.067
0.030	-0.004	0.769
STA-NU-5739	WITH STA .M	10.6007
0.934	-0.007	0.243
0.004	0.935	-0.226
0.243	-0.223	0.964
STA-NO-5744	WITH STAR	10.5924
0.883	0.218	0.053
0.093	0.824	-0.084
0.013	-0.076	0.760
STA-ND-5744	WITH STAR	0.6016
0.923	0.195	0.089
0.194	0.541	-0-104
0-095	-0.114	0.955
STA-NO-5907	WITH STA	I. 5911
0.663	-0-035	0.217
-0.295	0.855	-0.440
0.285	-0.412	0.840
STA .ND . 5907	WITH STAL	in_5915
0.937	0,353	0_028
0.221	0.040	-0.610
-0-040	-0,380	A . 074
STA NO 6011	WITH CTA N	۲۹÷-۱۹ ۱۹.5016
0 474	-0 277	0 0 0 7 17 0 217
-0 124		-0 473
-0.104		-0.413
V.104	-0.330	0.005

Table A - 2 (cont^{*}d)

STA.NO.5912	WITH STA.	0.5915
0.794	0.027	-0.240
0.115	0.885	-0.145
0.046	-0.491	0.872
STA.NO.5923	WITH STA.	NO.:924
0.729	0.229	0.016
0.030	0.776	-0.109
-0.034	-0.111	C.629
STA-ND-5923	WITH STA.	VC.6016
0.877	0.243	0.084
0.104	0.903	-0,147
0.063	-0.141	0.855
STA-ND-5924	WITH STA.	0.6007
0.807	0.169	C.132
0.134	0.608	-0.022
0.076	-0.100	0.628
STA-NO-5925	WITH STA.	NG.6063
0.715	0.087	0.101
0.046	0.757	-0.130
9.120	-0.084	0.800
STA.NO.5930	WITH STA.	ND.5933
0.795	-0.152	-0.191
0.276	0.770	0.092
-0.006	0.127	0.790
STA.ND. 5930	WITH STA.	ND. 5937
0.865	-9.129	-0,218
0.289	0.718	0.049
-0.043	0.097	0.770
STA.NO.5931	WITH STA.	17.5935
0.834	-0.165	-0.051
0.140	0.696	-0.0.2
-0.045	-0.016	0.710
STA.ND.5931	WITH STA.	10.6047
0.832	-0.039	-0.084
0.053	0.784	0,106
-0.057	0.058	0.830
STA.NO.5932	WITH STA-	10.5935
0.740	-0.027	-0.235
0.120	0.663	0.037
-0.093	0.001	0.769
STA.ND.5933	WITH STA.	10.5936
0.816	-0.250	-0.156
0.178	0.843	-0_064
-0.031	0.057	<b>0.77</b> 4
STA.ND.5934	WITH STA.	10.5935
0.876	-0.003	-0.168
-0.044	0.881	-0.006
-0.128	-0.054	0.970
STA.ND. 5934	WITH STA.	NG. 5936
0.939	-0.164	-0-127
0.020	0.950	-0.061
-0.100	0.012	0.914

STA-NO-5912	WITH STA.	NO.6008
0.769	-0.446	0.015
-0.294	0.625	-0.190
-0.120	-0.076	0.733
STA.NO.5923	WITH STA	NO.6015
0.857	-0.038	0.065
0.202	0.831	-0.157
0.081	-0.185	0.801
STA-NO-5923	WITH STA	ND.6065
0.709	0.225	0.033
0.106	0.791	-0.145
0.031	-0.159	0.706
STA-ND-5924	WITH STA.	N0.6016
0.818	0.108	0.023
0.212	0.782	-0.075
0.064	-0.089	0.734
STA-NO- 5930	WITH STA.	NO. 5931
0.782	-0.033	-0.095
0.150	0.636	0.001
-0.067	0,109	0.764
STA-NO-5930	WITH STA.	NO. 5935
0.759	-0-097	-0.232
0.336	0.568	-0.013
-0.018	0.008	0.687
STA-ND-5930	WITH STA.	ND.6047
0.278	-0.119	-0.174
0.190	0.815	0.094
-0.065	0.105	0.843
STA-NO. 5931	WITH STA	NO. 5927
0.835	-0-089	-0.052
0-130	0.715	0.023
-0.042	0-030	0.745
STA-ND-5933	WITH STA	NG. 5934
0.901	-0-163	-0.180
0.099	0.887	-0.008
-0-077	0.050	0.879
STA-NO-5933	WITH STA.	NO. 5937
0.844	-0.001	-0.180
0.041	0.746	0.095
-0-126	0.07	0-826
STA-NO-5933	WITH STA.	ND-6047
0.785	0-106	-0.087
-0-025	0.772	0.134
-0.137	0.127	0.825
STA-NO-5934	WITH STA	NO. 5937
0.904	0-076	-0,129
-0-104	0.914	0.063
-0.164	-0-001	0.8.9
STA NU- 59 34	WITH STA.	N3.6047
0.797	0.199	-0.053
-0.126	C.797	0.101
-0.161	0.030	0.909
· · · · ·		

STA.NO. 5935 WITH STA.NO. 5937 0.950 0.016 -0.095 -0.039 -0.100 0.979 -0.157 -0.031 0.911 STA-NO.5935 WITH STA-NO.6012 0.789 -0.200 -0.083 -0.131 -0.016 0.879 -0.055 -0.101 0.796 STA.ND. 5935 WITH STA.ND. 6066 0.789 -0.200 -0.083 -0.131 -0.016 0.879 -0.055 -0.101 0.795 STA.NO. 5937 WITH STA.NO. 6047 0.923 0.075 -0.059 -0.078 0.886 0.079 -0.144 0.066 0.887 STA.NO.6002 WITH STA.NO.7043 -0.009 0.966 -0.014 -0.014 0.977 -0.396 -0.008 -0.397 0.983 STA.ND.6003 WITH STA.ND.6134 0.180 -0.110 0.728 0.170 0.567 -0.199 -0.149 0.758 -0.163 STA.NO.6011 WITH STA.NO.6059 0.687 -0.112 0.000 -0.043 0.813 -0.248 -0.111-0.360 0.319 STA.NO.6012 WITH STA.NO.6066 0.999 -0.163 -0.117 -0.163 1.000 -0.079 -0.117 -0.079 1.000 STA.NO.6019 WITH STA.NO.9007 -0.210 -0.100 0.784 -0.235 0.578 0.273 0.290 -0.013 0.661 STA.NO.6022 WITH STA.NO.6059 0.766 0.065 C.025 0.007 0.565 -0.075 0.077 -0.032 0.590 STA-NO-6023 WITH STA-NU-6032 -0.223 0.509 0.041 -0.044 0.775 -0.199 -0.006 -0.101 0.639 STA.NU.6031 WITH STA.NU.6060 0.909 0.001 0.110 0.187 0.653 -0.231 0.203 -0.225 0.780 STA-ND-6038 WITH STA-NU-6111 0.859 0.140 -0.116 0.594 0.231 -0.430 0.009 -0.344 0.478

STA.NO.5935	WITH STA.N	0.5938
0.724	-0.096	-0.125
0.064	0.774	-0.073
-0.162	0.033	0.818
STA-NO-5935	WITH STA.N	0.6047
0.862	0.124	-0.063
-0.117	0.802	-0.008
-0.159	-0.006	0.833
STA-NO-5937	WITH STA-N	0.5928
0.745	-0.147	-0.150
0.157	0.810	-0.038
-0-108	0.098	0.768
STA-ND- 5941	WITH STA .N	0.6059
0-820	0_049	-0.093
-0-056	0.785	-0.172
0.130	-0.295	0.882
STA .ND. 6003	WITH STAIN	0.6111
0 726	0 190	-0.110
0 170	0.547	-0.100
-0 149	-0.163	-0.175
CTA NO 6000	-U+105	0 4047
0 752	-0 174	-0 025
-0 134	-0,110	-0.023
-0.105	0.012	-1.070
-U+175	UITU CIJ	0.001
314+40+0V11	0 070	0.9012
0.991	-0.078	-0.117
-0.077	0.985	-0.443
	-0.442	0.4045
314+NU+0UL0	WIIN SIA-N	0.036
0.1/0	0.177	0.035
0.052		-0.144
V+U72	-0+143	0.813
214*40*0014	WITH 214 .V	0.4011
0.977	~0.230	-0.118
-0+230	0.987	0.100
	U.104	0.994
STA-NU-0023	WITH STAIN	0.6031
0.834	0.193	0.181
-0.053	0.550	-0.272
-0.018	-0.284	0.606
STA-NU-6023	WITH STA-N	0.6060
0.904	-0.042	0.082
-0.115	0.864	-0.214
-0.017	-0.247	0.791
STA-NU-6032	WITH STA.N	U.6060
0.568	-0.045	-0.007
-0.216	0.701	-0.191
0.043	-0.148	0.766
STA-NU-6038	WITH STA .N	U.6134
0.859	0.140	-0.116
0.231	0.594	-0.430
0.009	-0.344	0.478

STA.NO.6038 WITH STA.NO.9425 0.830 0.138 -0.114 0.224 0.577 -0.422 0.008 -0.234 0.468 STA.NC.6050 WITH STA.NC.6061 0.156 -0.367 0.042 0.165 0.851 -0.073 ~0.233 -0.261 0.598 STA.ND.6055 WITH ST4.ND.6067 0.779 0.056 -0.041 ~0.068 0.732 -0.070 0.019 -0.001 0.764 STA.NO.6059 WITH STA.NO.9012 0.681 -0.045 -0.111 0.801 -0.360 -0.113 0.009 -0.247 0.315 STA.ND.606P H1TH STA.NO.9002 **0.15**4 0.989 -0.219 0.154 0.984 -0.135 -0.133 -0.218 0.993 STA.ND.6111 WITH STA.NO.9425 0.967 0.092 -0.173 0.089 0.970 -0+412 -0.408 0.978 -0.173 STA.ND. 7072 WITH STA.ND. 9010 0.973 -0.059 -0.022 -0.060 0.985 -0.408 -0.022 -0.408 0.984 STA-NO-8009 WITH STA-NO-8011 0.459 0.144 0.029 0.079 0.574 -0.359 0.078 -0.401 0.811 STA.NO.8009 WITH STA.NO.8019 0.044 0.467 0.030 -0.044 0.823 -0.344 -0.281 0.186 0.752 STA.NO.8010 WITH STA.ND.P019 0.783 -0.031 0.169 0.963 -0.070 -0.357 0.252 -0.334 0.927 STA.NO.8010 WITH STA.NO.9004 0.586 0.144 0.315 -0.101 0.807 -0.401 0.543 -0.588 0.817 STA.ND.8010 WITH STA.ND. 9091 0.686 -0.180 0.246 -0.017 0.680 -0.379 0.088 0.260 0.835 STA.NO.8010 WITH STA.NO.4432 0.588 -0.124 0.065 0.044 0.721 -0.276 -0.058 -0.029 0.773

STA . NO . 6042	WITH STA.	ND.902°
0.981	0.C87	0.008
0.068	0.983	-0.157
0.008	-0.156	0.987
STA-ND-6055	WITH STA.	NO.6C63
0.603	0.035	0.183
0.113	0.782	-0.102
0.156	-0.089	0.687
STA.NO.6055	WITH STA.	ND.9029
0.767	0.054	-0.040
-0.068	0.716	-0.068
0.020	0.000	0.750
STA-ND-6067	WITH STA	NO.9079
0.985	-0.145	-0.069
-0.146	0.970	0.004
-0.069	0-005	0.983
STA .NO. 6111		ND 6134
3144K040111	0 007	-0 179
0.002	0.000	-0 417
0.092	0.499	-0.417
-0.178		1.000
STA-NU-0134	WITH STAT	NU. 4425
0.966	0.002	-0.174
0.089	0.969	-0.411
-0.173	-0.408	0.978
STA.NC. 8009	WITH STA.	NU.8010
0.514	0.024	-0.025
-0.016	0.838	-0.286
0.046	-0.277	0.730
STA.ND.8009	WITH STA.	NO.8015
0.464	0.048	0+030
-0.042	0.824	-0.343
0.183	-0.290	0.751
STA.ND.8010	WITH STA.	NO.8015
0.777	-0.026	0.167
-0.068	0.960	~0.356
0.248	-0.340	0.925
STA.NO.8010	WITH STA.	NA. 8030
0.562	-0.015	0.147
-0.046	0.832	-0.314
0.138	-0.318	0.790
STA.ND.8010	WITH STA.	NC.9051
0.685	-0.180	0.245
-0.017	0.479	-0.378
0.25 4	0.028	0.834
STA-NO-8010	WITH STA.	N7.9431
0.546	-0-121	E10-0
0.092	0-799	-0.299
-0.200	-0-078	0_839
STA-ND-9015	WITH STA-	ND. 8019
0.978	-0-0.56	0_321
-0.065	0-992	-0.377
0.323	-0-371	0_991
		~ ~ / *

STA .NO. 2015	WITH STA.N	0.6030
0.702	-0.054	0.277
-0.043	0.864	-0.333
0.199	-0.351	0.652
STA-NO-8015	WITH STAN	0.9051
0.833	~0.119	0.366
-0.015	0.687	-0.392
0 200	0.025	0 907
CTA NO 9016	1402J	0.707
STA . NU . 8015	WITH 214 . A	0.140
0.489	~0.093	0.149
0.102	0.805	-0.324
-0.148	-0.133	0.839
STA-10.8019	WITH STA .	C.8030
0.691	-0.054	0.281
-0.045	0.859	-0.326
0.191	-0.349	0.848
STA.NO.8019	WITH STA.N	0.4051
0.841	-0.121	0.369
-0-010	0.696	-0.391
0.311	0.023	0.912
STA.NO.8019	WITH STA.N	0.9431
0.493	-0-095	0.152
0.091	0.815	-0.313
-0.148	-0.134	0.842
STA . NO . 8020	WITH STALN	0.9004
0.549	0.071	0.299
-0 107	0.749	-0 366
-0.107	-0 500	-0.300
U . 407		Ve / /4
31A-NU-0050	W110 31A+N	0.7071
0.793	-0.110	0.241
-0.008	0.570	-0.352
0.269	800+0	0.780
STA.ND. 9004	WITH STA N	0,9091
0.784	0.150	0.517
0.044	0.285	-0.474
0.415	-0.208	0.951
STA .NU. 9006	WITH STA.N	C•9008
0.450	0.187	-0.143
0.046	0.819	0.457
0.098	0.448	0.749
STA.NO.9051	WITH STA.N	0.9091
0.995	-0.107	0.423
-0.107	0.999	-0.157
0.424	-0.157	0.998
STA.ND.9051	WITH STA-N	0.9432
0.592	-0.074	0.225
-0.278	0.859	0-098
0.140	-0.207	0.718
STA.ND. 9:101	WITH STALN	0.9432
0.594	-0.074	n - 22k
	0.49.0	0 000
- U+210	-0 207	V+V70 0 710
V • 1 4 V		V+117

STA-NO-6015	WITH STA.N	0.9004
0.801	0.047	0.434
-0.111	0.839	-0.415
0.570	-0.582	0.900
STA-NO-8015	WITH STA.N	0.9091
0.835	-0,119	0.365
-0.014	0.683	-0.393
0.309	0.025	0.908
STA.NO.8015	WITH STA.N	0.9432
0.563	-0.093	0.183
0.053	0.723	-0.306
-0.005	-0.0'	0.783
STA.ND.8019	WITH S A.N	11
0.813	0.0 1	0.441
-0.107	0.036	··?•415
0.573	``	0.906
STA. NO. 8019	WITH S 1 1	ն <b>․ 9091</b>
0.843	-0.121	0.369
-0.016	0.696	-0.392
0.312	0.023	0.5:4
STA.NO.8019	WITH STA .N	0.9432
0.569	-0.095	0.136
0.046	0.734	-0.209
-0.004	-0.085	0.786
STA.NC.8030	WITH STA.N	0.9051
0 542	-0.116	0.241
-0.009	0.570	-0.352
0.269	0.009	0.778
STA,NO.9004	WITH STA-N	0.9051
0.781	0.150	0.516
0.043	0.285	-0.473
0.414	-0.208	0.949
ST4.ND.9004	WITH STA.N	0.9426
7.357	-0.153	0.440
0.395	0.852	-0.532
0.002	-0.336	0.705
STA. NO. 9007	WITH STAN	0+9011
0.602	-0.235	-0.012
-0.211	0.272	0.290
-0.101	141 TH 6 TA M	0.0431
21A-40-9051	-0 070	0 1 01
-0 200		0 - 1 - 1 - 1
-0.390	-0.247	0 774
STA-NO-0001		04724 0.9431
0.454	-0.070	0.185
•0.31 (	0.878	0.214
0.021	-0.24A	0.210
STA.NO.9431	WITH STA-N	0.9432
0.710	-0.337	-0.150
-0.231	0.889	-0-055
-0.160	0.061	0.823

## Table A - 3

# Station Correlation Coefficients $\rho_{ij} > 0.75$ (Solution WN12)

STA.NO.1032		STA.NO.3478			
1.000	0.905	-0.182	1.000	0.239	-0.913
0.905	1.000	-0.514	0.239	1.000	-0.324
-0.182	-0.514	1.000	-0.913	-0.324	1.000
STA. NO. 3902		STA.NO.6078			
1.000	0.922	-0.742	1.000	-0.532	-0.813
0.922	1.000	-0.699	-0.532	1.000	0.569
-0.742	-0.699	1.000	-0.813	0,569	1.000
STA.NO.9427					
1.000	-0.807	0.487			
-0.807	1.000	-0.777			
0.487	-0.777	1.000			