172 research outputs found

    Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products

    Full text link
    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(\pm2) dyn/cm in pure water (a 10% surface tension reduction from that of pure water) and 62(\pm1) dyn/cm in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution). Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.Comment: Published in Atmospheric Chemistry and Physics 22 November 201

    Temperature dependent photoemission on 1T-TiSe2: Interpretation within the exciton condensate phase model

    Get PDF
    The charge density wave phase transition of 1T-TiSe2 is studied by angle-resolved photoemission over a wide temperature range. An important chemical potential shift which strongly evolves with temperature is evidenced. In the framework of the exciton condensate phase, the detailed temperature dependence of the associated order parameter is extracted. Having a mean-field-like behaviour at low temperature, it exhibits a non-zero value above the transition, interpreted as the signature of strong excitonic fluctuations, reminiscent of the pseudo-gap phase of high temperature superconductors. Integrated intensity around the Fermi level is found to display a trend similar to the measured resistivity and is discussed within the model.Comment: 8 pages, 6 figure

    Influence of elastic scattering on the measurement of core-level binding energy dispersion in X-ray photoemission spectroscopy

    Get PDF
    We explore the interplay between the elastic scattering of photoelectrons and the surface core level shifts with regard to the determination of core level binding energies in Au(111) and Cu3Au(100). We find that an artificial shift is created in the binding energies of the Au 4f core levels, that exhibits a dependence on the emission angle, as well as on the spectral intensity of the core level emission itself. Using a simple model, we are able to reproduce the angular dependence of the shift and relate it to the anisotropy in the electron emission from the bulk layers. Our results demonstrate that interpretation of variation of the binding energy of core-levels should be conducted with great care and must take into account the possible influence of artificial shifts induced by elastic scatterin

    Probing the exciton condensate phase in 1T-TiSe2 with photoemission

    No full text
    International audienceWe present recent results obtained using angle-resolved photoemission spectroscopy performed on 1T-TiSe2. Emphasis is put on the peculiarity of the bandstructure of TiSe2 compared to other transition metal dichalcogenides, which suggests that this system is an excellent candidate for the realization of the excitonic insulator phase. This exotic phase is discussed in relation to the BCS theory, and its spectroscopic signature is computed via a model adapted to the particular bandstructure of 1T-TiSe2. A comparison between photoemission intensity maps calculated with the spectral function derived for this model and experimental results is shown, giving strong support for the exciton condensate phase as the origin of the charge density wave transition observed in 1T-TiSe2. The temperature-dependent order parameter characterizing the exciton condensate phase is discussed, both on a theoretical and an experimental basis, as well as the chemical potential shift occurring in this system. Finally, the transport properties of 1T-TiSe2 are analyzed in the light of the photoemission results

    An Alternative Interpretation of Recent ARPES Measurements on TiSe2

    Full text link
    Recently there has been a renewed interest in the charge density wave transition of TiSe2, fuelled by the possibility that this transition may be driven by the formation of an excitonic insulator or even an excitonic condensate. We show here that the recent ARPES measurements on TiSe2 can also be interpreted in terms of an alternative scenario, in which the transition is due to a combination of Jahn-Teller effects and exciton formation. The hybrid exciton-phonons which cause the CDW formation interpolate between a purely structural and a purely electronic type of transition. Above the transition temperature, the electron-phonon coupling becomes ineffective but a finite mean-field density of excitons remains and gives rise to the observed diffuse ARPES signals.Comment: 4 pages, 2 figure

    Three-dimensional momentum-resolved electronic structure of 1T-TiSe2:1T\text{-}{\mathrm{TiSe}}_{2}: A combined soft-x-ray photoemission and density functional theory study

    Get PDF
    1T−TiSe2 is a quasi-two-dimensional transition metal dichalcogenide, which exhibits a charge density wave transition at a critical temperature of ∼200 K as well as low- temperature superconductivity induced by pressure or intercalation. The electronic energy dispersion measured by soft x-ray angle-resolved photoemission is not only momentum resolved parallel to the surface but also perpendicular to it. Experiments are compared to density functional theory based band structure calculations using different exchange-correlation functionals. The results reveal the importance of including spin-orbit coupling for a good description of the experimental bands. Compared to calculations within the local density approximation, the use of the modified Becke-Johnson (mBJ) exchange functional leads to a band structure that does not need an artificial downwards shift of the valence band to fit the experiment. The mBJ functional thus clearly appears as the most adapted functional for the theoretical description of the 1T−TiSe2 band structure within the DFT framework

    Why do dogs (Canis familiaris) select the empty container in an observational learning task?

    Get PDF
    Many argue that dogs show unique susceptibility to human communicative signals that make them suitable for being engaged in complex co-operation with humans. It has also been revealed that socially provided information is particularly effective in influencing the behaviour of dogs even when the human’s action demonstration conveys inefficient or mistaken solution of task. It is unclear, however, how the communicative nature of the demonstration context and the presence of the human demonstrator affect the dogs’ object-choice behaviour in observational learning situations. In order to unfold the effects of these factors, 76 adult pet dogs could observe a communicative or a non-communicative demonstration in which the human retrieved a tennis ball from under an opaque container while manipulating another distant and obviously empty (transparent) one. Subjects were then allowed to choose either in the presence of the demonstrator or after she left the room. Results showed a significant main effect of the demonstration context (presence or absence of the human’s communicative signals), and we also found some evidence for the response-modifying effect of the presence of the human demonstrator during the dogs’ choice. That is, dogs predominantly chose the baited container, but if the demonstration context was communicative and the human was present during the dogs’ choice, subjects’ tendency to select the baited container has been reduced. In agreement with the studies showing sensitivity to human’s communicative signals in dogs, these findings point to a special form of social influence in observational learning situations when it comes to learning about causally opaque and less efficient (compared to what comes natural to the dog) action demonstrations
    corecore