81 research outputs found

    Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this recordThe publisher correction to this article is in ORE at: http://hdl.handle.net/10871/34487Diatoms contribute roughly 20% of global primary production, but the factors determining their ability to adapt to global warming are unknown. Here we quantify the capacity for adaptation to warming in the marine diatom Thalassiosira pseudonana. We find that evolutionary rescue under severe (32 °C) warming is slow, but adaptation to more realistic scenarios where temperature increases are moderate (26 °C) or fluctuate between benign and severe conditions is rapid and linked to phenotypic changes in metabolic traits and elemental composition. Whole-genome re-sequencing identifies genetic divergence among populations selected in the different warming regimes and between the evolved and ancestral lineages. Consistent with the phenotypic changes, the most rapidly evolving genes are associated with transcriptional regulation, cellular responses to oxidative stress and redox homeostasis. These results demonstrate that the evolution of thermal tolerance in marine diatoms can be rapid, particularly in fluctuating environments, and is underpinned by major genomic and phenotypic change.This study was funded by a Leverhulme Trust research grant (RPG-2013-335). Whole genome re-sequencing was carried out at Exeter Sequencing Service and Computational core facilities at the University of Exeter, where Dr. Karen Moore, Dr. Audrey Farbos, Paul O’Neill, and Dr. Konrad Paszkiewicz lead the handling of the samples. Exeter Squencing Services are supported by Medical Research Council Clinical Infrastructure award (MR/M008924/1), Wellcome Trust Institutional Strategic Support Fund (WT097835MF), Wellcome Trust Multi User Equipment Award (WT101650MA), and BBSRC LOLA award (BB/K003240/1)

    Publisher Correction: Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom

    Get PDF
    The article for which this is the publisher correction is in ORE at: http://hdl.handle.net/10871/32652The PDF version of this Article was updated shortly after publication following an error which resulted in the Ί symbol being omitted from the left hand side of equation 8. The HTML version was correct from the time of publication

    Variability approaching the thermal limits can drive diatom community dynamics

    Get PDF
    Organismal distributions are largely mediated by temperature, suggesting thermal trait variability plays a key role in defining species\u27 niches. We employed a trait‐based approach to better understand how inter‐ and intraspecific thermal trait variability could explain diatom community dynamics using 24 strains from 5 species in the diatom genusSkeletonema, isolated from Narragansett Bay (NBay), where this genus can comprise up to 99% of the microplankton. Strain‐specific thermal reaction norms were generated using growth rates obtained at temperatures ranging from −2°C to 36°C. Comparison of thermal reaction norms revealed inter‐ and intraspecific similarities in the thermal optima, but significant differences approaching the thermal limits. Cellular elemental composition was determined for two thermally differentiated species and again, the most variation occurred approaching the thermal limits. To determine the potential impact of interspecific variability on community composition, a species succession model was formulated utilizing each species\u27 empirically determined thermal reaction norm and historical temperature data from NBay. Seasonal succession in the modeled community resembled the timing of species occurrence in the field, but not species\u27 relative abundance. The model correctly predicted the timing of the dominant winter–spring species, Skeletonema marinoi, within 0–14 d of its observed peak occurrence in the field. Interspecific variability approaching the thermal limits provides an alternative mechanism for temporal diatom succession, leads to altered cellular elemental composition, and thus has the potential to influence carbon flux and nutrient cycling, suggesting that growth approaching the thermal limits be incorporated into both empirical and modeling efforts in the future

    A method for the reconstruction of unknown non-monotonic growth functions in the chemostat

    Get PDF
    We propose an adaptive control law that allows one to identify unstable steady states of the open-loop system in the single-species chemostat model without the knowledge of the growth function. We then show how one can use this control law to trace out (reconstruct) the whole graph of the growth function. The process of tracing out the graph can be performed either continuously or step-wise. We present and compare both approaches. Even in the case of two species in competition, which is not directly accessible with our approach due to lack of controllability, feedback control improves identifiability of the non-dominant growth rate.Comment: expansion of ideas from proceedings paper (17 pages, 8 figures), proceedings paper is version v

    Immunogenicity and safety of a quadrivalent high-dose inactivated influenza vaccine compared with a standard-dose quadrivalent influenza vaccine in healthy people aged 60 years or older: a randomized Phase III trial

    Get PDF
    A quadrivalent high-dose inactivated influenza vaccine (IIV4-HD) is licensed for adults 6565 y of age based on immunogenicity and efficacy studies. However, IIV4-HD has not been evaluated in adults aged 60\u201364 y. This study compared immunogenicity and safety of IIV4-HD with a standard-dose quadrivalent influenza vaccine (IIV4-SD) in adults aged 6560 y. This Phase III, randomized, modified double-blind, active-controlled study enrolled 1,528 participants aged 6560 y, randomized 1:1 to a single injection of IIV4-HD or IIV4-SD. Hemagglutination inhibition (HAI) geometric mean titers (GMTs) were measured at baseline and D 28 and seroconversion assessed. Safety was described for 180 d after vaccination. The primary immunogenicity objective was superiority of IIV4-HD versus IIV4-SD, for all four influenza strains 28 d post vaccination in participants aged 60\u201364 and 6565 y. IIV4-HD induced a superior immune response versus IIV4-SD in terms of GMTs in participants aged 60\u201364 y and those aged 6565 y for all four influenza strains. IIV4-HD induced higher GMTs in those aged 60\u201364 y than those aged 6565 y. Seroconversion rates were higher for IIV4-HD versus IIV4-SD in each age-group for all influenza strains. Both vaccines were well tolerated in participants 6560 y of age, with no safety concerns identified. More solicited reactions were reported with IIV4-HD than with IIV4-SD. IIV4-HD provided superior immunogenicity versus IIV4-SD and was well tolerated in adults aged 6560 y. IIV4-HD is assumed to offer improved protection against influenza compared with IIV4-SD in adults aged 6560 y, as was previously assessed for adults aged 6565 y

    Thermal acclimation increases the stability of a predator-prey interaction in warmer environments.

    Get PDF
    Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species

    Severe Asthma Standard-of-Care Background Medication Reduction With Benralizumab: ANDHI in Practice Substudy

    Full text link
    peer reviewedBackground: The phase IIIb, randomized, parallel-group, placebo-controlled ANDHI double-blind (DB) study extended understanding of the efficacy of benralizumab for patients with severe eosinophilic asthma. Patients from ANDHI DB could join the 56-week ANDHI in Practice (IP) single-arm, open-label extension substudy. Objective: Assess potential for standard-of-care background medication reductions while maintaining asthma control with benralizumab. Methods: Following ANDHI DB completion, eligible adults were enrolled in ANDHI IP. After an 8-week run-in with benralizumab, there were 5 visits to potentially reduce background asthma medications for patients achieving and maintaining protocol-defined asthma control with benralizumab. Main outcome measures for non–oral corticosteroid (OCS)-dependent patients were the proportions with at least 1 background medication reduction (ie, lower inhaled corticosteroid dose, background medication discontinuation) and the number of adapted Global Initiative for Asthma (GINA) step reductions at end of treatment (EOT). Main outcomes for OCS-dependent patients were reductions in daily OCS dosage and proportion achieving OCS dosage of 5 mg or lower at EOT. Results: For non–OCS-dependent patients, 53.3% (n = 208 of 390) achieved at least 1 background medication reduction, increasing to 72.6% (n = 130 of 179) for patients who maintained protocol-defined asthma control at EOT. A total of 41.9% (n = 163 of 389) achieved at least 1 adapted GINA step reduction, increasing to 61.8% (n = 110 of 178) for patients with protocol-defined EOT asthma control. At ANDHI IP baseline, OCS dosages were 5 mg or lower for 40.4% (n = 40 of 99) of OCS-dependent patients. Of OCS-dependent patients, 50.5% (n = 50 of 99) eliminated OCS and 74.7% (n = 74 of 99) achieved dosages of 5 mg or lower at EOT. Conclusions: These findings demonstrate benralizumab's ability to improve asthma control, thereby allowing background medication reduction. © 202
    • 

    corecore