786 research outputs found

    Multiple brain abscesses of odontogenic origin. May oral microbiota affect their development? a review of the current literature

    Get PDF
    In the last few years, the role of oral microbiota in the setting of oral diseases such as caries, periodontal disease, oral cancer and systemic infections, including rheumatoid arthritis, car-diovascular disease and brain abscess (BA), has attracted the attention of physicians and researchers. Approximately 5–7% of all BAs have an odontogenic origin, representing an important pathological systemic condition with a high morbidity and mortality. A systematic search of two databases (Pubmed and Ovid EMBASE) was performed for studies published up to 5 January 2021, reporting multiple BAs attributed to an odontogenic origin. According to PRISMA guidelines, we included a total of 16 papers reporting multiple BAs due to odontogenic infections. The aim of this review is to investigate the treatment modality and the clinical outcome of patients with multiple BAs due to odontogenic infections, as well as to identify the most common pathogens involved in this pathological status and their role, in the oral microbiota, in the onset of oral infections. A multidisciplinary approach is essential in the management of multiple BAs. Further studies are required to understand better the role of microbiota in the development of multiple BAs

    Impact of ploidy change on secondary metabolites and photochemical efficiency in Solanum bulbocastanum Dun.

    Get PDF
    Plants are well known for producing a wide diversity of natural compounds and several strategies have been proposed to enhance their production. Among them, somatic chromosome doubling may represent an effective and inexpensive method. The objective of the current study was to investigate the effect of polyploidization on the leaf metabolic profile and content of tetraploids produced from a wild diploid (2n=2x=24) potato species, Solanum bulbocastanum Dun. Photochemical efficiency of tetraploids was also analyzed. Results from HPLC-DAD and LC/MS analyses provided evidence that tetraploid genotypes displayed either a similar or a lower phenylpropanoids, tryptophan, tyrosine and α-chaconine content compared with the diploid parent. Similarly, no significant differences were found among genotypes both for measures of gas and for chlorophyll fluorescence, except for non-photochemical quenching (NPQ). Steroidal saponins content revealed superiority of some tetraploids with respect to the diploid parent, suggesting perturbations in the mechanism regulating the biosynthesis of such compounds following polyploidization. Lack of superiority may be attributed to the time required for adjustment, adaptation and evolution after the genomic shock induced by polyploidization, as well as the fact that an optimum ploidy level for each species may be crucial. Our results suggest that polyploidization as a strategy to enhance metabolite production cannot be generalized

    Impact of ploidy change on secondary metabolites and photochemical efficiency in Solanum bulbocastanum Dun.

    Get PDF
    Plants are well known for producing a wide diversity of natural compounds and several strategies have been proposed to enhance their production. Among them, somatic chromosome doubling may represent an effective and inexpensive method. The objective of the current study was to investigate the effect of polyploidization on the leaf metabolic profile and content of tetraploids produced from a wild diploid (2n=2x=24) potato species, Solanum bulbocastanum Dun. Photochemical efficiency of tetraploids was also analyzed. Results from HPLC-DAD and LC/MS analyses provided evidence that tetraploid genotypes displayed either a similar or a lower phenylpropanoids, tryptophan, tyrosine and α-chaconine content compared with the diploid parent. Similarly, no significant differences were found among genotypes both for measures of gas and for chlorophyll fluorescence, except for non-photochemical quenching (NPQ). Steroidal saponins content revealed superiority of some tetraploids with respect to the diploid parent, suggesting perturbations in the mechanism regulating the biosynthesis of such compounds following polyploidization. Lack of superiority may be attributed to the time required for adjustment, adaptation and evolution after the genomic shock induced by polyploidization, as well as the fact that an optimum ploidy level for each species may be crucial. Our results suggest that polyploidization as a strategy to enhance metabolite production cannot be generalized

    A New Method of the Corotation Radius Evaluation in our Galaxy

    Full text link
    We propose a new method for determination of the rotation velocity of the galactic spiral density waves, correspondingly, the corotation radius, rCr_C, in our Galaxy by means of statistical analysis of radial oxygen distribution in the galactic disc derived over Cepheids. The corotation resonance happens to be located at rC7.07.6r_C \sim 7.0 - 7.6 kpc, depending on the rate of gas infall on to the galactic disc, the statistical error being 0.30.4\sim 0.3 - 0.4 kpc. Simultaneously, the constant for the rate of oxygen synthesis in the galactic disc was determined. We also argue in favour of a very short time-scale formation of the galactic disc, namely: tf2t_f \sim 2 Gyr. This scenario enables to solve the problem of the lack of intergalactic gas infall.Comment: 5 pages, 5 figure, 1 tabl

    Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results

    Get PDF
    BACKGROUND: Recovery of therapeutic or functional ambulatory capacity in post-stroke patients is a primary goal of rehabilitation. Wearable powered exoskeletons allow patients with gait dysfunctions to perform over-ground gait training, even immediately after the acute event.AIM: To investigate the feasibility and the clinical effects of an over-ground walking training with a wearable powered exoskeleton in sub-acute and chronic stroke patients.DESIGN: Prospective, pilot pre-post, open label, non-randomized experimental study.SETTING: A single neurological rehabilitation center for inpatients and outpatients.POPULATION: Twenty-three post-stroke patients were enrolled: 12 sub-acute (mean age: 43.8\ub113.3 years, 5 male and 7 female, 7 right hemiparesis and 5 left hemiparesis) and 11 chronic (mean age: 55.5\ub115.9 years, 7 male and 4 female, 4 right hemiparesis and 7 left hemiparesis) patients.METHODS: Patients underwent 12 sessions (60 min/session, 3 times/week) of walking rehabilitation training using Ekso\u2122, a wearable bionic suit that enables individuals with lower extremity disabilities and minimal forearm strength to stand up, sit down and walk over a flat hard surface with a full weight-bearing reciprocal gait. Clinical evaluations were performed at the beginning of the training period (t0), after 6 sessions (t1) and after 12 sessions (t2) and were based on the Ashworth scale, Motricity Index, Trunk Control Test, Functional Ambulation Scale, 10-Meter Walking Test, 6-Minute Walking Test, and Walking Handicap Scale. Wilcoxon's test (P<0.05) was used to detect significant changes.RESULTS: Statistically significant improvements were observed at the three assessment periods for both groups in Motricity Index, Functional Ambulation Scale, 10-meter walking test, and 6-minute walking test. Sub-acute patients achieved statistically significant improvement in Trunk Control Test and Walking Handicap Scale at t0-t2. Sub-acute and chronic patient did not achieve significant improvement in Ashworth scale at t0-t2.CONCLUSIONS: Twelve sessions of over-ground gait training using a powered wearable robotic exoskeleton improved ambulatory functions in sub-acute and chronic post-stroke patients. Large, randomized multicenter studies are needed to confirm these preliminary data.CLINICAL REHABILITATION IMPACT: To plan a completely new individual tailored robotic rehabilitation strategy after stroke, including task-oriented over-ground gait training

    Easy and efficient agent-based simulations with the OpenABL language and compiler

    Get PDF
    Agent-based simulations represent an effective scientific tool, with numerous applications from social sciences to biology, which aims to emulate or predict complex phenomena through a set of simple rules performed by multiple agents. To simulate a large number of agents with complex models, practitioners have developed high-performance parallel implementations, often specialized for particular scenarios and target hardware. It is, however, difficult to obtain portable simulations, which achieve high performance and at the same time are easy to write and to reproduce on different hardware. This article gives a complete presentation of OpenABL, a domain-specific language and a compiler for agent-based simulations that enable users to achieve high-performance parallel and distributed agent simulations with a simple and portable programming environment. OpenABL is comprised of (1) an easy-to-program language, which relies on domain abstractions and explicitly exposes agent parallelism, synchronization and locality, (2) a source-to-source compiler, and (3) a set of pluggable compiler backends, which generate target code for multi-core CPUs, GPUs, and cloud-based systems. We evaluate OpenABL on simulations from different fields. In particular, our analysis includes predator–prey and keratinocyte, two complex simulations with multiple step functions, heterogeneous agent types, and dynamic creation and removal of agents. The results show that OpenABL-generated codes are portable to different platforms, perform similarly to manual target-specific implementations, and require significantly fewer lines of codes

    Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy

    Get PDF
    Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes com-bined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits
    corecore