374 research outputs found

    Intercultural communicative competence in foreign language education: Questions of theory, practice and research

    Get PDF
    Language teaching and learning has undergone a ‘cultural turn’ since the emergence of ‘the Communicative Approach’ and ‘Communicative Language Teaching’ in the 1970s. The earlier study of language, which involved the study of literary and other texts, had neglected the need for ‘communicative competence’— the ability to use language in socially appropriate ways, often operationalised as ‘politeness’. However, perhaps as a consequence of globalisation, new technologies, and mass economic and refugee migration, it has become clear that communicative language teaching too, with its focus on sociolinguistic appropriateness and politeness, is inadequate to the task of teaching for communication. This new social context requires consideration of the ways in which people of different languages — including language learners themselves — think and act, and how this might impact on successful communication and interaction. The ‘cultural turn’ – the introduction of ‘intercultural competence’ to complement ‘communicative competence’ – has further refined the notion of what it is to be competent for communication with speakers of different languages. Teachers and learners now need to be ‘aware’ of other people’s ‘cultures’ as well as their own, and therefore, the term ‘intercultural (communicative) competence’ has emerged, along with other terms such as ‘cultural awareness’ and ‘transnational competence’

    Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Gram-negative bacterium <it>Haemophilus influenzae </it>is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of <it>Escherichia coli</it>. The solute binding protein (SBP) that mediates glutathione transport in <it>H. influenzae </it>is a lipoprotein termed GbpA and is 54% identical to <it>E. coli </it>DppA, a well-studied member of family 5 SBP's. The discovery linking GbpA to glutathione import came rather unexpectedly as this import-priming SBP was previously annotated as a heme-binding protein (HbpA), and was thought to mediate heme acquisition. Nonetheless, although many SBP's have been implicated in more than one function, a prominent physiological role for GbpA and its partner permease in heme acquisition appears to be very unlikely. Here, we sought to characterize five representative GbpA homologs in an effort to delineate the novel GbpA-family of glutathione-specific family 5 SBPs and to further clarify their functional role in terms of ligand preferences.</p> <p>Results</p> <p>Lipoprotein and non-lipoprotein GbpA homologs were expressed in soluble form and substrate specificity was evaluated via a number of ligand binding assays. A physiologically insignificant affinity for hemin was observed for all five GbpA homologous test proteins. Three out of five test proteins were found to bind glutathione and some of its physiologically relevant derivatives with low- or submicromolar affinity. None of the tested SBP family 5 allocrites interacted with the remaining two GbpA test proteins. Structure-based sequence alignments and phylogenetic analysis show that the two binding-inert GbpA homologs clearly form a separate phylogenetic cluster. To elucidate a structure-function rationale for this phylogenetic differentiation, we determined the crystal structure of one of the GbpA family outliers from <it>H. parasuis</it>. Comparisons thereof with the previously determined structure of GbpA in complex with oxidized glutathione reveals the structural basis for the lack of allocrite binding capacity, thereby explaining the outlier behavior.</p> <p>Conclusions</p> <p>Taken together, our studies provide for the first time a collective functional look on a novel, <it>Pasteurellaceae</it>-specific, SBP subfamily of glutathione binding proteins, which we now term GbpA proteins. Our studies strongly implicate GbpA family SBPs in the priming step of ABC-transporter-mediated translocation of useful forms of glutathione across the inner membrane, and rule out a general role for GbpA proteins in heme acquisition.</p

    Overexpression of Crithidia fasciculata

    Full text link

    Hapln1b, a central organizer of the ECM, modulates kit signaling to control developmental hematopoiesis in zebrafish

    Get PDF
    During early vertebrate development, hematopoietic stem and progenitor cells (HSPCs) are produced in hemogenic endothelium located in the dorsal aorta, before they migrate to a transient niche where they expand to the fetal liver and the caudal hematopoietic tissue, in mammals and zebrafish, respectively. In zebrafish, previous studies have shown that the extracellular matrix (ECM) around the aorta must be degraded to enable HSPCs to leave the aortic floor and reach blood circulation. However, the role of the ECM components in HSPC specification has never been addressed. In this study, hapln1b, a key component of the ECM, was specifically expressed in hematopoietic sites in the zebrafish embryo. Gain- and loss-of-function experiments all resulted in the absence of HSPCs in the early embryo, showing that hapln1b is necessary, at the correct level, to specify HSPCs in the hemogenic endothelium. Furthermore, the expression of hapln1b was necessary to maintain the integrity of the ECM through its link domain. By combining functional analyses and computer modeling, we showed that kitlgb interacts with the ECM to specify HSPCs. The findings show that the ECM is an integral component of the microenvironment and mediates the cytokine signaling that is necessary for HSPC specification

    Novel Hollow Substrate Integrated Waveguide for 5G and Robotic Applications

    Get PDF
    This paper presents, a novel design of a Hollow Substrate Integrated Waveguide (HSIW), that is built by using both Subtractive and Additive Manufacturing technologies. Specifically, it utilizes Polymer jetting method to print an Acrylonitrile butadiene styrene (ABS) dielectric substrate and a water laser cutter system to produce smooth copper sheets as the top and bottom enclosures of the HSIW. Also, the fabrication process is utilizing mechanical through hole plating of commercially available prefabricated vias, eliminating the cost and complexity of performing vias fabrication and metallization process as in other SIW designs. The proposed waveguide covers 5G new radio frequency bands, specifically from 21 GHz to 31 GHz. It has a simulated and a measured attenuation constant of 0.636 Np/m and 1.56 Np/m respectively, for the whole operating frequency range and is among the lowest reported values to date. The proposed HSIW of this paper, can be compared with other state- of-the-art designs in terms of compactness, manufacturing cost and performance. The designed HSIW can be integrated with other planar circuits and can be used to build functional devices such as antennas or filters for 5G, robotics and IoT applications

    Miniaturized Triple-Mode Bandpass Filter using Dielectric Resonators

    Get PDF
    This paper presents a compact triple-mode dielectric resonator bandpass filter based on a single waveguide cavity. Two barium titanate pucks are used in the design, placed in the middle of the metallic cavity to reduce the size of the filter. A third-order simplified Chebyshev bandpass filter is selected to verify the technique and simulated using HFSS software. The input and output coaxial probes are used to excite the degenerate EH11 modes, while the TM01 mode is excited using a vertical hole etched in the top of the barium titanate pucks. The resonator offers a size reduction ratio of about 15.6% compared with equivalent air-filled coaxial filters. The filter has finite transmission zeros on the high or low side of the passband

    Longitudinal and transversal piezoresistive response of granular metals

    Full text link
    In this paper, we study the piezoresistive response and its anisotropy for a bond percolation model of granular metals. Both effective medium results and numerical Monte Carlo calculations of finite simple cubic networks show that the piezoresistive anisotropy is a strongly dependent function of bond probability p and of bond conductance distribution width \Delta g. We find that piezoresistive anisotropy is strongly suppressed as p is reduced and/or \Delta g is enhanced and that it vanishes at the percolation thresold p=p_c. We argue that a measurement of the piezoresistive anisotropy could be a sensitive tool to estimate critical metallic concentrations in real granular metals.Comment: 14 pages, 7 eps figure

    Ym1 protein crystals promote type 2 immunity

    Get PDF
    Spontaneous protein crystallization is a rare event, yet protein crystals are frequently found in eosinophil-rich inflammation. In humans, Charcot-Leyden crystals (CLCs) are made from galectin-10 (Gal10) protein, an abundant protein in eosinophils. Although mice do not encode Gal10 in their genome, they do form pseudo-CLCs, made from the chitinase-like proteins Ym1 and/or Ym2, encoded by Chil3 and Chil4 and made by myeloid and epithelial cells respectively. Here, we investigated the biological effects of pseudo-CLCs since their function is currently unknown. We produced recombinant Ym1 crystals which were shown to have identical crystal packing and structure by X-ray crystallography as in vivo native crystals derived from murine lung. When administered to the airways of mice, crystalline but not soluble Ym1 stimulated innate and adaptive immunity and acted as a type 2 immune adjuvant for eosinophilic inflammation via triggering of dendritic cells (DCs). Murine Ym1 protein crystals found at sites of eosinophilic inflammation reinforce type 2 immunity and could serve as a surrogate model for studying the biology of human CLCs.</p

    Ym1 protein crystals promote type 2 immunity

    Get PDF
    Spontaneous protein crystallization is a rare event, yet protein crystals are frequently found in eosinophil-rich inflammation. In humans, Charcot-Leyden crystals (CLCs) are made from galectin-10 (Gal10) protein, an abundant protein in eosinophils. Although mice do not encode Gal10 in their genome, they do form pseudo-CLCs, made from the chitinase-like proteins Ym1 and/or Ym2, encoded by Chil3 and Chil4 and made by myeloid and epithelial cells respectively. Here, we investigated the biological effects of pseudo-CLCs since their function is currently unknown. We produced recombinant Ym1 crystals which were shown to have identical crystal packing and structure by X-ray crystallography as in vivo native crystals derived from murine lung. When administered to the airways of mice, crystalline but not soluble Ym1 stimulated innate and adaptive immunity and acted as a type 2 immune adjuvant for eosinophilic inflammation via triggering of dendritic cells (DCs). Murine Ym1 protein crystals found at sites of eosinophilic inflammation reinforce type 2 immunity and could serve as a surrogate model for studying the biology of human CLCs.</p
    corecore