183 research outputs found

    The "Square Kagome" Quantum Antiferromagnet and the Eight Vertex Model

    Full text link
    We introduce a two dimensional network of corner-sharing triangles with square lattice symmetry. Properties of magnetic systems here should be similar to those on the kagome lattice. Focusing on the spin half Heisenberg quantum antiferromagnet, we generalise the spin symmetry group from SU(2) to SU(N). In the large N limit, we map the model exactly to the eight vertex model, solved by Baxter. We predict an exponential number of low-lying singlet states, a triplet gap, and a two-peak specific heat. In addition, the large N limit suggests a finite temperature phase transition into a phase with ordered ``resonance loops'' and broken translational symmetry.Comment: 5 pages, revtex, 5 eps figures include

    Dipolar Interactions and Origin of Spin Ice in Ising Pyrochlore Magnets

    Full text link
    Recent experiments suggest that the Ising pyrochlore magnets Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}} and Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} display qualitative properties of the spin ice model proposed by Harris {\it et al.} \prl {\bf 79}, 2554 (1997). We discuss the dipolar energy scale present in both these materials and consider how they can display spin ice behavior {\it despite} the presence of long range interactions. Specifically, we present numerical simulations and a mean field analysis of pyrochlore Ising systems in the presence of nearest neighbor exchange and long range dipolar interactions. We find that two possible phases can occur, a long range ordered antiferromagnetic one and the other dominated by spin ice features. Our quantitative theory is in very good agreement with experimental data on both Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}} and Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}}. We suggest that the nearest neighbor exchange in Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} is {\it antiferromagnetic} and that spin ice behavior is induced by long range dipolar interactions.Comment: 4 postscript figures included. Submitted to Physical Review Letters Contact: [email protected]

    Deformed strings in the Heisenberg model

    Full text link
    We investigate solutions to the Bethe equations for the isotropic S = 1/2 Heisenberg chain involving complex, string-like rapidity configurations of arbitrary length. Going beyond the traditional string hypothesis of undeformed strings, we describe a general procedure to construct eigenstates including strings with generic deformations, discuss general features of these solutions, and provide a number of explicit examples including complete solutions for all wavefunctions of short chains. We finally investigate some singular cases and show from simple symmetry arguments that their contribution to zero-temperature correlation functions vanishes.Comment: 34 pages, 13 figure

    Sigma-2: Multiple sequence alignment of non-coding DNA via an evolutionary model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While most multiple sequence alignment programs expect that all or most of their input is known to be homologous, and penalise insertions and deletions, this is not a reasonable assumption for non-coding DNA, which is much less strongly conserved than protein-coding genes. Arguing that the goal of sequence alignment should be the detection of <it>homology </it>and not <it>similarity</it>, we incorporate an evolutionary model into a previously published multiple sequence alignment program for non-coding DNA, Sigma, as a sensitive likelihood-based way to assess the significance of alignments. Version 1 of Sigma was successful in eliminating spurious alignments but exhibited relatively poor sensitivity on synthetic data. Sigma 1 used a <it>p</it>-value (the probability under the "null hypothesis" of non-homology) to assess the significance of alignments, and, optionally, a background model that captured short-range genomic correlations. Sigma version 2, described here, retains these features, but calculates the <it>p</it>-value using a sophisticated evolutionary model that we describe here, and also allows for a transition matrix for different substitution rates from and to different nucleotides. Our evolutionary model takes separate account of mutation and fixation, and can be extended to allow for locally differing functional constraints on sequence.</p> <p>Results</p> <p>We demonstrate that, on real and synthetic data, Sigma-2 significantly outperforms other programs in specificity to genuine homology (that is, it minimises alignment of spuriously similar regions that do not have a common ancestry) while it is now as sensitive as the best current programs.</p> <p>Conclusions</p> <p>Comparing these results with an extrapolation of the best results from other available programs, we suggest that conservation rates in intergenic DNA are often significantly over-estimated. It is increasingly important to align non-coding DNA correctly, in regulatory genomics and in the context of whole-genome alignment, and Sigma-2 is an important step in that direction.</p

    Order induced by dipolar interactions in a geometrically frustrated antiferromagnet

    Full text link
    We study the classical Heisenberg model for spins on a pyrochlore lattice interacting via long range dipole-dipole forces and nearest neighbor exchange. Antiferromagnetic exchange alone is known not to induce ordering in this system. We analyze low temperature order resulting from the combined interactions, both by using a mean-field approach and by examining the energy cost of fluctuations about an ordered state. We discuss behavior as a function of the ratio of the dipolar and exchange interaction strengths and find two types of ordered phase. We relate our results to the recent experimental work and reproduce and extend the theoretical calculations on the pyrochlore compound, Gd2_2Ti2_2O7_7, by Raju \textit{et al.}, Phys. Rev. B {\bf 59}, 14489 (1999).Comment: 5 pages, 5 figures, AMSLaTe

    Localized-magnon states in strongly frustrated quantum spin lattices

    Get PDF
    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones.Comment: 21 pages, 10 figures, invited paper for a special issue of "Low Temperature Physics " dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis

    A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A drug-drug interaction (DDI) occurs when one drug influences the level or activity of another drug. The increasing volume of the scientific literature overwhelms health care professionals trying to be kept up-to-date with all published studies on DDI.</p> <p>Methods</p> <p>This paper describes a hybrid linguistic approach to DDI extraction that combines shallow parsing and syntactic simplification with pattern matching. Appositions and coordinate structures are interpreted based on shallow syntactic parsing provided by the UMLS MetaMap tool (MMTx). Subsequently, complex and compound sentences are broken down into clauses from which simple sentences are generated by a set of simplification rules. A pharmacist defined a set of domain-specific lexical patterns to capture the most common expressions of DDI in texts. These lexical patterns are matched with the generated sentences in order to extract DDIs.</p> <p>Results</p> <p>We have performed different experiments to analyze the performance of the different processes. The lexical patterns achieve a reasonable precision (67.30%), but very low recall (14.07%). The inclusion of appositions and coordinate structures helps to improve the recall (25.70%), however, precision is lower (48.69%). The detection of clauses does not improve the performance.</p> <p>Conclusions</p> <p>Information Extraction (IE) techniques can provide an interesting way of reducing the time spent by health care professionals on reviewing the literature. Nevertheless, no approach has been carried out to extract DDI from texts. To the best of our knowledge, this work proposes the first integral solution for the automatic extraction of DDI from biomedical texts.</p

    Prioritization of gene regulatory interactions from large-scale modules in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources.</p> <p>Results</p> <p>Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes.</p> <p>Conclusion</p> <p>We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for further experimental studies.</p

    Making effective use of healthcare data using data-to-text technology

    Full text link
    Healthcare organizations are in a continuous effort to improve health outcomes, reduce costs and enhance patient experience of care. Data is essential to measure and help achieving these improvements in healthcare delivery. Consequently, a data influx from various clinical, financial and operational sources is now overtaking healthcare organizations and their patients. The effective use of this data, however, is a major challenge. Clearly, text is an important medium to make data accessible. Financial reports are produced to assess healthcare organizations on some key performance indicators to steer their healthcare delivery. Similarly, at a clinical level, data on patient status is conveyed by means of textual descriptions to facilitate patient review, shift handover and care transitions. Likewise, patients are informed about data on their health status and treatments via text, in the form of reports or via ehealth platforms by their doctors. Unfortunately, such text is the outcome of a highly labour-intensive process if it is done by healthcare professionals. It is also prone to incompleteness, subjectivity and hard to scale up to different domains, wider audiences and varying communication purposes. Data-to-text is a recent breakthrough technology in artificial intelligence which automatically generates natural language in the form of text or speech from data. This chapter provides a survey of data-to-text technology, with a focus on how it can be deployed in a healthcare setting. It will (1) give an up-to-date synthesis of data-to-text approaches, (2) give a categorized overview of use cases in healthcare, (3) seek to make a strong case for evaluating and implementing data-to-text in a healthcare setting, and (4) highlight recent research challenges.Comment: 27 pages, 2 figures, book chapte
    corecore