10,648 research outputs found

    Bacterial contamination monitor

    Get PDF
    Economical, simple, and fast method uses apparatus which detects bacteria by photography. Apparatus contains camera, film assembly, calibrated light bulb, opaque plastic plate with built-in reflecting surface and transparent window section, opaque slide, plate with chemical packages, and cover containing roller attached to handle

    Comment to "Observation of the neutron radiative decay" by R.U. Khafizov et al., published in JETP Letters 83 (2006) 5 (Pis'ma v ZhETF 83 (2006) 7)

    Full text link
    The commented manuscript was submitted for publication without informing at least four of the other authors, viz. N. Severijns, O. Zimmer, H.-F. Wirth and D. Rich. This violates our rights as collaborators. The analysis presented and the manuscript itself have not been discussed and have also not been approved by the entire collaboration prior to submission. Besides this formal incorrectness, we also criticise the content of the paper

    An Integral Field Study of Abundance Gradients in Nearby LIRGs

    Get PDF
    We present for the first time metallicity maps generated using data from the Wide Field Spectrograph (WiFeS) on the ANU 2.3m of 9 Luminous Infrared Galaxies (LIRGs) and discuss the abundance gradients and distribution of metals in these systems. We have carried out optical integral field spectroscopy (IFS) of several several LIRGs in various merger phases to investigate the merger process. In a major merger of two spiral galaxies with preexisting disk abundance gradients, the changing distribution of metals can be used as a tracer of gas flows in the merging system as low metallicity gas is transported from the outskirts of each galaxy to their nuclei. We employ this fact to probe merger properties by using the emission lines in our IFS data to calculate the gas-phase metallicity in each system. We create abundance maps and subsequently derive a metallicity gradient from each map. We compare our measured gradients to merger stage as well as several possible tracers of merger progress and observed nuclear abundances. We discuss our work in the context of previous abundance gradient observations and compare our results to new galaxy merger models which trace metallicity gradient. Our results agree with the observed flattening of metallicity gradients as a merger progresses. We compare our results with new theoretical predictions that include chemical enrichment. Our data show remarkable agreement with these simulations.Comment: Accepted for publication in ApJ. 26 pages, 18 figure

    Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster

    Get PDF
    We report the first high spectral resolution study of 17 M giants kinematically confirmed to lie within a few parsecs of the Galactic Center, using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the infrared K band. We consider their luminosities and kinematics, which classify these stars as members of the older stellar population and the central cluster. We find a median metallicity of =-0.16 and a large spread from approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron abundance. The abundances and the abundance distribution strongly resembles that of the Galactic bulge rather than disk or halo; in our small sample we find no statistical evidence for a dependence of velocity dispersion on metallicity.Comment: 18 pages, 14 figures, accepted for publication in A

    Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster

    Get PDF
    Very strong Sc I lines have been found recently in cool M giants in the Nuclear Star Cluster in the Galactic Center. Interpreting these as anomalously high scandium abundances in the Galactic Center would imply a unique enhancement signature and chemical evolution history for nuclear star clusters, and a potential test for models of chemical enrichment in these objects. We present high resolution K-band spectra (NIRSPEC/Keck II) of cool M giants situated in the solar neighborhood and compare them with spectra of M giants in the Nuclear Star Cluster. We clearly identify strong Sc I lines in our solar neighborhood sample as well as in the Nuclear Star Cluster sample. The strong Sc I lines in M giants are therefore not unique to stars in the Nuclear Star Cluster and we argue that the strong lines are a property of the line formation process that currently escapes accurate theoretical modeling. We further conclude that for giant stars with effective temperatures below approximately 3800 K these Sc I lines should not be used for deriving the scandium abundances in any astrophysical environment until we better understand how these lines are formed. We also discuss the lines of vanadium, titanium, and yttrium identified in the spectra, which demonstrate a similar striking increase in strength below 3500 K effective temperature.Comment: 11 pages, 6 figures, accepted for publication in Ap

    Shocked POststarbust Galaxy Survey I: Candidate Poststarbust Galaxies with Emission Line Ratios Consistent with Shocks

    Get PDF
    [Abridged] The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the OSSY measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1,067 SPOG candidates (SPOGs*) within z=0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an E+A selection. SPOGs* have a 13% 1.4GHz detection rate from the Faint Images of the Radio Sky at Twenty centimeters survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei. SPOGs* also have stronger NaD absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of SPOGs* further, including their morphologies, active galactic nuclei properties, and environments, has the potential for us to build a more complete picture of the initial conditions that can lead to a galaxy evolving.Comment: 19 pages, 19 figures, 3 tables, accepted to ApJ Supplements (Apr 13), full sample is available on www.spogs.or

    Variable stars in Terzan 5: additional evidence of multi-age and multi-iron stellar populations

    Get PDF
    Terzan 5 is a complex stellar system in the Galactic bulge, harboring stellar populations with very different iron content ({\Delta}[Fe/H] ~1 dex) and with ages differing by several Gyrs. Here we present an investigation of its variable stars. We report on the discovery and characterization of three RR Lyrae stars. For these newly discovered RR Lyrae and for six Miras of known periods we provide radial velocity and chemical abundances from spectra acquired with X-SHOOTER at the VLT. We find that the three RR Lyrae and the three short period Miras (P<300 d) have radial velocity consistent with being Terzan 5 members. They have sub-solar iron abundances and enhanced [{\alpha}/Fe], well matching the age and abundance patterns of the 12 Gyr metal-poor stellar populations of Terzan 5. Only one, out of the three long period (P>300 d) Miras analyzed in this study, has a radial velocity consistent with being Terzan 5 member. Its super-solar iron abundance and solar-scaled [{\alpha}/Fe] nicely match the chemical properties of the metal rich stellar population of Terzan 5 and its derived mass nicely agrees with being several Gyrs younger than the short period Miras. This young variable is an additional proof of the surprising young sub-population discovered in Terzan 5.Comment: 20 pages, 4 figures, in press on the Ap
    corecore