22 research outputs found

    Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection

    Get PDF
    Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome

    Probiotic Bacteria Induce a ‘Glow of Health’

    Get PDF
    Radiant skin and hair are universally recognized as indications of good health. However, this ‘glow of health’ display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health

    Oral Probiotic Control Skin Inflammation by Acting on Both Effector and Regulatory T Cells

    Get PDF
    Probiotics are believed to alleviate allergic and inflammatory skin disorders, but their impact on pathogenic effector T cells remains poorly documented. Here we show that oral treatment with the probiotic bacteria L. casei (DN-114 001) alone alleviates antigen-specific skin inflammation mediated by either protein-specific CD4+ T cells or hapten-specific CD8+ T cells. In the model of CD8+ T cell-mediated skin inflammation, which reproduces allergic contact dermatitis in human, inhibition of skin inflammation by L. casei is not due to impaired priming of hapten-specific IFNγ-producing cytolytic CD8+ effector T cells. Alternatively, L. casei treatment reduces the recruitment of CD8+ effector T cells into the skin during the elicitation (i.e. symptomatic) phase of CHS. Inhibition of skin inflammation by L. casei requires MHC class II-restricted CD4+ T cells but not CD1d-restricted NK-T cells. L casei treatment enhanced the frequency of FoxP3+ Treg in the skin and increased the production of IL-10 by CD4+CD25+ regulatory T cells in skin draining lymph nodes of hapten-sensitized mice. These data demonstrate that orally administered L. casei (DN-114 001) efficiently alleviate T cell-mediated skin inflammation without causing immune suppression, via mechanisms that include control of CD8+ effector T cells and involve regulatory CD4+ T cells. L. casei (DN-114 001) may thus represent a probiotic of potential interest for immunomodulation of T cell-mediated allergic skin diseases in human

    The role of DNA microarrays in Toxoplasma gondii research, the causative agent of ocular toxoplasmosis

    Get PDF
    Ocular toxoplasmosis, which is caused by the protozoan parasite Toxoplasma gondii, is the leading cause of retinochoroiditis. Toxoplasma is an obligate intracellular pathogen that replicates within a parasitophorous vacuole. Infections are initiated by digestion of parasites deposited in cat feces or in undercooked meat. Parasites then disseminate to target tissues that include the retina where they then develop into long-lived asymptomatic tissue cysts. Occasionally, cysts reactivate and growth of newly emerged parasites must be controlled by the host’s immune system or disease will occur. The mechanisms by which Toxoplasma grows within its host cell, encysts, and interacts with the host’s immune system are important questions. Here, we will discuss how the use of DNA microarrays in transcriptional profiling, genotyping, and epigenetic experiments has impacted our understanding of these processes. Finally, we will discuss how these advances relate to ocular toxoplasmosis and how future research on ocular toxoplasmosis can benefit from DNA microarrays

    Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts

    Get PDF
    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle
    corecore