2,599 research outputs found
Scaling law for the heating of solar coronal loops
We report preliminary results from a series of numerical simulations of the
reduced magnetohydrodynamic equations, used to describe the dynamics of
magnetic loops in active regions of the solar corona. A stationary velocity
field is applied at the photospheric boundaries to imitate the driving action
of granule motions.
A turbulent stationary regime is reached, characterized by a broadband power
spectrum and heating rate levels compatible with the
heating requirements of active region loops. A dimensional analysis of the
equations indicates that their solutions are determined by two dimensionless
parameters: the Reynolds number and the ratio between the Alfven time and the
photospheric turnover time. From a series of simulations for different values
of this ratio, we determine how the heating rate scales with the physical
parameters of the problem, which might be useful for an observational test of
this model.Comment: 12 pages, 4 figures. Astrophysical Journal Letters (in press
The scaling behavior of the insulator to plateau transition in topological band model
The scaling behavior of the quantum phase transition from an insulator to a
quantum Hall plateau state has often been examined within systems realizing
Landau levels. We study the topological transition in energy band models with
nonzero Chern number, which have the same topological property as a Landau
level. We find that the topological band generally realizes the same
universality class as the integer quantum Hall system in magnetic field for
strong enough disorder scattering. Furthermore, the symmetry of the transition
characterized by the relations: for the Hall
conductance and for the longitudinal
conductance is observed near the transition region. We also establish that the
finite temperature dependence of the Hall conductance is determined by the
inelastic scattering relaxation time, while the localization exponent
remains unchanged by such scattering.Comment: 7 pages and 7 figures, minor revisio
Plasma Relaxation and Topological Aspects in Hall Magnetohydrodynamics
Parker's formulation of isotopological plasma relaxation process in
magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient
alpha in the Hall MHD Beltrami condition turns out now to be proportional to
the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent
to the "potential vorticity" conservation equation in two-dimensional (2D)
hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be
proportional to the "potential vorticity" as well. The winding pattern of the
magnetic field lines in Hall MHD then appears to evolve in the same way as
"potential vorticity" lines in 2D hydrodynamics
Bridging the legitimacy gap – translating theory into practical signposts for legitimate flood risk governance
Legitimacy is widely regarded as a founding principle of ‘good’ and effective governance, yet despite intense academic debate and policy discourse, the concept remains conceptually confusing and poorly articulated in practice. To bridge this gap, this research performed an interpretive thematic analysis of academic scholarship across public administration, public policy, law, political science and geography. Three core themes were identified in relation to representative deliberation, procedural and distributive equity and justice, and socio-political acceptability, with numerous sub-themes therein. In an attempt to clarify conceptual confusion, this paper grounds these theoretical debates in the context of flood risk governance where numerous legitimacy dilemmas exist. A number of questions are presented as conceptual ‘sign posts’ to encourage reflexive governance in the future. Thus, more broadly, we assert the importance of bringing legitimacy to the forefront of contemporary flood risk governance discourse and practice, moving beyond the realm of academic reflection
Ethnicity and children
This article explores field research that sought to find out how young children explored difference and identity in a multi-ethnic early years setting and whether this influenced their peer interactions
Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer
Magnetic neutral points, where the magnitude of the magnetic field vanishes
locally, are potential locations for energy conversion in the solar corona. The
fact that the magnetic field is identically zero at these points suggests that
for the study of current sheet formation and of any subsequent resistive
dissipation phase, a finite beta plasma should be considered, rather than
neglecting the plasma pressure as has often been the case in the past. The
rapid dissipation of a finite current layer in non-force-free equilibrium is
investigated numerically, after the sudden onset of an anomalous resistivity.
The aim of this study is to determine how the energy is redistributed during
the initial diffusion phase, and what is the nature of the outward transmission
of information and energy. The resistivity rapidly diffuses the current at the
null point. The presence of a plasma pressure allows the vast majority of the
free energy to be transferred into internal energy. Most of the converted
energy is used in direct heating of the surrounding plasma, and only about 3%
is converted into kinetic energy, causing a perturbation in the magnetic field
and the plasma which propagates away from the null at the local fast
magnetoacoustic speed. The propagating pulses show a complex structure due to
the highly non-uniform initial state. It is shown that this perturbation
carries no net current as it propagates away from the null. The fact that,
under the assumptions taken in this paper, most of the magnetic energy released
in the reconnection converts internal energy of the plasma, may be highly
important for the chromospheric and coronal heating problem
Distinguishing Solar Flare Types by Differences in Reconnection Regions
Observations show that magnetic reconnection and its slow shocks occur in
solar flares. The basic magnetic structures are similar for long duration event
(LDE) flares and faster compact impulsive (CI) flares, but the former require
less non-thermal electrons than the latter. Slow shocks can produce the
required non-thermal electron spectrum for CI flares by Fermi acceleration if
electrons are injected with large enough energies to resonate with scattering
waves. The dissipation region may provide the injection electrons, so the
overall number of non-thermal electrons reaching the footpoints would depend on
the size of the dissipation region and its distance from the chromosphere. In
this picture, the LDE flares have converging inflows toward a dissipation
region that spans a smaller overall length fraction than for CI flares. Bright
loop-top X-ray spots in some CI flares can be attributed to particle trapping
at fast shocks in the downstream flow, the presence of which is determined by
the angle of the inflow field and velocity to the slow shocks.Comment: 15 pages TeX and 2 .eps figures, accepted to Ap.J.Let
Hall magnetohydrodynamics of partially ionized plasmas
The Hall effect arises in a plasma when electrons are able to drift with the
magnetic field but ions cannot. In a fully-ionized plasma this occurs for
frequencies between the ion and electron cyclotron frequencies because of the
larger ion inertia. Typically this frequency range lies well above the
frequencies of interest (such as the dynamical frequency of the system under
consideration) and can be ignored. In a weakly-ionized medium, however, the
Hall effect arises through a different mechanism -- neutral collisions
preferentially decouple ions from the magnetic field. This typically occurs at
much lower frequencies and the Hall effect may play an important role in the
dynamics of weakly-ionised systems such as the Earth's ionosphere and
protoplanetary discs.
To clarify the relationship between these mechanisms we develop an
approximate single-fluid description of a partially ionized plasma that becomes
exact in the fully-ionized and weakly-ionized limits. Our treatment includes
the effects of ohmic, ambipolar, and Hall diffusion. We show that the Hall
effect is relevant to the dynamics of a partially ionized medium when the
dynamical frequency exceeds the ratio of ion to bulk mass density times the
ion-cyclotron frequency, i.e. the Hall frequency. The corresponding length
scale is inversely proportional to the ion to bulk mass density ratio as well
as to the ion-Hall beta parameter.Comment: 11 page, 1 figure, typos removed, numbers in tables revised; accepted
for publication in MNRA
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
Relativistically expanding cylindrical electromagnetic fields
We study relativistically expanding electromagnetic fields of cylindrical
geometry. The fields emerge from the side surface of a cylinder and are
invariant under translations parallel to the axis of the cylinder. The
expansion velocity is in the radial direction and is parametrized by
. We consider force-free magnetic fields by setting the total force
the electromagnetic field exerts on the charges and the currents equal to zero.
Analytical and semi-analytical separable solutions are found for the
relativistic problem. In the non-relativistic limit the mathematical form of
the equations is similar to equations that have already been studied in static
systems of the same geometry.Comment: 7 pages, 4 figures, accepted by MNRA
- …
