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Plasma relaxation and topological aspects in Hall magnetohydrodynamics
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(Received 22 May 2012; accepted 12 June 2012; published online 30 July 2012)

Parker’s formulation of isotopological plasma relaxation process in magnetohydrodynamics

(MHD) is extended to Hall MHD. The torsion coefficient a in the Hall MHD Beltrami condition

turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition

becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D)

hydrodynamics if the Hall MHD Lagrange multiplier b is taken to be proportional to the potential
vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to

evolve in the same way as potential vorticity lines in 2D hydrodynamics. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4737093]

I. INTRODUCTION

A significant class of exact solutions of the equations

governing magnetohydrodynamics (MHD) emerges under

the Beltrami condition—the local current density is propor-

tional to the magnetic field—the force-free state (Lundquist1

and Lust and Schluter2). These Beltrami solutions turned out

to correlate well with real plasma behavior (Priest and For-

bes3 and Schindler4). Parker5–7 showed that, in certain

plasma relaxation processes, the Beltrami condition is indeed

equivalent to the vorticity conservation equation in two-

dimensional (2D) hydrodynamics (and the Lagrange multi-

plier a turned out to be proportional to vorticity).

In a high-b plasma, on length scales in the range

de < ‘ < di, where ds is the skin depth, ds � c=xps
, s¼ i, e

(i and e referring to the ions and electrons, respectively), the

electrons decouple from the ions. This results in an addi-

tional transport mechanism for the magnetic field via the

Hall current (Sonnerup8), which is the ion-inertia contribu-

tion in Ohm’s law. The Hall effect leads to the generation of

whistler waves whose

• frequency lies between ion-cyclotron and electron-

cyclotron frequencies xci
and xce

, respectively,
• phase velocity exceeds that of Alfvén waves for wave-

lengths parallel to the applied magnetic fields less than di.

Further, the decoupling of ions and electrons in a narrow

region around the magnetic neutral point (where the ions

become unmagnetized while the electrons remain magne-

tized) allows for rapid electron flows in the ion-dissipation

region and hence a faster magnetic reconnection process in

the Hall MHD regime (Mandt et al.9).

The purpose of this paper is to extend the considerations

of Parker5–7 to Hall MHD and investigate the evolution of

the winding pattern of the magnetic field lines in Hall MHD.

II. BELTRAMI STATES IN HALL MHD

The Hall MHD equations (which were formulated by

Lighthill10 following his far-sighted recognition of the im-

portance of the Hall term in the generalized Ohm’s law) are

(in usual notations)

@Xi

@t
¼ r� ðvi � XiÞ; (1)

@A

@t
¼ 1

c
vi � B� 1

nec
J� B; (2)

where n is the number density of ions (or electrons) and Xi is

the generalized vorticity,

Xi � xi þ xci
; xi � r� vi; xci

� eB

mic
: (3)

Here, we have considered an incompressible, two-fluid,

quasi-neutral plasma and have neglected the electron inertia.

Equations (1) and (2) have the Hamiltonian formulation

(Shivamoggi11),

H ¼ 1

2

ð
V

wi � Xi þ
1

c
A � ðJ� neviÞ

� �
dV; (4)

where

minvi � r� wi (5)

and V is the volume occupied by the plasma.1 Further, we

have put jwij ¼ 0 on the boundary @V and have rendered wi

unique by imposing the gauge condition,

r � wi ¼ 0: (6)

We choose ðXi;AÞ to be the canonical variables and

take

J �
�r� Xi

min
�
�
r� ð�Þ

�� �
0

0
cB

ne
� ð�Þ

0
BB@

1
CCA; (7)

as a ðXi;AÞ-dependent differential operator which produces

a skew-symmetric transformation of vector functions vanish-

ing on @V and satisfies a closure condition on an associated

symplectic two-form (Olver12).
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The Hamilton equations are then

@Xi

@t

@A

@t

0
BB@

1
CCA ¼ J

dH

dXi

dH

dA

0
BB@

1
CCA; (8)

which are just Eqs. (1) and (2). Here, dH=dq is the varia-

tional derivative.

The Casimir invariants for Hall MHD are solutions of

the equations,

J

dC
dXi

dC
dA

0
BB@

1
CCA ¼

0

0

0
@

1
A: (9)

It may be verified that two such solutions are

dCð1Þ
dXi

dCð1Þ
dA

0
BB@

1
CCA ¼

0

B

0
@

1
A (10)

or

Cð1Þ ¼
ð
V

A � B dV (11)

as with classical MHD, and

dCð2Þ
dXi

dCð2Þ
dA

0
BB@

1
CCA ¼

eA

mic
þ vi

e

mic

� �2

B

0
BBB@

1
CCCA (12)

or

Cð2Þ ¼
ð
V

eA

mic
þ vi

� �
� Xi dV: (13)

Cð1Þ is the total magnetic helicity and Cð2Þ is the total general-

ized ion cross helicity.

A significant class of exact solutions of the Hall MHD

Eqs. (1) and (2) emerges as the end result of the isotopologi-

cal energy-lowering Beltramization process. Thus, minimi-

zation of H, keeping Cð1Þ fixed, gives

dH

dA
¼ kð1Þ

dCð1Þ
dA

; (14)

or

1

c
ðJ� neviÞ ¼ kð1ÞB; (15)

which is the pseudo-force-free state.

On the other hand, minimization of H, keeping Cð2Þ
fixed, gives

dH

dXi
¼ kð2Þ

dCð2Þ
dXi

; (16)

or

minvi ¼ kð2ÞXi; (17)

which is the generalized Alfvénic state.

Combining Eqs. (15) and (17), we obtain for the Hall

MHD Beltrami state (Turner13),

mi

e
r� B� kð1Þ

mi

e
þ e

mic
kð2Þ

� �
B ¼ kð2Þxi: (18)

III. PLASMA RELAXATION IN AN APPLIED UNIFORM
MAGNETIC FIELD

Consider now, following Parker,5–7 a plasma in an

applied magnetic field and confined between two infinite par-

allel planes z ¼ 0 and L. The field lines of an initially uni-

form magnetic field B0 ¼ B0̂iz are wrapped around and

intermixed by random turbulent motion of their footpoints

on these planes. This interlaced magnetic field then relaxes

isotopologically toward the lowest available energy state

described by Eq. (18) written in the form,

r� B ¼ aBþ bxi: (19)

The MHD Lagrange multiplier a may be interpreted as

the torsion coefficient while b is the Hall MHD Lagrange

multiplier.

Suppose this process exhibits slow variations in the z-

direction, characterized by the slow spatial scale

n � �z; �� 1: (20)

Let the magnetic field involved in this process be given

by

B ¼ h�B0bx; �B0by; B0ð1þ �bzÞi (21)

and the Lagrange multipliers a and b be given by

a ¼ �a; b ¼ �b: (22)

Using Eqs. (20)–(22), Eq. (17) may be written as

vx ¼ rðc1�bx þ xxÞ; (23a)

vy ¼ rðc1�by þ xyÞ; (23b)

vz ¼ r½c1ð1þ �bzÞ þ �xz�: (23c)

The out-of-plane (or toroidal) ion flow ðvz ¼ 0Þ is pecu-

liar to Hall MHD. Here, r and c1 are appropriate constants.

Equation (19) leads to

@bz

@y
� � @by

@n
¼ �abx þ �bxx; (24a)

�
@bx

@n
� @bz

@x
¼ �aby þ �bxy; (24b)
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@by

@x
� @bx

@y
¼ að1þ �bzÞ þ �bxz; (24c)

and the divergence-free condition on B leads to

@bx

@x
þ @by

@y
þ � @bz

@n
¼ 0: (25)

On the other hand, taking the divergence of Eq. (19), we

obtain

B � raþ xi � rb ¼ 0; (26)

which, on using Eqs. (20)–(22), leads to

bx
@a

@x
þ by

@a

@y
þ ð1þ �bzÞ

@a

@n
þ xx

@b

@x
þ xy

@b

@y

þ �xz
@b

@n
¼ 0: (27)

Equations (24a) and (24b) imply

bz � Oð�Þ: (28)

Using Eq. (28), Eq. (25) leads to, to Oð1Þ

bx ¼
@w
@y

; by ¼ �
@w
@x

; (29)

for some magnetic flux function w ¼ wðx; yÞ.
Using Eq. (29), we obtain from Eq. (23), to Oð�Þ

@vx

@y
¼ r c1�

@2w
@y2
þ � @

2vz

@y2

� �
; (30a)

@vy

@x
¼ r �c1�

@2w
@x2
� � @

2vz

@x2

� �
; (30b)

and hence

xz �
@vy

@x
� @vx

@y
¼ �r�ðc1r2wþr2vzÞ; (31)

where

r2 � @2

@x2
þ @2

@y2
:

Next, using Eq. (29), Eq. (24c) leads to, to Oð1Þ

a ¼ �r2w: (32)

Using Eq. , and putting

xz � �rc1x; (33)

Eq. (32) leads to

a ¼ q � xþ 1

c1

r2vz; (34)

implying that the torsion coefficient a is proportional to the

potential vorticity q in Hall MHD.

On the other hand, using Eqs. (23) and (34), Eq. (27)

leads to, to Oð�Þ

�rc1

@q

@n
þ vx

@q

@x
þ vy

@q

@y
þ r�½ðq� c1bÞ; vz� ¼ 0; (35)

where

½f ; g� � @f

@x

@g

@y
� @f

@y

@g

@x
:

If we take the Hall MHD Lagrange multiplier b also to

be proportional to the potential vorticity q, i.e.,

b ¼ 1

c1

q; (36)

Eq. (35) becomes the potential vorticity conservation

equation in 2D hydrodynamics (on identifying n with t),

�rc1

@q

@n
þ vx

@q

@x
þ vy

@q

@y
¼ 0: (37)

Thus, the Beltrami condition (19) in Hall MHD becomes

equivalent to the potential vorticity conservation equation

in 2D hydrodynamics if the Hall MHD Lagrange multiplier

b is taken to be proportional to the potential vorticity
q as well. Equation (36) is sufficient but not necessary

to obtain Eq. (37). Equation (34) then implies that the

winding pattern of the magnetic field lines in Hall MHD

evolves in the same way as potential vorticity lines in 2D

hydrodynamics.

IV. DISCUSSION

In this paper, we have extended Parker’s5–7 formulation

of isotopological plasma relaxation process in MHD to Hall

MHD. The torsion coefficient a in the Hall MHD Beltrami

condition turns out now to be proportional to the potential
vorticity. The Hall MHD Beltrami condition becomes equiv-

alent to the potential vorticity conservation equation in 2D

hydrodynamics if the Hall MHD Lagrange multiplier b is

taken to be proportional to the potential vorticity as well.

The winding pattern of the magnetic field lines in Hall MHD

then appears to evolve in the same way as potential vorticity
lines in 2D hydrodynamics. The analogy between a smooth,

continuous magnetic field in Hall MHD and 2D hydrody-

namics as in ordinary MHD (Parker7) implies that the current

sheets seem to have the same role in the development of Hall

MHD equilibria as they do in the MHD case.

ACKNOWLEDGMENTS

This work was a result of my participation at the Inter-
national Astrophysics Forum, Alpbach, 2011. I am thankful

to Professor Eugene Parker for helpful suggestions and giv-

ing me access to Ref. 7 prior to publication and Professors

072124-3 B. K. Shivamoggi Phys. Plasmas 19, 072124 (2012)



Manfred Leubner and Zoltan Voros for their hospitality.

I am thankful to the referee for his helpful remarks.

1S. Lundquist, Ark. Fys. 2, 361 (1950).
2R. Lust and A. Schluter, Z. Astrophys. 34, 263 (1954).
3E. R. Priest and T. Forbes, Magnetic Reconnection (Cambridge University

Press, 2000).
4K. Schindler, Physics of Space Plasma Activity (Cambridge University

Press, 2007).
5E. N. Parker, Geophys. Astrophys. Fluid Dyn. 34, 243 (1986).

6E. N. Parker, Conversations on Electric and Magnetic Fields in the
Cosmos (Princeton University Press, 2007), Chap. 10.

7E. N. Parker, “Field line topology and rapid reconnection,” in Interna-
tional Astrophysics Forum, Alpbach, 2011.

8B. U. O. Sonnerup, in Solar System Plasma Physics, edited by L. J.

Lanzerotti, C. F. Kennel, and E. N. Parker (North Holland, 1979), p. 45.
9M. E. Mandt, R. E. Denton, and J. F. Drake, Geophys. Res. Lett. 21, 73,

doi: 10.1029/93GL03382 (1994).
10M. J. Lighthill, Philos. Trans. R. Soc. London, Ser. A 252, 397 (1960).
11B. K. Shivamoggi, Eur. Phys. J. D 64, 404 (2011).
12P. J. Olver, J. Math. Anal. Appl. 89, 233 (1982).
13L. Turner, IEEE Trans. Plasma Sci. PS-14, B49 (1986).

072124-4 B. K. Shivamoggi Phys. Plasmas 19, 072124 (2012)

http://dx.doi.org/10.1080/03091928508245445
http://dx.doi.org/10.1029/93GL03382
http://dx.doi.org/10.1098/rsta.1960.0010
http://dx.doi.org/10.1140/epjd/e2011-10585-6
http://dx.doi.org/10.1016/0022-247X(82)90100-7

	Plasma relaxation and topological aspects in Hall magnetohydrodynamics
	Recommended Citation

	s1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	s3
	d19
	d20
	d21
	d22
	d23a
	d23b
	d23c
	d24a
	d24b
	d24c
	d25
	d26
	d27
	d28
	d29
	d30a
	d30b
	d31
	d32
	d33
	d34
	d35
	s3
	d36
	d37
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13

