24 research outputs found

    TDNetGen: An open-source, parametrizable, large-scale, transmission and distribution test system

    Get PDF
    In this paper, an open-source MATLAB toolbox is presented that is able to generate synthetic, combined transmission and distribution network models. These can be used to analyse the interactions between transmission and multiple distribution systems, such as the provision of ancillary services by active distribution grids, the co-optimization of planning and operation, the development of emergency control and protection schemes spanning over different voltage levels, the analysis of combined market aspects, etc. The generated test-system models are highly customizable, providing the user with the flexibility to easily choose the desired characteristics, such as the level of renewable energy penetration, the size of the final system, etc

    Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology

    No full text
    The definitive version is available at www.blackwell-synergy.comAims: To assess glycosidase activities from a range of Lactobacillus and Pediococcus species and characterize these activities under conditions pertinent to the wine industry. Methods and Results: Lactic acid bacteria were cultured in MRS broth supplemented with apple juice before being harvested, washed and assayed for glycosidase activity using ρ-nitrophenol-linked substrates. All strains exhibited a detectable capacity for the hydrolysis of the β- and α-D-glucopyranosides. The magnitude of these activities and their response to the physico-chemical parameters investigated varied in a strain-dependent manner. The use of an assay buffer with a pH below 4 generally resulted in a reduced hydrolysis of both substrates while temperature optima ranged between 35 and 45°C. The effect of the inclusion of ethanol in the assay buffer (up to 12%, v/v) ranged from near complete inhibition to increases in activity approaching 80%. With the clear exception of a single strain, glucose and fructose (0•1–20 g l⁻¹) acted as inhibitors. An assessment of glycosidase activity during simultaneous exposure to glucose and ethanol at a pH of 3•5 suggested that ethanol decreased loss of activity under these wine-like conditions. Conclusions: Lactobacillus spp. and Pediococcus spp. possess varying degrees of β- and α-D-glucopyranosidase activities, which in turn are influenced differently by exposure to ethanol and/or sugars, temperature and pH. Several strains appeared suited for further evaluation under winemaking conditions. Significance and Impact of the Study: This work highlights the fact that strains of Lactobacillus and Pediococcus have the potential to influence the glycoside composition of wine. Tailoring of wine may therefore be possible through selective application of strains or enzymatic extracts thereof

    Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity

    No full text
    Siglec-G/10 is broadly expressed on B cells, dendritic cells and macrophage subsets. It binds strongly to CD24, a small glycosyl-phosphatidylinositol-anchored sialoprotein, in a sialylation-dependent manner. Targeted mutation of Siglecg dramatically elevates the level of natural IgM antibodies and its producer, B1 B cells. Incorporation of Siglec-G ligands to both T-dependent and T-independent immunogens reduces antibody production and induces B-cell tolerance to subsequent antigen challenges. By interacting with CD24, Siglec-G suppresses inflammatory responses to danger (damage)-associated molecular patterns, such as heat-shock proteins and high mobility group protein 1, but not to Toll-like receptor ligands. By a CD24-independent mechanism, Siglec-G has been shown to associate with Cbl to cause degradation of retinoic acid-inducible gene 1 and reduce production of type I interferon in response to RNA virus infection. The negative regulation by Siglec-G/10 may provide a mechanism for the host to discriminate between infectious nonself and noninfectious self, as envisioned by the late Dr. Charles A. Janeway

    Insulin-like growth factor 1 signaling regulates cytosolic sialidase Neu2 expression during myoblast differentiation and hypertrophy.

    No full text
    Cytosolic sialidase (neuraminidase 2; Neu2) is an enzyme whose expression increases during myoblast differentiation. Here we show that insulin-like growth factor 1 (IGF1)-induced hypertrophy of myoblasts notably increases Neu2 synthesis by activation of the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (P13K/AKT/mTOR) pathway, whereas the proliferative effect mediated by activation of the extracellular regulated kinase 1/2 (ERK1/2) pathway negatively contributed to Neu2 activity. Accordingly, the differentiation L6MLC/IGF-1 cell line, in which the forced postmitotic expression of insulin-like growth factor 1 stimulates a dramatic hypertrophy, was accompanied by a stronger Neu2 increase. Indeed, the hypertrophy induced by transfection of a constitutively activated form of AKT was able to induce high Neu2 activity in C2C12 cells, whereas the transfection of a kinase-inactive form of AKT prevented myotube formation, triggering Neu2 downregulation. Neu2 expression was strictly correlated with IGF-1 signaling also in C2 myoblasts overexpressing the insulin-like growth factor 1 binding protein 5 and therefore not responding to endogenously produced insulin-like growth factor 1. Although Neu2-transfected myoblasts exhibited stronger differentiation, we demonstrated that Neu2 overexpression does not override the block of differentiation mediated by PI3 kinase and mTOR inhibitors. Finally, Neu2 overexpression did not modify the ganglioside pattern of C2C12 cells, suggesting that glycoproteins might be the target of Neu2 activity. Taken together, our data demonstrate that IGF-1-induced differentiation and hypertrophy are driven, at least in part, by Neu2 upregulation and further support the significant role of cytosolic sialidase in myoblasts
    corecore