434 research outputs found
Correlations in Nuclear Arrhenius-Type Plots
Arrhenius-type plots for multifragmentation process, defined as the
transverse energy dependence of the single-fragment emission-probability,
-ln(p_{b}) vs 1/sqrt(E_{t}), have been studied by examining the relationship of
the parameters p_{b} and E_{t} to the intermediate-mass fragment multiplicity
. The linearity of these plots reflects the correlation of the fragment
multiplicity with the transverse energy. These plots may not provide thermal
scaling information about fragment production as previously suggested.Comment: 12 pages, Latex, 3 Postscript figures include
A statistical interpretation of the correlation between intermediate mass fragment multiplicity and transverse energy
Multifragment emission following Xe+Au collisions at 30, 40, 50 and 60 AMeV
has been studied with multidetector systems covering nearly 4-pi in solid
angle. The correlations of both the intermediate mass fragment and light
charged particle multiplicities with the transverse energy are explored. A
comparison is made with results from a similar system, Xe+Bi at 28 AMeV. The
experimental trends are compared to statistical model predictions.Comment: 7 pages, submitted to Phys. Rev.
Charge correlations and dynamical instabilities in the multifragment emission process
A new, sensitive method allows one to search for the enhancement of events
with nearly equal-sized fragments as predicted by theoretical calculations
based on volume or surface instabilities. Simulations have been performed to
investigate the sensitivity of the procedure. Experimentally, charge
correlations of intermediate mass fragments emitted from heavy ion reactions at
intermediate energies have been studied. No evidence for a preferred breakup
into equal-sized fragments has been found.Comment: 12 pages, TeX type, psfig, submitted to Phys. Rev. Lett, also
available at http://csa5.lbl.gov/moretto/ps/zcor_pp.p
To the Continuum and Beyond: Structure of U Nuclei
An experiment was performed at the 88-inch cyclotron at LBNL to investigate the structure of uranium isotopes and concurrently test the so-called surrogate ratio method. A 28 MeV proton beam was used to bombard 236U and 238U targets and the outgoing light ions were detected using the STARS silicon telescope allowing isotopic assignments and the excitation energy of the compound nucleus to be measured. A fission detector was placed at backward angles to give particle-fission coincidences, while the six clover germanium detectors of the LIBERACE array were used for particle-γ coincidences. The (p,d) reaction channels on 236U and 238U targets were used as a surrogate to measure the σ(234U(n,f))/σ(236U(n,f)) cross section ratio. The results give reasonable agreement with literature values over an equivalent neutron energy range between 0 MeV and 6 MeV. Structure results in 235U include a new (3/2−) level at 1035 keV, that is tentatively assigned as the 3/2−[501] Nilsson state. The analogue 3/2−[501] state in 237U may be associated with a previously observed level at 1201 keV, whose spin/parity is restricted to Jπ = 3/2− on the basis of newly observed decays to the ground band
Scaling Laws and Transient Times in 3He Induced Nuclear Fission
Fission excitation functions of compound nuclei in a mass region where shell
effects are expected to be very strong are shown to scale exactly according to
the transition state prediction once these shell effects are accounted for. The
fact that no deviations from the transition state method have been observed
within the experimentally investigated excitation energy regime allows one to
assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available
at http://csa5.lbl.gov/moretto/ps/he3_paper.p
Recommended from our members
Interpreting multiplicity-gated fragment distributions from heavy-ion collisions
In recent years, multifragmentation of nuclear systems has been extensively studied, and many efforts have been made to clarify the underlying physics. However, no clear consensus exists on the mechanism for multifragmentation. Is the emission of intermediate mass fragments (IMF: 3 {le} Z {le} 20) a dynamical process (brought on by the occurrence of instabilities of one form or another) or a statistical process (i.e. the decay probabilities are proportional to a suitably defined exit channel phase space)? Historically the charge (mass) distribution has played and still plays a very important role in characterizing multifragmentation. Since this subject`s inception, the near power-law shape of the charge and mass distributions was considered an indication of criticality for the hot nuclear fluid produced in light ion and heavy ion collisions. Here, the authors have studied different aspects of the charge distributions. The implications of the experimental evidence presented here are potentially far reaching. On the one hand, the thermal features observed in the n-fragment emission probabilities for the {sup 36}Ar + {sup 197}Au reaction extend consistently to the charge distributions and strengthen the hypothesis of the important role of phase space in describing multifragmentation. On the other hand, they have investigated charge correlation functions of multi-fragment decays to search for the enhanced production of nearly equal-sized fragments predicted in several theoretical works
Utilizing (\u3cem\u3ep,d\u3c/em\u3e) and (\u3cem\u3ep,t\u3c/em\u3e) Reactions to Obtain (\u3cem\u3en,f\u3c/em\u3e) Cross Sections in Uranium Nuclei Via the Surrogate-Ratio Method
The surrogate ratio method has been tested for (p,d) and (p,t) reactions on uranium nuclei. 236U and 238U targets were bombarded with 28-MeV protons and the light ion recoils and fission fragments were detected using the Silicon Telescope Array for Reaction Studies detector array at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The (p,df) reaction channels on 236U and 238U targets were used as a surrogate to determine the σ[236U(n,f)]/σ[234U(n,f)] cross-section ratio. The (p,tf) reaction channels were also measured with the same targets as a surrogate for the σ[235U(n,f)]/σ[(233U(n,f)] ratio. For the (p,df) and (p,tf) surrogate measurements, there is good agreement with accepted (n,f) values over equivalent neutron energy ranges of En=0–7 MeV and En=0–5.5 MeV, respectively. An internal surrogate ratio method comparing the (p,d) and (p,t) reaction channels on a single target is also discussed. The σ[234U(n,f)]/σ[233U(n,f)] and σ[236U(n,f)]/σ[235U(n,f)] cross-section ratios are extracted using this method for the 236U and 238U targets, respectively. The resulting fission cross-section ratios show relatively good agreement with accepted values up to En∼5 MeV
The Dual Impact of HIV-1 Infection and Aging on Naïve CD4+ T-Cells: Additive and Distinct Patterns of Impairment
HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within the naïve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naïve, HIV-1 seropositive individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+ subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults
Statistical Multifragmentation in Central Au+Au Collisions at 35 MeV/u
Multifragment disintegrations, measured for central Au + Au collisions at E/A
= 35 MeV, are analyzed with the Statistical Multifragmentation Model. Charge
distributions, mean fragment energies, and two-fragment correlation functions
are well reproduced by the statistical breakup of a large, diluted and
thermalized system slightly above the multifragmentation threshold.Comment: Latex file, 8 pages + 4 postscript figures available upon request
from [email protected]
Multifragment production in Au+Au at 35 MeV/u
Multifragment disintegration has been measured with a high efficiency
detection system for the reaction at . From the event
shape analysis and the comparison with the predictions of a many-body
trajectories calculation the data, for central collisions, are compatible with
a fast emission from a unique fragment source.Comment: 9 pages, LaTex file, 4 postscript figures available upon request from
[email protected]. - to appear in Phys. Lett.
- …