1,823 research outputs found

    Phoretic Motion of Spheroidal Particles Due To Self-Generated Solute Gradients

    Full text link
    We study theoretically the phoretic motion of a spheroidal particle, which generates solute gradients in the surrounding unbounded solvent via chemical reactions active on its surface in a cap-like region centered at one of the poles of the particle. We derive, within the constraints of the mapping to classical diffusio-phoresis, an analytical expression for the phoretic velocity of such an object. This allows us to analyze in detail the dependence of the velocity on the aspect ratio of the polar and the equatorial diameters of the particle and on the fraction of the particle surface contributing to the chemical reaction. The particular cases of a sphere and of an approximation for a needle-like particle, which are the most common shapes employed in experimental realizations of such self-propelled objects, are obtained from the general solution in the limits that the aspect ratio approaches one or becomes very large, respectively.Comment: 18 pages, 5 figures, to appear in European Physical Journal

    Interstitial Fe-Cr alloys: Tuning of magnetism by nanoscale structural control and by implantation of nonmagnetic atoms

    Full text link
    Using the density functional theory, we perform a full atomic relaxation of the bulk ferrite with 12.5%-concentration of monoatomic interstitial Cr periodically located at the edges of the bcc Feα_\alpha cell. We show that structural relaxation in such artificially engineered alloys leads to significant atomic displacements and results in the formation of novel highly stable configurations with parallel chains of octahedrically arranged Fe. The enhanced magnetic polarization in the low-symmetry metallic state of this type of alloys can be externally controlled by additional inclusion of nonmagnetic impurities like nitrogen. We discuss possible applications of generated interstitial alloys in spintronic devices and propose to consider them as a basis of novel durable types of stainless steels.Comment: 8 pages, 10 figure

    Models of Ultraluminous X-Ray Sources with Intermediate-Mass Black Holes

    Full text link
    We have computed models for ultraluminous X-ray sources ("ULXs") consisting of a black-hole accretor of intermediate mass ("IMBH"; e.g., ~1000 Msun) and a captured donor star. For each of four different sets of initial donor masses and orbital separations, we computed 30,000 binary evolution models using a full Henyey stellar evolution code. To our knowledge this is the first time that a population of X-ray binaries this large has been carried out with other than approximation methods, and it serves to demonstrate the feasibility of this approach to large-scale population studies of mass-transfer binaries. In the present study, we find that in order to have a plausible efficiency for producing active ULX systems with IMBHs having luminosities > 10^{40} ergs/sec, there are two basic requirements for the capture of companion/donor stars. First, the donor stars should be massive, i.e., > 8 Msun. Second, the initial orbital separations, after circularization, should be close, i.e., < 6-30 times the radius of the donor star when on the main sequence. Even under these optimistic conditions, we show that the production rate of IMBH-ULX systems may fall short of the observed values by factors of 10-100.Comment: 5 pages, 2 figures, submitted to Ap

    Periodic orbits in chaotic systems simulated at low precision

    Get PDF
    Non-periodic solutions are an essential property of chaotic dynamical systems. Simulations with deterministic finite-precision numbers, however, always yield orbits that are eventually periodic. With 64-bit double-precision floating-point numbers such periodic orbits are typically negligible due to very long periods. The emerging trend to accelerate simulations with low-precision numbers, such as 16-bit half-precision floats, raises questions on the fidelity of such simulations of chaotic systems. Here, we revisit the 1-variable logistic map and the generalised Bernoulli map with various number formats and precisions: floats, posits and logarithmic fixed-point. Simulations are improved with higher precision but stochastic rounding prevents periodic orbits even at low precision. For larger systems the performance gain from low-precision simulations is often reinvested in higher resolution or complexity, increasing the number of variables. In the Lorenz 1996 system, the period lengths of orbits increase exponentially with the number of variables. Moreover, invariant measures are better approximated with an increased number of variables than with increased precision. Extrapolating to large simulations of natural systems, such as million-variable climate models, periodic orbit lengths are far beyond reach of present-day computers. Such orbits are therefore not expected to be problematic compared to high-precision simulations but the deviation of both from the continuum solution remains unclear

    Generalized stacking fault energetics and dislocation properties: compact vs. spread unit dislocation structures in TiAl and CuAu

    Full text link
    We present a general scheme for analyzing the structure and mobility of dislocations based on solutions of the Peierls-Nabarro model with a two component displacement field and restoring forces determined from the ab-initio generalized stacking fault energetics (ie., the so-called γ\gamma-surface). The approach is used to investigate dislocations in L10_{0} TiAl and CuAu; predicted differences in the unit dislocation properties are explicitly related with features of the γ\gamma-surface geometry. A unified description of compact, spread and split dislocation cores is provided with an important characteristic "dissociation path" revealed by this highly tractable scheme.Comment: 7 two columns pages, 2 eps figures. Phys. Rev. B. accepted November 199

    Worm Epidemics in Wireless Adhoc Networks

    Full text link
    A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet

    Asteroseismology of the ZZ Ceti and DAZ GD133

    Full text link
    GD 133 is a DAZ white dwarf with an atmosphere polluted by heavy elements accreted from a debris disk, which is formed by the disruption of rocky planetesimals with orbits bringing them at the white dwarf tidal radius. To reach such orbits implies the potential presence of a perturbing planet. GD133 is a ZZ Ceti pulsator close to the blue edge of the instability strip. The presence of a planet could be revealed by the periodical variation of the observed pulsation periods induced by the orbital motion of the white dwarf. We started a multi-site photometric follow-up aimed at detecting the signature of this potential planet. As a partial result of this work in progress, we give the parameters of a preliminary best-fit model derived from asteroseismology

    A tight binding model for water

    Get PDF
    We demonstrate for the first time a tight binding model for water incorporating polarizable anions. A novel aspect is that we adopt a "ground up" approach in that properties of the monomer and dimer only are fitted. Subsequently we make predictions of the structure and properties of hexamer clusters, ice-XI and liquid water. A particular feature, missing in current tight binding and semiempirical hamiltonians, is that we reproduce the almost two-fold increase in molecular dipole moment as clusters are built up towards the limit of bulk liquid. We concentrate on properties of liquid water which are very well rendered in comparison with experiment and published density functional calculations. Finally we comment on the question of the contrasting densities of water and ice which is central to an understanding of the subtleties of the hydrogen bond
    corecore