1,841 research outputs found
Phoretic Motion of Spheroidal Particles Due To Self-Generated Solute Gradients
We study theoretically the phoretic motion of a spheroidal particle, which
generates solute gradients in the surrounding unbounded solvent via chemical
reactions active on its surface in a cap-like region centered at one of the
poles of the particle. We derive, within the constraints of the mapping to
classical diffusio-phoresis, an analytical expression for the phoretic velocity
of such an object. This allows us to analyze in detail the dependence of the
velocity on the aspect ratio of the polar and the equatorial diameters of the
particle and on the fraction of the particle surface contributing to the
chemical reaction. The particular cases of a sphere and of an approximation for
a needle-like particle, which are the most common shapes employed in
experimental realizations of such self-propelled objects, are obtained from the
general solution in the limits that the aspect ratio approaches one or becomes
very large, respectively.Comment: 18 pages, 5 figures, to appear in European Physical Journal
Interstitial Fe-Cr alloys: Tuning of magnetism by nanoscale structural control and by implantation of nonmagnetic atoms
Using the density functional theory, we perform a full atomic relaxation of
the bulk ferrite with 12.5%-concentration of monoatomic interstitial Cr
periodically located at the edges of the bcc Fe cell. We show that
structural relaxation in such artificially engineered alloys leads to
significant atomic displacements and results in the formation of novel highly
stable configurations with parallel chains of octahedrically arranged Fe. The
enhanced magnetic polarization in the low-symmetry metallic state of this type
of alloys can be externally controlled by additional inclusion of nonmagnetic
impurities like nitrogen. We discuss possible applications of generated
interstitial alloys in spintronic devices and propose to consider them as a
basis of novel durable types of stainless steels.Comment: 8 pages, 10 figure
Models of Ultraluminous X-Ray Sources with Intermediate-Mass Black Holes
We have computed models for ultraluminous X-ray sources ("ULXs") consisting
of a black-hole accretor of intermediate mass ("IMBH"; e.g., ~1000 Msun) and a
captured donor star. For each of four different sets of initial donor masses
and orbital separations, we computed 30,000 binary evolution models using a
full Henyey stellar evolution code. To our knowledge this is the first time
that a population of X-ray binaries this large has been carried out with other
than approximation methods, and it serves to demonstrate the feasibility of
this approach to large-scale population studies of mass-transfer binaries. In
the present study, we find that in order to have a plausible efficiency for
producing active ULX systems with IMBHs having luminosities > 10^{40} ergs/sec,
there are two basic requirements for the capture of companion/donor stars.
First, the donor stars should be massive, i.e., > 8 Msun. Second, the initial
orbital separations, after circularization, should be close, i.e., < 6-30 times
the radius of the donor star when on the main sequence. Even under these
optimistic conditions, we show that the production rate of IMBH-ULX systems may
fall short of the observed values by factors of 10-100.Comment: 5 pages, 2 figures, submitted to Ap
Periodic orbits in chaotic systems simulated at low precision
Non-periodic solutions are an essential property of chaotic dynamical systems. Simulations with deterministic finite-precision numbers, however, always yield orbits that are eventually periodic. With 64-bit double-precision floating-point numbers such periodic orbits are typically negligible due to very long periods. The emerging trend to accelerate simulations with low-precision numbers, such as 16-bit half-precision floats, raises questions on the fidelity of such simulations of chaotic systems. Here, we revisit the 1-variable logistic map and the generalised Bernoulli map with various number formats and precisions: floats, posits and logarithmic fixed-point. Simulations are improved with higher precision but stochastic rounding prevents periodic orbits even at low precision. For larger systems the performance gain from low-precision simulations is often reinvested in higher resolution or complexity, increasing the number of variables. In the Lorenz 1996 system, the period lengths of orbits increase exponentially with the number of variables. Moreover, invariant measures are better approximated with an increased number of variables than with increased precision. Extrapolating to large simulations of natural systems, such as million-variable climate models, periodic orbit lengths are far beyond reach of present-day computers. Such orbits are therefore not expected to be problematic compared to high-precision simulations but the deviation of both from the continuum solution remains unclear
Generalized stacking fault energetics and dislocation properties: compact vs. spread unit dislocation structures in TiAl and CuAu
We present a general scheme for analyzing the structure and mobility of
dislocations based on solutions of the Peierls-Nabarro model with a two
component displacement field and restoring forces determined from the ab-initio
generalized stacking fault energetics (ie., the so-called -surface).
The approach is used to investigate dislocations in L1 TiAl and CuAu;
predicted differences in the unit dislocation properties are explicitly related
with features of the -surface geometry. A unified description of
compact, spread and split dislocation cores is provided with an important
characteristic "dissociation path" revealed by this highly tractable scheme.Comment: 7 two columns pages, 2 eps figures. Phys. Rev. B. accepted November
199
Worm Epidemics in Wireless Adhoc Networks
A dramatic increase in the number of computing devices with wireless
communication capability has resulted in the emergence of a new class of
computer worms which specifically target such devices. The most striking
feature of these worms is that they do not require Internet connectivity for
their propagation but can spread directly from device to device using a
short-range radio communication technology, such as WiFi or Bluetooth. In this
paper, we develop a new model for epidemic spreading of these worms and
investigate their spreading in wireless ad hoc networks via extensive Monte
Carlo simulations. Our studies show that the threshold behaviour and dynamics
of worm epidemics in these networks are greatly affected by a combination of
spatial and temporal correlations which characterize these networks, and are
significantly different from the previously studied epidemics in the Internet
Asteroseismology of the ZZ Ceti and DAZ GD133
GD 133 is a DAZ white dwarf with an atmosphere polluted by heavy elements accreted from a debris disk, which is formed by the disruption of rocky planetesimals with orbits bringing them at the white dwarf tidal radius. To reach such orbits implies the potential presence of a perturbing planet. GD133 is a ZZ Ceti pulsator close to the blue edge of the instability strip. The presence of a planet could be revealed by the periodical variation of the observed pulsation periods induced by the orbital motion of the white dwarf. We started a multi-site photometric follow-up aimed at detecting the signature of this potential planet. As a partial result of this work in progress, we give the parameters of a preliminary best-fit model derived from asteroseismology
A tight binding model for water
We demonstrate for the first time a tight binding model for water
incorporating polarizable anions. A novel aspect is that we adopt a "ground up"
approach in that properties of the monomer and dimer only are fitted.
Subsequently we make predictions of the structure and properties of hexamer
clusters, ice-XI and liquid water. A particular feature, missing in current
tight binding and semiempirical hamiltonians, is that we reproduce the almost
two-fold increase in molecular dipole moment as clusters are built up towards
the limit of bulk liquid. We concentrate on properties of liquid water which
are very well rendered in comparison with experiment and published density
functional calculations. Finally we comment on the question of the contrasting
densities of water and ice which is central to an understanding of the
subtleties of the hydrogen bond
C/EBPβ-1 promotes transformation and chemoresistance in Ewing sarcoma cells.
CEBPB copy number gain in Ewing sarcoma was previously shown to be associated with worse clinical outcome compared to tumors with normal CEBPB copy number, although the mechanism was not characterized. We employed gene knockdown and rescue assays to explore the consequences of altered CEBPB gene expression in Ewing sarcoma cell lines. Knockdown of EWS-FLI1 expression led to a decrease in expression of all three C/EBPβ isoforms while re-expression of EWS-FLI1 rescued C/EBPβ expression. Overexpression of C/EBPβ-1, the largest of the three C/EBPβ isoforms, led to a significant increase in colony formation when cells were grown in soft agar compared to empty vector transduced cells. In addition, depletion of C/EBPβ decreased colony formation, and re-expression of either C/EBPβ-1 or C/EBPβ-2 rescued the phenotype. We identified the cancer stem cell marker ALDH1A1 as a target of C/EBPβ in Ewing sarcoma. Furthermore, increased expression of C/EBPβ led to resistance to chemotherapeutic agents. In summary, we have identified CEBPB as an oncogene in Ewing sarcoma. Overexpression of C/EBPβ-1 increases transformation, upregulates expression of the cancer stem cell marker ALDH1A1, and leads to chemoresistance
- …